导航:首页 > 装置知识 > 玻璃杯抓取机械臂装置毕业设计

玻璃杯抓取机械臂装置毕业设计

发布时间:2022-06-18 21:43:20

㈠ 有缝和无缝玻璃杯的区别

有缝和无缝玻璃杯的区别如下:

1、制造工艺不同

有缝玻璃杯是模具压制而成的,就像夏天喝扎啤的杯子!而无缝玻璃杯子是玻璃融化后吹制而成的,对玻璃的纯净度要求更高一些。

2、耐用程度不同

有缝玻璃杯的杯子壁各个点受力不均匀、在冷热水交替的时候,非常容易炸裂!而无缝玻璃杯,没有接痕!也就是没有那条缝、杯子壁各点受力均匀,几乎不会炸裂!所以相对而言无缝玻璃杯的耐用程度会更好一些。

3、价格不同

有缝玻璃杯因为是有模具的,相对生产工艺会简单一些,所以价格就会低一些。而无缝玻璃杯因为是吹制而成的,没有模具,所以吹出来的不会完全一样,所以就没办法大批量生产,自然价格就会贵一些。

机械手抓取玻璃出现划伤

正常情况不会的。机械手抓取玻璃的关键条件: 1. 玻璃设定的长、 宽和传送过来的长、 宽差值在±50mm 范 围内。 2. 玻璃的等级要和设定的等级相符。 3. 横边光电和竖边光电要在 6200~6800 码.

㈢ 机械手臂的工程应用

该机械臂复由用户的头脑完全控制制,灵巧到足以拿起一个玻璃杯,在没有其他人帮助的情况下喝掉一杯饮料。这个机械臂的创造者一个研究小组,成员来自于加州理工学院等机构,其中,神经芯片被植入Sorto的大脑后顶叶皮层(PPC)。
该机器臂控制芯片植入位置与之前其他瘫痪用户控制机械臂的植入位置不同,通常情况下,这种控制芯片植入位置是控制肌肉的大脑区域,而PPC是控制我们行动意图的区域,移动,并让Erik Sorto控制的机械臂更加流畅和自然地运动。Erik Sorto要做的就是思考他打算做什么,并通过大量的练习,能够使机械臂进行他正在考虑的任务。 科学家已经研制出了橡胶机器手臂,可以抓起蚂蚁而不是捏死。目前这种机械手臂还处于研发阶段,科学家把电线浸入液体硅橡胶中,待凝固后抽出电线,得到一个长5-8mm,头发丝细的触手。触手内部分为许多小格子,通过压缩空气流动来做出各种动作,可以毫无伤害的握起蚂蚁的腰部。
科学家认为这种触手将来会大有用武之地,当然不是抓蚂蚁玩儿,而是进行诸如精密的心脏及胚胎血管手术。

㈣ 机械设计毕业设计开题报告

相关范文:

超硬材料薄膜涂层研究进展及应用

摘要:CVD和PVD TiN,TiC,TiCN,TiAlN等硬质薄膜涂层材料已经在工具、模具、装饰等行业得到日益广泛的应用,但仍然不能满足许多难加工材料,如高硅铝合金,各种有色金属及其合金,工程塑料,非金属材料,陶瓷,复合材料(特别是金属基和陶瓷基复合材料)等加工要求。正是这种客观需求导致了诸如金刚石膜、立方氮化硼(c-BN)和碳氮膜(CNx)以及纳米复合膜等新型超硬薄膜材料的研究进展。本文对这些超硬材料薄膜的研究现状及工业化应用前景进行了简要的介绍和评述。
关键词:超硬材料薄膜;研究进展;工业化应用
1 超硬薄膜

超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜。不久以前还只有金刚石膜和立方氮化硼(c-BN)薄膜能够达到这个标准,前者的硬度为50-100GPa(与晶体取向有关),后者的硬度为50~80GPa。类金刚石膜(DLC)的硬度范围视制备方法和工艺不同可在10GPa~60GPa的宽广范围内变动。因此一些硬度很高的类金刚石膜(如采用真空磁过滤电弧离子镀技术制备的类金刚石膜(也叫Ta:C))也可归人超硬薄膜行列。近年来出现的碳氮膜(CNx)虽然没有像Cohen等预测的晶态β-C3N4那样超过金刚石的硬度,但已有的研究结果表明其硬度可达10GPa~50GPa,因此也归人超硬薄膜一类。上述几种超硬薄膜材料具有一个相同的特征,他们的禁带宽度都很大,都具有优秀的半导体性质,因此也叫做宽禁带半导体薄膜。SiC和GaN薄膜也是优秀的宽禁带半导体材料,但它们的硬度都低于40GPa,因此不属于超硬薄膜。

最近出现的一类超硬薄膜材料与上述宽禁带半导体薄膜完全不同,他们是由纳米厚度的普通的硬质薄膜组成的多层膜材料。尽管每一层薄膜的硬度都没有达到超硬的标准,但由它们组成的纳米复合多层膜却显示了超硬的特性。此外,由纳米晶粒复合的TiN/SiNx薄膜的硬度竟然高达105GPa,创纪录地达到了金刚石的硬度。

本文将就上述几种超硬薄膜材料一一进行简略介绍,并对其工业化应用前景进行评述。

2 金刚石膜

2.1金刚石膜的性质
金刚石膜从20世纪80年代初开始,一直受到世界各国的广泛重视,并曾于20世纪80年代中叶至90年代末形成了一个全球范围的研究热潮(Diamond fever)。这是因为金刚石除具有无与伦比的高硬度和高弹性模量之外,还具有极其优异的电学(电子学)、光学、热学、声学、电化学性能(见表1)和极佳的化学稳定性。大颗粒天然金刚石单晶(钻石)在自然界中十分稀少,价格极其昂贵。而采用高温高压方法人工合成的工业金刚石大都是粒度较小的粉末状的产品,只能用作磨料和工具(包括金刚石烧结体和聚晶金刚石(PCD)制品)。而采用化学气相沉积(CVD)方法制备的金刚石膜则提供了利用金刚石所有优异物理化学性能的可能性。经过20余年的努力,化学气相沉积金刚石膜已经在几乎所有的物理化学性质方面和最高质量的IIa型天然金刚石晶体(宝石级)相比美(见表1)。化学气相沉积金刚石膜的研究已经进人工业化应用阶段。

表 1 金刚石膜的性质
Table 1 Properties of chamond film

CVD 金刚石膜
天然金刚石

点阵常数 (Å)
3.567
3.567

密度 (g/cm3)
3.51
3.515

比热 Cp(J/mol,(at 300K))
6.195
6.195

弹性模量 (GPa)
910-1250
1220*

硬度 (GPa)
50-100
57-100*

纵波声速 (m/s)

18200

摩擦系数
0.05-0.15
0.05-0.15

热膨胀系数 (×10 -6 ℃ -1)
2.0
1.1***

热导率 (W/cm.k)
21
22*

禁带宽度 (eV)
5.45
5.45

电阻率 (Ω.cm)
1012-1016
1016

饱和电子速度 (×107cms-1)
2.7
2.7*

载流子迁移率 (cm2/Vs)

电子
1350-1500
2200**

空隙
480
1600*

击穿场强 (×105V/cm)

100

介电常数
5.6
5.5

光学吸收边 (□ m)

0.22

折射率 (10.6 □ m)
2.34-2.42
2.42

光学透过范围
从紫外直至远红外 ( 雷达波 )
从紫外直至远红外 ( 雷达波 )

微波介电损耗 (tan □)
< 0.0001

注:*在所有已知物质中占第一,**在所有物质中占第二,***与茵瓦(Invar)合金相当。

2.2金刚石膜的制备方法

化学气相沉积金刚石所依据的化学反应基于碳氢化合物(如甲烷)的裂解,如:
热高温、等离子体
CH4(g)一C(diamond)+2H2(g) (1)

实际的沉积过程非常复杂,至今尚未完全明了。但金刚石膜沉积至少需要两个必要的条件:(1)含碳气源的活化;(2)在沉积气氛中存在足够数量的原子氢。除甲烷外,还可采用大量其它含碳物质作为沉积金刚石膜的前驱体,如脂肪族和芳香族碳氢化合物,乙醇,酮,以及固态聚合物(如聚乙烯、聚丙烯、聚苯乙烯),以及卤素等等。

常用的沉积方法有四种:(1)热丝CVD;(2)微波等离子体CVD;(3)直流电弧等离子体喷射(DC Arc Plasma Jet);(4)燃烧火焰沉积。在这几种沉积方法中,改进的热丝CVD(EACVD)设备和工艺比较简单,稳定性较好,易于放大,比较适合于金刚石自支撑膜的工业化生产。但由于易受灯丝污染和气体活化温度较低的原因,不适合于极高质量金刚石膜(如光学级金刚石膜)的制备。微波等离子体CVD是一种无电极放电的等离子体增强化学气相沉积工艺,等离子体与沉积腔体没有接触,放电非常稳定,因此特别适合于高质量金刚石薄膜(涂层)的制备。微波等离子体CVD的缺点是沉积速率较低,设备昂贵,制备成本较高。采用高功率微波等离子体CVD系统(目前国外设备最高功率为75千瓦,国内为5千瓦),也可实现金刚石膜大面积、高质量、高速沉积。但高功率设备价格极其昂贵(超过100万美元),即使在国外愿意出此天价购买这种设备的人也不多。直流电弧等离子体喷射(DC Arc P1asma Jet)是一种金刚石膜高速沉积方法。由于电弧等离子体能够达到非常高的温度(4000K-6000K)。因此可提供比其它任何沉积方法都要高的原子氢浓度,使其成为一种金刚石膜高质量高速沉积工艺。特殊设计的高功率JET可以实现大面积极高质量(光学级)金刚石自支撑膜的高速沉积。我国在863计划"75”和"95”重大关键技术项目的支持下已经建立具有我国特色和独立知识产权的高功率De Are Plasma Jet金刚石膜沉积系统,并于1997年底在大面积光学级金刚石膜的制备技术方面取得了突破性进展。目前已接近国外先进水平。

2.3金刚石膜研究现状和工业化应用
20余年来,CVD金刚石膜研究已经取得了非常大的进展。金刚石膜的内在质量已经全面达到最高质量的天然IIa型金刚石单晶的水平(见表1)。在金刚石膜工具应用和热学应用(热沉)方面已经实现了,产业化,一些新型的金刚石膜高技术企业已经在国内外开始出现。光学(主要是军事光学)应用已经接近产业化应用水平。金刚石膜场发射和真空微电子器件、声表面波器件(SAW)、抗辐射电子器件(如SOD器件)、一些基于金刚石膜的探侧器和传感器和金刚石膜的电化学应用等已经接近实用化。由于大面积单晶异质外延一直没有取得实质性进展,n一型掺杂也依然不够理想,金刚石膜的高温半导体器件的研发受到严重障碍。但是,近年来采用大尺寸高温高压合成金刚石单晶衬底的金刚石同质外延技术取得了显著进展,已经达到了研制芯片级尺寸衬底的要求。金刚石高温半导体芯片即将问世。

鉴于篇幅限制,及本文关于超硬薄膜介绍的宗旨,下面将仅对金刚石膜的工具(摩擦磨损)应用进行简要介绍。

2.4金刚石膜工具和摩擦磨损应用
金刚石膜所具有的最高硬度、最高热导率、极低摩擦系数、很高的机械强度和良好化学稳定性的异性能组合(见表1)使其成为最理想的工具和工具涂层材料。
金刚石膜工具可分为金刚石厚膜工具和金刚石薄膜涂层工具。

2.4.1金刚石厚膜工具
金刚石厚膜工具采用无衬底金刚石白支撑膜(厚度一般为0.5mm~2mm)作为原材料。目前已经上市的产品有:金刚石厚膜焊接工具、金刚石膜拉丝模芯、金刚石膜砂轮修整条、高精度金刚石膜轴承支架等等。

金刚石厚膜焊接工具的制作工艺为:金刚石自支撑膜沉积→激光切割→真空钎焊→高频焊接→精整。金刚石厚膜钎焊工具的使用性能远远优于PCD,可用于各种难加工材料,包括高硅铝合金和各种有色金属及合金、复合材料、陶瓷、工程塑料、玻璃和其它非金属材料等的高效、精密加工。采用金刚石厚膜工具车削加工的高硅铝合金表面光洁度可达V12以上,可代替昂贵的天然金刚石刀具进行“镜面加工"。金刚石膜拉丝模芯可用于拉制各种有色金属和不锈钢丝,由于金刚石膜是准各向同性的,因此在拉丝时模孔的磨损基本上是均匀的,不像天然金刚石拉丝模芯那样模孔的形状会由于非均匀磨损(各向异性所致)而发生畸变。金刚石膜修整条则广泛用于机械制造行业,用作精密磨削砂轮的修整,代替价格昂贵的天然金刚石修整条。这些产品已经在国内外市场上出现,但目前的规模还不大。其原因是:(1)还没有为广大用户所熟悉、了解;(2)面临其它产品(主要是PCD)的竞争;(3)虽然比天然金刚石产品便宜,但成本(包括金刚石自支撑膜的制备和加工成本)仍然较高,在和PCD竞争时的优势受到一定的限制。

高热导率(≥10W/em.K)金刚石自支撑膜可作为诸如高功率激光二极管阵列、高功率微波器件、MCMs(多芯片三维集成)技术的散热片(热沉)和功率半导体器件(Power ICs)的封装。在国外已有一定市场规模。

在国内,南京天地集团公司和北京人工晶体研究所合作在1997年前后率先成立了北京天地金刚石公司,生产和销售金刚石膜拉丝模芯、金刚石膜修整条和金刚石厚膜焊接工具及其它一些金刚石膜产品。该公司大约在2000年左右渡过了盈亏平衡点,但目前的规模仍然不很大。国内其它一些单位,如北京科技大学、河北省科学院(北京科技大学的合作者)、吉林大学、核工业部九院、浙江大学、湖南大学等都具有生产金刚石厚膜工具产品的能力,其中有些单位正在国内市场上小批量销售其产品。

2.4.2金刚石薄膜涂层工具
金刚石薄膜涂层工具一般采用硬质合金工具作为衬底,金刚石膜涂层的厚度一般小于30lxm。金刚石薄膜涂层硬质合金工具的加工材料范围和金刚石厚膜工具完全相同,在切削高硅铝合金时一般均比未涂层硬质合金工具寿命提高lO~20倍左右。在切削复合材料等极难加工材料时寿命提高幅度更大。金刚石薄膜涂层工具的性能与PCD相当或略高于PCD,但制备成本比PCD低得多,且金刚石薄膜可以在几乎任意形状的工具衬底上沉积,PCD则只能制作简单形状的工具。金刚石薄膜涂层工具的另一大优点是可以大批量生产,因此成本很低,具有非常好的市场竞争能力。

金刚石薄膜涂层硬质合金工具研发的一大技术障碍是金刚石膜与硬质合金的结合力太差。这主要是由于作为硬质合金粘接剂的Co所引起。碳在Co中有很高的溶解度,因此金刚石在Co上形核孕育期很长,同时Co对于石墨的形成有明显的促进作用,因此金刚石是在表面上形成的石墨层上面形核和生长,导致金刚石膜和硬质合金衬底的结合力极差。在20世纪80年代和90年代无数研究者曾为此尝试了几乎一切可以想到的办法,今天,金刚石膜与硬质合金工具衬底结合力差的问题已经基本解决。尽管仍有继续提高的余地,但已经可以满足工业化应用的要求。在20世纪后期,国外出现了可以用于金刚石薄膜涂层工具大批量工业化生产的设备,一次可以沉积数百只硬质合金钻头或刀片,拉开了金刚石薄膜涂层工具产业化的序幕。一些专门从事金刚石膜涂层工具生产的公司在国外相继出现。

目前,金刚石薄膜涂层工具主要上市产品包括:金刚石膜涂层硬质合金车刀、铣刀、麻花钻头、端铣刀等等。从目前国外市场的销售情况来看,销售量最大的是端铣刀、钻头和铣刀。大量用于加工复合材料和汽车工业中广泛应用的大型石墨模具,以及其它难加工材料的加工。可转位金刚石膜涂层车刀的销售情况目前并不理想。这是因为可转位金刚石膜涂层刀片的市场主要是现代化汽车工业的数控加工中心,用于高硅铝合金活塞和轮毂等的自动化加工。这些全自动化的数控加工中心对刀具性能重复性的要求十分严格,目前的金刚石膜涂层工具暂时还不能满足要求,需要进一步解决产品检验和生产过程质量监控的技术。

目前国外金刚石膜涂层工具市场规模大约在数亿美元左右,仅仅一家只有20多人的小公司(美国SP3公司),去年的销售额就达2千多万美元。

国内目前尚无金刚石膜涂层产品上市。国内不少单位,如北京科技大学、上海交大、广东有色院、胜利油田东营迪孚公司、吉林大学、北京天地金刚石公司等都在进行金刚石膜涂层硬质合金工具的研发,目前已在金刚石膜的结合力方面取得实质性进展。北京科技大学采用渗硼预处理工艺(已申请专利)成功地解决了金刚石膜的结合力问题,所研制的金刚石膜涂层车刀和铣刀在加工Si-12%AI合金时寿命可稳定提高20-30倍。并已成功研发出“强电流直流扩展电弧等离子体CVD"金刚石膜涂层设备(已申请专利)。该设备将通常金刚石膜沉积设备的平面沉积方式改为立体(空间)沉积,沉积空间区域很大,可容许金刚石膜涂层工具的工业化生产。该设备可保证在工具轴向提供很大的金刚石膜均匀沉积范围,因此特别适合于麻花钻头、端铣刀之类细长且形状复杂工具的沉积。目前已经解决这类工具金刚石膜沉积技术问题,所制备的金刚石膜涂层硬质合金钻头在加工碳化硅增强铝金属基复合材料时寿命提高20倍以上。目前能够制备的金刚石膜涂层硬质合金钻头最小直径为lmin。目前正在和国内知名设备制造厂商(北京长城钛金公司)合作研发工业化商品设备,生产能力为每次沉积硬质合金钻头(或刀片)300只以上,预计年内可投放国内外市场。
3 类金刚石膜(DLC)

类金刚石膜(DLC)是一大类在性质上和金刚石类似,具有8p2和sp3杂化的碳原子空间网络结构的非晶碳膜。依据制备方法和工艺的不同,DLC的性质可以在非常大的范围内变化,既有可能非常类似于金刚石,也有可能非常类似于石墨。其硬度、弹性模量、带隙宽度、光学透过特性、电阻率等等都可以依据需要进行“剪裁”。这一特性使DLC深受研究者和应用部门的欢迎。

DLC的制备方法很多,采用射频CVD、磁控溅射、激光淀积(PLD)、离子束溅射、真空磁过滤电弧离子镀、微波等离子体CVD、ECR(电子回旋共振)CVD等等都可以制备DLC。

DLC的类型也很多,通常意义上的DLC含有大量的氢,因此也叫a:C—H。但也可制备基本上不含氢的DLC,叫做a:c。采用高能激光束烧蚀石墨靶的方法获得的DLC具有很高的sp3含量,具有很高的硬度和较大的带隙宽度,曾被称为“非晶金刚石”(Amorphorie Diamond)膜。采用真空磁过滤电弧离子镀方法制备的DLC中sp3含量也很高,叫做Ta:C(Tetragonally Bonded Amorphous Carbon)。

DLC具有类似于金刚石的高硬度(10GPa-50GPa)、低摩擦系数(0.1一0.3)、可调的带隙宽度(1_2eV~3eV)、可调的电阻率和折射率、良好光学透过性(在厚度很小的情况下)、良好的化学惰性和生物相容性。且沉积温度很低(可在室温沉积),可在许多金刚石膜难以沉积的衬底材料(包括钢铁)上沉积。因此应用范围相当广泛。典型的应用包括:高速钢、硬质合金等工具的硬质涂层、硬磁盘保护膜、磁头保护膜、高速精密零部件耐磨减摩涂层、红外光学元器件(透镜和窗口)的抗划伤、耐磨损保护膜、Ge透镜和窗口的增透膜、眼镜和手表表壳的抗擦伤、耐磨掼保护膜、人体植入材料的保护膜等等。

DLC在技术上已经成熟,在国外已经达到半工业化水平,形成具有一定规模的产业。深圳雷地公司在DLC的产业化应用方面走在国内前列。不少单位,如北京师范大学、中科院上海冶金所、北京科技大学、清华大学、广州有色院、四川大学等都正在进行或曾经进行过DLC的研究和应用开发工作。
DLC的主要缺点是:(1)内应力很大,因此厚度受到限制,一般只能达到lum~21um以下;(2)热稳定性较差,含氢的a:C-H薄膜中的氢在400℃左右就会逐渐逸出,sp2成分增加,sp3成分降低,在大约500℃以上就会转变为石墨。

5 碳氮膜

自从Cohen等人在20世纪90年代初预言在C-N体系中可能存在硬度可能超过金刚石的β-C>3N4相以后,立即就在全球范围内掀起了一股合成β-C3N4的研究狂潮。国内外的研究者争先恐后,企图第一个合成出纯相的β-C3N4晶体或晶态薄膜。但是,经过了十余年的努力,至今并无任何人达到上述目标。在绝大多数情况下,得到的都是一种非晶态的CNx薄膜,膜中N/C比与薄膜制备的方法和具体工艺有关。尽管没有得到Cohen等人所预测超过金刚石硬度的β-C3N4晶体,但已有的研究表明CNx薄膜的硬度可达15GPa-50GPa,可与DLC相比拟。同时CNx薄膜具有十分奇特的摩擦磨损特性。在空气中,cNx薄膜的摩擦因数为O.2-O.4,但在N2,CO2和真空中的摩擦因数为O.01-O.1。在N2气氛中的摩擦因数最小,为O.01,即使在大气环境中向实验区域吹氮气,也可将摩擦因数降至0.017。因此,CNx薄膜有望在摩擦磨损领域获得实际应用。除此之外。CNx薄膜在光学、热学和电子学方面也可能有很好的应用前景。

采用反应磁控溅射、离子束淀积、双离子束溅射、激光束淀积(PLD)、等离子体辅助CVD和离子注人等方法都可以制备出CNx薄膜。在绝大多数情况下,所制备薄膜都是非晶态的,N/C比最大为45%,也即CNx总是富碳的。与C-BN的情况类似,CNx薄膜的制备需要离子的轰击,薄膜中存在很大的内应力,需要进一步降低薄膜内应力,提高薄膜的结合力才能获得实际应用。至于是否真正能够获得硬度超过金刚石的B-C3N4,现在还不能作任何结论。

6 纳米复合膜和纳米复合多层膜

以纳米厚度薄膜交替沉积获得的纳米复合膜的硬度与每层薄膜的厚度(调制周期)有关,有可能高于每一种组成薄膜的硬度。例如,TiN的硬度为2l GPa,NbN的硬度仅为14GPa,但TiN/NbN纳米复合多层膜的硬度却为5lGPa。而TiYN/VN纳米复合多层膜的硬度竞高达78GPa,接近了金刚石的硬度。最近,纳米晶粒复合的TiN/SiNx薄膜材料的硬度达到了创记录的105GPa,可以说完全达到了金刚石的硬度。这一令人惊异的结果曾经过同一研究组的不同研究者和不同研究组的反复重复验证,证明无误。这可能是第一次获得硬度可与金刚石相比拟的超硬薄膜材料。其意义是显而易见的。

关于为何能够获得金刚石硬度的解释并无完全令人信服的定论。有人认为在纳米多层复合膜的情况下,纳米多层膜的界面有效地阻止了位错的滑移,使裂纹难以扩展,从而引起硬度的反常升高。而在纳米晶粒复合膜的情况下则可能是在TiN薄膜的纳米晶粒晶界和高度弥散分布的纳米共格SiNx粒子周围的应变场所引起的强化效应导致硬度的急剧升高。

无论上述的理论解释是否完全合理,这种纳米复合多层膜和纳米晶粒复合膜应用前景是十分明朗的。纳米复合多层膜不仅硬度很高,摩擦系数也较小,因此是理想的工具(模具)涂层材料。它们的出现向金刚石作为最硬的材料的地位提出了严峻的挑战。同时在经济性上也有十分明显的优势,因此具有非常好的市场前景。但是,由于还有一些技术问题没有得到解决,目前暂时还未在工业上得到广泛应用。

可以想见随着技术上的进一步成熟,这类材料可能迅速获得工业化应用。虽然钠米多层膜和钠米晶粒复合膜已经对金刚石硬度最高的地位提出了严峻的挑战,但就我所见,我认为它们不可能完全代替金刚石。金刚石膜是一种用途十分广泛的多功能材料,应用并不局限于超硬材料。且金刚石膜可以做成厚度很大(超过2mm)的自支撑膜,对于纳米复合多层膜和纳米复合膜来说,是无论如何也不可能的。

仅供参考,请自借鉴

希望对您有帮助

㈤ 机械类的毕业论文的题目

机械类的毕业论文题目有很多,学术堂整理了十五个题目供大家进回行参考:

1、某答型汽车发动机曲轴的加工工艺及测试研究

2、舞台升降装置的设计研究

3、按摩机器人控制器的设计与研究

4、垂直升降式立体停车设备的结构设计

5、CA6140普通车床纵向数控改装

6、汽车电磁涡流减震器力学性能研究

7、自动下料机的机械结构设计与研究

8、智能清洁机器人的设计

9、低破碎玉米脱粒机的设计与分析

10、马铃薯连续式机械化去皮关键技术研究

11、排气隔热罩的设计与研究

12、汽车电动玻璃升降器结构设计

13、胡萝卜自动削皮机虚拟样机设计

14、山药全自动削皮机装置与控制系统研究

15、自动化甘蔗削皮装置的研制

㈥ 包装机械结构与设计的目录

第一章 绪论
第一节 包装机械的概念和作用
一、包装机械的概念
二、包装机械的作用
第二节 包装机械的特点及发展方向
一、包装机械的特点
二、包装机械的发展方向
第三节 包装机械的组成
第四节 包装机械的分类与型号编制
一、包装机械的分类
二、包装机械型号编制方法
思考题
第二章 总体方案设计
第一节 包装机械设计的一般过程
一、总体设计阶段
二、技术设计阶段
三、审核鉴定
第二节 总体方案设计的基本内容
一、确定功能与应用范围
二、工艺分析
三、总体布局
四、编制工作循环图
五、拟定主要技术参数
第三节 总体方案设计举例
思考题
第三章 袋装机械
第一节 概述
一、包装袋的基本形式和特点
二、典型袋装机的结构及工作原理
第二节 袋成型器的设计
一、概述
二、成型器的设计
第三节 计量装置
一、计量方法
二、典型计量装置
第四节 封袋方法及封袋机构
一、封袋方法
二、纵封器
三、横封器
第五节 切断装置
一、热切机构
二、冷切机构
第六节 牵引,供袋,开袋装置
一、料袋牵引装置
二、供袋、开袋装置
思考题
第四章 灌装机械
第一节 概述
一、基本概念
二、灌装机的分类
第二节 灌装与定量方法
一、灌装方法
二、定量方法
第三节 灌装机的主要结构及工作原理
一、供料装置
二、供瓶机构
三、托瓶升降机构
四、灌装瓶高度调节 机构
五、灌装阀的结构及工作原理
第四节 灌装阀的设计
一、灌装阀设计的一般步骤
二、灌装阀流道的工艺计算
思考题
第五章 封口机械
第一节 概述
第二节 玻璃瓶封口机
一、压盖封口机结构原理
二、旋盖封口机结构原理
三、滚压螺纹封口机结构原理
四、滚边封口机的结构原理
第三节 金属容器封口机
一、卷边的形成过程
二、卷边滚轮的运动分析
三、卷封机构的结构
四、圆形罐卷封机构的运动设计
五、卷边滚轮径向进给距离的调整
思考题
第六章 裹包机械
第一节 概述
一、几种典型的裹包方式
二、裹包的特点
三、裹包机械的分类
第二节 典型裹包机械基本原理
一、折叠式裹包机
二、接缝式裹包机
三、扭结式裹包机
第三节 卷筒材料供送装置
一、间歇供送定位切断
二、连续供送定位切断
第四节 裹包执行机构设计
一、执行构件作无停留往复摆动
二、执行构件作无停留的往复移动
三、执行构件作有停留的往复移动
第五节 应用举例
一、条盒透明纸裹包机的组成及工作原理
二、传动系统
三、机器的主要机构
思考题
第七章 贴标机械
第一节 概述
一、贴标机械的分类
二、贴标的基本工艺过程
三、标签的粘贴方式
四、国家标准对贴标机的主要要求
第二节 贴标机的主要机构与工作原理
一、供标装置
二、取标装置
三、打印装置
四、涂胶装置
五、联锁装置
第三节 常见粘合贴标机
一、直线式真空转鼓贴标机
二、回转式贴标机
三、压式贴标机
四、滚动式贴标机
五、龙门式贴标机
六、多标盒转鼓贴标机
七、压盖贴标机
八、压敏胶标签贴标机
九、收缩膜套标签机
十、RG型不干胶自动贴标机
第四节 贴标机的设计与计算问题
一、真空转鼓的吸力计算
二、搓滚输送装置的设计问题
三、贴标机的运动计算
四、贴标机的功率计算
第五节 贴标机的设计实例
一、高速全自动回转式贴标机的设计
二、小型异形瓶不干胶自动贴标机
思考题
第八章 装盒与装箱机械
第一节 概述
第二节 纸盒的种类及装盒机械的选用
一、纸盒的种类及选用
二、装盒机械的选用
第三节 装盒机械及工艺路线
一、充填式装盒机械
二、裹包式装盒机械
第四节 装盒机械典型工作机构
一、纸盒撑开及成型机构
二、装盒机主传送系统
三、推料机构
四、说明书输送机构
五、封盒装置
第五节 瓦楞纸箱及装箱机械的选用
一、瓦楞纸箱的特性及纸箱箱型结构的基本形式
二、通用瓦楞纸箱的技术标准
三、装箱方法分类
四、瓦楞纸箱和装箱设备的选用
第六节 装箱机械典型工作机构
一、开箱装置
二、产品排列集积装置
三、装箱装置
四、封箱装置
思考题
第九章 其他包装机械
第一节 概述
第二节 捆扎机械
一、概述
二、捆扎机
三、捆结机
第三节 热成型包装机
一、概述
二、全自动热成型包装机包装工艺流程及特点
三、全自动热成型包装机工作原理
四、全自动热成型包装机总体结构及设计原理
第四节 热收缩包装设备
一、概述
二、热收缩包装材料的基本性能
三、典型的热收缩包装设备
第五节 真空与充气包装机械
一、概述
二、操作台式真空充气包装机
三、输送带式真空充气包装机
四、主要参数的计算及选择
第六节 贴体包装机
一、概述
二、贴体包装流程
三、典型的贴体包装机结构及技术参数
第七节 包装生产线
一、概述
二、工艺路线与设备布局
三、包装生产线的生产能力及缓冲系统设计
四、包装自动线部分辅助装置的结构
五、典型包装自动生产线
思考题
参考文献

㈦ 求小型圆柱坐标机械臂设计论文

圆柱坐标型工业机械手设计
2006-12-04 21:11

圆柱坐标型工业机械手设计(完整一套设计,有说明书:论文,图纸)
001_装配图-A0_横向.dwg
002_装配等轴测图-A0_纵向.dwg
003_机械手传动原理图_A4_纵向.dwg
004_机构简图-A4_纵向.dwg
005_工作空间投影图_A3_纵向.dwg
006_手爪驱动气缸_A4_横向.dwg
007_活塞杆3连接块_A4_横向.dwg
008_底座_A3_纵向.dwg
The Principles HARMONIC DRIVE GEARING.doc
谐 波 传 动 原 理.doc
001_任务书.doc
002_成绩评定表.doc
003_1_毕业设计(论文)书_封面.doc
003_2_毕业设计(论文)书_目录.doc
003_3+4_毕业设计(论文)书.doc
目 录
<一>、摘要………………………………………………………….1
<二>、工业机械手总体设计……………………………………….2
一、运动设计及确定主要参数……………………………………………….2
二、驱动系统和位置检测装置的选择……………………………………….3
三、结构布置上的要求……………………………………………………….3
四、设计方法………………………………………………………………….3
<三>、工件的计算………………………………………………….4
<四>、工业机器人机构简图……………………………………….4
<五>、末端执行器的结构与设计………………………………….5
一、设计要求………………………………………………………………….5
二、弹性机械手的结构……………………………………………………….5
三、手指夹紧力的计算……………………………………………………….6
四、手指式手部结构和驱动力计算………………………………………….6
五、气缸的设计与计算……………………………………………………….7
<六>、小臂的结构与设计………………………………………….9
一、设计要求………………………………………………………………….9
二、小臂的结构……………………………………………………………….9
三、驱动力计算……………………………………………………………….9
四、气缸的设计与计算……………………………………………………….10
五、小臂抗弯刚度校核……………………………………………………….11
<七>、大臂的结构与设计………………………………………….11
一、设计要求………………………………………………………………….11
二、大臂的结构……………………………………………………………….11
三、驱动力计算……………………………………………………………….11
四、校核活塞杆的稳定性…………………………………………………….12
<八>、腰座的结构设计及计算…………………………………….13
一、设计时注意的问题……………………………………………………….13
二、腰座的结构结构………………………………………………………….13
三、轴承的选择及较核……………………………………………………….14
四、电机的计算及选择……………………………………………………….16
五、谐波减速器及其选用…………………………………………………….17
参考文献…………………………………………………………….19
[摘要]: 使用SolidWorks 2000设计出机械手的总体结构。在设计过程中使用SolidWorks中的质量特征工具,对零件的质量、密度、体积、重心、惯性主轴和惯性力矩进行辅助设计计算,可以大大减轻在设计过程中繁琐计算及校核步骤。
[关键词]:机械手、SolidWorks、简图、汽缸、步进电机、轴承
[Abstract]: Make use of the SolidWorks 2000 to design the collectivity machinery of manipulator. And use the quality-character-tools of the Solidworks to assistant design and calculate the part of the quality、density、volume、barycenter、inertia of principal axis and inertia moment. It can greatly ease the heavy calculate and the process of verify in the course of design.
[Key words]: manipulator、SolidWorks、sketch、cylinder、axletree
参考文献
1. 周伯英·工业机器人设计·机械工业出版社·1995.6.
2. 龚振帮编·机器人机械设计·电子工业出版社·1995.
3. (日)藤森洋三·机构设计·机械工业出版社·1990.
4. (日)加藤一郎·机械手图册·上海科技出版社·1989.
5. 成大光编·机械设计图册(5)·化学工业出版社·1999.
6. 何存兴编·液压传动与气压传动·华工科技大学出版社·2000.8.
7. 沈鸿·机械工程手册(10)·机械工业出版社·1987.10.
8. <机械设计师手册>>编写组编·机械设计师手册·机械工业出版社·1989.1.
9. 日本液压气动协会编·液压气动手册·机械工业出版社·1984.11
10. 东北工学院<<机械零件设计手册>>编写组编·机械零件设计手册·冶金工业出版社·1979.12
11. 周开勤编·机械零件手册·高等教育出版社·1998.3.
12. 沈利华·机械设计手册(软件版)·机械工业部设计研究院
13. 吴振彪编·机电综合设计指导·湛江海洋大学·2002.3

阅读全文

与玻璃杯抓取机械臂装置毕业设计相关的资料

热点内容
高精度的机床怎么做 浏览:848
x9机械键盘怎么调 浏览:298
阀门上面有个正方形图例是什么 浏览:848
生产加工五金制品的人叫什么 浏览:884
机械优先加什么 浏览:722
电动工具是看转速还是看瓦 浏览:477
制冷机品牌中有个顿字的叫什么 浏览:48
制冷量1KW等于多少冷冻水量 浏览:759
自来水水表阀门坏了怎么办 浏览:353
焦耳实验装置原理 浏览:931
超声波加湿器怎么安装视频 浏览:764
洗牙器仪器是什么原理 浏览:542
氧气阀门制造标准 浏览:230
怎么登qq不要设备 浏览:730
高浓度硫化氢用什么阀门 浏览:285
脚踏缝纫机轴承坏了什么症状 浏览:902
昂克赛拉右前平面换轴承多少钱 浏览:739
仪表盘救命灯亮了怎么解决 浏览:709
为什么电动车前轮轴承老是坏 浏览:584
青岛高压阀门有限公司怎么样 浏览:621