① 石化企业生产厂如何降本增效
优化产品牌号,努力降低生产成本。上半年以来,受苯乙烯原料价格上涨等不利因素影响,齐鲁石化丁苯橡胶产品利润贡献越来越小,目前,苯乙烯价格已远远高于丁二烯价格,齐鲁石化橡胶厂在满足产品技术指标的前提下,将丁苯橡胶中结合苯乙烯的含量按照低限控制,合理降低了苯乙烯用量,提高了价格低的丁二烯用量,有效降低了生产成本。顺丁橡胶生产克服了刚刚完成装置消除瓶颈和凝集系统扩能改造,各设备还处在磨合期,故障率较高的困难,努力保持了稳定生产,使盈利产品顺丁橡胶的整体效益保持了较高水平。
提升经济技术指标,用指标的先进化保效益的最大化。通过稳定装置操作、优化运行,橡胶厂不断提高装置运行质量,各项经济技术指标不断创出历史最好水平,进一步降低了生产成本。6月份,齐鲁石化橡胶厂目的产品可比能耗同比降低20.48千克标油/吨,同比降低了5.76%,加工损失率同比降低了0.02%。装置氮气消耗创造了历史最低水平,上半年氮气用量同比降低25万立方米。顺丁装置通过加强设备保运和技术攻关,丁二烯单耗在中石化同类装置中排名第一,能耗排名第二;二丁苯装置连续安全稳定、超负荷运行47个月,物耗、能耗均低于设计值,物耗同比降低了0.29千克/吨,经检修改造,装置脱气塔每月节约蒸汽达到720吨,落地胶量同比降低了25%。两套丁苯装置各项指标在国内同行业保持了最好水平。两套丁二烯抽提装置的加工损失率同比降低了0.04个百分点,乙腈抽提装置的丁二烯收率在国内同行业保持第一。
加大盈利副产品产出,努力提升产品链整体效益空间。今年以来,齐鲁石化橡胶厂丁二烯抽提装置的下游副产品甲基叔丁基醚和丁烯-1产品盈利较好,其中,甲基叔丁基醚吨产品利润达到4000元。为此,该厂两套丁二烯抽提装置保持了超负荷运行,一方面为MTBE和丁烯-1装置保持高负荷生产提供了充足的抽余碳四原料,一方面减少了合成橡胶主要生产原料丁二烯外购量,6月份,增产丁烯-1产品440吨,增产甲基叔丁基醚190吨,进一步提升了产品链整体效益空间。
② 1,3-丁二烯的制备
丁二烯的工业生产有电石炔和乙醛为原料合成、丁烯催化脱氢生、正丁烷一步脱氢、由乙烯装置副产C4抽提等方法。丁二烯的生产以乙烯装置副产C4抽提的方法最为经济,各国各地区由此生产丁二烯的比例也越来越大,由丁烷和丁烯脱氢生产丁二烯的比例有所下降,乙醇生产丁二烯的装置逐渐停工。
③ 丁二烯储罐内阻聚剂含量低,补加阻聚剂的操作步骤
咨询记录 · 回答于2021-04-19
④ 关于苯加氢用阻聚剂的问题。。。。
阻聚剂
Polymerization Inhibitor
橡胶进出口网 - 橡胶助剂列表
1 阻聚剂及碘参与的活性自由基聚合和新均相引发剂CAN的研究 张鸿硕士 苏州大学 2006 3
2 高效甲醛阻聚剂的研制 刘魁 化学试剂 2006 2
3 毛细管气相色谱法分析丙烯腈中阻聚剂(MEHQ)的含量 惠希东 检验检疫科学 2006 1
4 阻聚剂对自由基聚合的活性化影响 常丽群 胶体与聚合物 2006 1
5 茂名乙烯装置脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 孙晶磊 广东化工 2005 8
6 丁二烯抽提阻聚剂的研制 何玉莲硕士 大庆石油学院 2005 12
7 甲基丙烯酸甲酯中阻聚剂2, 4-二甲基-6-叔丁基苯酚的测定 刘兴富 辽宁化工 2004 7
8 HDPE辐照接枝AA与SSS体系阻聚剂用量对接枝率的影响 俎建华 辐射研究与辐射工艺学报 2004 4
9 丁二烯抽提装置阻聚剂的研制及应用 包静严 化工科技市场 2004 4
10 高效液相色谱法分析甲基丙烯酰氧乙基三甲基氯化铵中的阻聚剂 李素真 山东化工 2004 3
11 国产阻聚剂BL-628在天津乙烯装置上的应用 吴铁锁 石化技术 2004 2
12 甲醛阻聚剂聚乙烯醇缩甲醛的合成 王岩 丹东纺专学报 2004 2
13 新型阻聚剂JD-A249在丁二烯抽提装置上的应用 李海强 齐鲁石油化工 2004 2
14 一步催化法合成新型阻聚剂DNBP 刘春媚 吉林化工学院学报 2004 2
15 阻聚剂HK-17A在焦化粗苯加氢中的应用 王力 河北化工 2004 1
16 仿丙烯腈生产过程研究ZC-01阻聚剂的阻聚效果 金耀琴 石化技术与应用 2004 1
17 碳五馏分中微量阻聚剂二乙基羟胺的气相色谱测定法 徐秀红 分析科学学报 2003 5
18 乙烯工艺阻聚剂在选择与使用过程中应注意的问题 盖月庭 乙烯工业 2003 4
19 阻聚剂脱除方法对丙烯酸钠聚合的影响 刘继泉 青岛科技大学学报(自然科学版) 2003 4
20 对新型丁二烯阻聚剂的剖析研究 肖占敏 炼油与化工 2003 3
21 GC/MS法测定苯乙烯中阻聚剂对叔丁基邻苯二酚的含量 陈朝方 检验检疫科学 2002 6
22 阻聚剂性能动力学评定方法的改进 姜维硕士 石油化工科学研究院 2002 5
23 丙烯酰胺提纯过程中阻聚剂的有效控制 杨涛 江西化工 2002 3
24 气相色谱-质谱联用测定苯乙烯中的阻聚剂对叔丁基邻苯二酚 陈朝方 色谱 2002 3
25 苯乙烯中阻聚剂DNPC快速测定方法的建立 顾桂珍 广东化工 2001 5
26 国产阻聚剂RIPP-1403在燕山乙烯装置上的应用 李光松 石化技术 2001 3
27 阻聚剂的存在对碳氢燃料热分解动力学的影响 郭晓亚 化工时刊 2001 2
28 新型苯乙烯阻聚剂的性能评价与工业应用 靳由顺 山西化工 2001 2
29 氮氧自由基光阻聚剂的研究 严宝珍 北京化工大学学报 2001 2
30 脱丙烷塔用高效阻聚剂RIPP1461的研制与应用 邹余敏 石油化工 2001 12
31 从裂解汽油中萃取蒸馏分离苯乙烯的溶剂及阻聚剂的评选 田龙胜 石油炼制与化工 2001 11
32 新型高效阻聚剂DNBP合成 杜长海 吉林工学院学报(自然科学版) 2000 4
33 新型阻聚剂EC3144A在乙烯生产中的应用 商平 黑龙江石油化工 2000 4
34 苯乙烯精馏阻聚剂的研究进展 菅秀君 精细石油化工 2000 3
35 高效阻聚剂DNBP合成新工艺 林艳红 吉林工学院学报(自然科学版) 2000 1
36 RIPP-1461乙烯高效阻聚剂工业试验 洪庆尧 石油炼制与化工 1999 7
37 阻聚剂TBC在亚硫酸盐防腐蚀中的作用 魏刚 化工机械 1999 4
38 阻聚剂TBC对亚硫酸盐自动氧化的阻滞作用 熊蓉春 化工机械 1999 3
39 高效阻聚剂RIPP-1461的应用 吴启龙 乙烯工业 1999 2
40 乙烯工艺阻聚剂的研制及工业应用 洪庆尧 乙烯工业 1999 2
41 几种常用酚类阻聚剂的高效液相色谱法分析 李素真 山东化工 1998 5
42 RIPP-1402阻聚剂工业试验及应用 洪庆尧 石油化工 1998 5
43 甲醛阻聚剂的制备 陈瑞兰 化学试剂 1998 5
44 RIPP-1402阻聚剂的研究 洪庆尧 石油化工 1998 4
45 浅谈丁苯橡胶装置丁二烯脱阻聚剂系统夹带问题 任军 合成橡胶工业 1998 4
46 阻聚剂2, 6-二硝基对甲酚的合成研究 李德鹏 化学工程师 1997 3
47 过氧化物胺和阻聚剂含量对树脂固化和性能的影响 王军 现代口腔医学杂志 1997 1
48 盘锦乙烯装置C_3阻聚剂系统的改造 徐海琴 乙烯工业 1996 4
49 碳五萃取精馏阻聚剂适应性研究 赵全聚 金山油化纤 1996 4
50 甲基丙烯酸β-羟乙酯合成及其蒸馏阻聚剂研究 赵慈义 武汉化工学院学报 1995 4
51 苯乙烯精馏过程新型高效阻聚剂调研 何连生 石化技术 1995 3
52 胺和酚类及其复合阻聚剂在乙烯装置中的应用 张继朋 石油炼制与化工 1994 9
53 乙烯系自由基聚合阻聚效应(XⅧ)——哌啶氮氧自由基氨基硫脲化合物与通用阻聚剂混合对MMA阻聚效应研究 张自义 高等学校化学学报 1994 3
54 BR生产回收溶剂油中微量阻聚剂TBC的测定 李远芬 合成橡胶工业 1991 1
55 新型阻聚剂在丙烯腈成品塔上的工业试验 韩国梁 石化技术与应用 1990 3
56 丙烯腈阻聚剂简介 韩国梁 石化技术与应用 1990 1
57 气相色谱法测定C_5馏分中微量阻聚剂二乙羟胺 李兆琳 合成橡胶工业 1989 6
58 液相色谱法测定MMA中的痕量阻聚剂2, 2, 6, 6-四甲基-4-羟基哌啶-1-氧自由基 段志兴 合成橡胶工业 1989 5
59 高效液相色谱法定量分析微量阻聚剂硫代二苯基胺 迟久春 石油与天然气化工 1989 4
60 阻聚剂在乳液聚合中的行为(Ⅱ)——第Ⅰ类动力学体系?〈〈 0.5) A.Penlidis 化工学报 1989 4
61 阻聚剂在乳液聚合中的行为(Ⅰ)——第Ⅱ类动力学体系(?=0.5) 霍炳培 化工学报 1989 4
62 羟乙基丙烯酸酯阻聚剂的选择 刘同保 化学世界 1988 6
63 新型丙烯腈阻聚剂在丙烯腈系统工业试验 韩国梁 石化技术与应用 1988 4
64 防止高效阻聚剂TMHPO使丙烯酸系单体着色的方法 张自义 化学世界 1987 5
65 共轭双烯烃用新型阻聚剂 林基兰 合成橡胶工业 1987 5
66 新型丙烯腈阻聚剂工业试验 韩国梁 石化技术与应用 1987 3
67 HK-14用作轻苯阻聚剂 王惠良 化学世界 1986 4
68 苯乙烯精馏阻聚剂的应用技术 何仕新 石化技术与应用 1986 2
69 苯乙烯的高温型阻聚剂 张自义 化学世界 1985 8
70 苯乙烯新型高效阻聚剂Q的工业应用 蔡万有 合成橡胶工业 1985 5
71 低醇甲醛阻聚剂阻聚试验 冯小锁 石化技术与应用 1985 2
72 丙烯酸酯、甲基丙烯酸酯类单体中混合阻聚剂分析 张兰芬 涂料工业 1985 1
73 氯丁二烯温和阻聚剂的研究 庞义 山西化工 1984 2
74 甲基丙烯酸阻聚剂的研究——非金属盐新阻聚剂-4-羟基-2.2.6.6-四甲基哌啶-1-氧自由基(TMPO~·)的考察 刘善政 河南科学 1984 1
75 苯乙烯高温阻聚剂的评选 何仕新 合成橡胶工业 1984 1
76 精馏异戊二烯阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1983 S1
77 丙烯腈阻聚剂的研究 张自义 合成橡胶工业 1983 4
78 低醇甲醛阻聚剂 黄绍和 现代化工 1983 1
79 影响甲醛阻聚剂质量因素的讨论 顾敬瑜 安徽化工 1982 2
80 制备甲基丙烯酸的高效阻聚剂 潘治平 化学世界 1980 8
81 聚氨酯预聚物制造中的有效阻聚剂—正磷酸 何愫明 涂料工业 1980 6
82 分离异戊二烯过程中的阻聚剂 张镜澄 合成橡胶工业 1980 5
83 高效阻聚剂对叔丁基邻苯二酚 合成橡胶工业 1980 4
84 阻聚剂的评选方法 张自义 合成橡胶工业 1980 3
85 甲醛阻聚剂的试制 安徽化工 1980 1
86 裂解C_5馏份阻聚剂的研究 张自义 兰州大学学报(自然科学版) 1979 3
87 异戊二烯阻聚剂的再研究 合成橡胶工业 1978 4
88 脱C_3塔釜液阻聚剂的评选 合成橡胶工业 1978 3
89 氯丁二烯高效阻聚剂的研究 合成橡胶工业 1978 3
90 阻聚剂在接枝共聚中抑制均聚的作用 陈锦甫 高分子学报 1978 1
91 略谈二烯烃阻聚剂类型 张自义 兰州大学学报(自然科学版) 1977 3
92 异戊二烯阻聚剂的研究 兰州大学学报(自然科学版) 1976 3
93 高效阻聚剂——对-叔丁基邻苯二酚(TBC) 塑料工业 1975 2
94 丙烯腈阻聚剂的初步研究和应用 合成纤维 1975 1
⑤ 关于丁二烯生产的概述(l论文用)
1
乙腈法
以含水1096的乙腈(ACN)为溶剂,由萃取、闪蒸、压缩、高压解吸、低压解吸和溶剂回收等工艺单元组成。将闪蒸和低压解吸的气相合并压缩,经冷凝送往水洗塔洗去溶剂,塔顶气相返回原料蒸馏塔。其余气体一部分送往高压解吸塔,另一部分作为再沸气体送往萃取蒸馏塔塔底以提供热能。水洗塔底溶剂送往溶剂回收精制系统,以保证循环溶剂的质量。对炔烃含量较高的原料需要进行加氢处理,或采用精密精馏、两段萃取才能得到纯度较高的丁二烯。
2
二甲基甲酰胺法
二甲基甲酰胺法(DMF法)又名GPB法,该生产工艺包括4个工序,即第一萃取蒸馏、第二萃取蒸馏、精馏和溶剂回收。原料C4进入第一萃取精馏塔,溶剂DMF由塔的上部加入。丁烷、丁烯、C3使丁二烯的相对挥发度增大,并从塔顶分出,而丁二烯、炔烃等和溶剂一起从塔底导出,进入第一解吸塔被完全解吸出来,冷却并经螺杆压缩机压缩后进入第二萃取精馏塔。为防止乙烯基乙炔爆炸,并进一步回收溶剂中的丁二烯,第二萃取塔底排出的富溶剂送往丁二烯回收塔,塔顶为粗丁二烯。回收塔塔顶馏出的丁二烯和少量杂质返回第二萃取塔前的压缩机入口,塔釜含炔烃的溶剂送至第二解吸塔。经两段萃取精馏得到的粗丁二烯中的杂质采用普通精馏除去。比丁二烯挥发度大的C3、水分等,在脱轻塔顶除去,比丁二烯挥发度小的残余2-丁烯、1,2-丁二烯、C5在脱重塔塔底除去。脱重塔顶可以得到聚合级丁二烯。
3
N-甲基吡咯烷酮法
N-甲基吡咯烷酮法(NMP法)由德国BASF公司开发成功,其生产工艺主要包括萃取蒸馏、脱气和蒸馏以及溶剂再生工序。粗C4汽化后进入主洗涤塔底部,N-甲基吡咯烷酮由塔顶进入,丁二烯和更易溶解的组分及部分丁烷和丁烯被吸收,同时不含丁二烯韵丁烷和丁烯从塔顶排出。主洗塔底部的富溶剂进入精馏塔,含有乙炔和丙二烯的丁二烯从精馏塔侧线以气态采出进入后洗塔。在后洗塔中,粗丁二烯由其塔顶蒸出后冷凝液化进入蒸馏工序,塔釜富溶剂返回精馏塔的中段。精馏塔釜的富溶剂进入闪蒸罐脱气,再进入脱气塔脱烃,并控制NMP中的水平衡,少量炔烃从侧线离开脱气塔,其余脱下的烃经冷却塔进入循环压缩机,最后返回精馏塔底部。从后洗塔出来的粗丁二烯在第一蒸馏塔脱除甲基乙炔,在第二蒸馏塔中脱除1,2-丁二烯和C5烃,由第二蒸馏塔顶得到丁二烯产品。
4
生产工艺新进展
最近有报道称采用一种分壁式技术可以改进传统的丁二烯抽提工艺,降低装置能耗和投资成本。传统的丁二烯抽提工艺为浓缩的粗C4馏份先通过吸收工序,再将从后洗涤器顶部馏出的粗丁二烯在两个精馏塔中进行精馏。在第一个精馏塔中馏出轻质馏份;在第二个精馏塔中,重质馏份被分离后从塔底移除,丁二烯产品从塔顶馏出。采用分壁式技术后,可使两步精馏工序在一个装备中进行
⑥ 做食品检测的时候为啥大多用乙腈提取
而循环乙腈溶剂的品质关系着抽提工艺装置能否长周期高经济性稳定运行,并决定了萃取塔的压差和精馏塔釜温度的控制。因此,准确测定循环乙腈溶剂纯度和主要有机杂质的含量,对于用乙腈抽提生产丁二烯产品工艺的溶剂品质的改善,以及确保装置的长周期、高经济性稳定运行非常重要。目前国内各乙腈抽提工艺从裂解c4生产丁二烯的装置中,乙腈含量的检测方法都是企业自定标准,均是差减法,即乙腈纯度等于100%减去水分和二聚物的含量,其他有机杂质不检测,不能够准确测出乙腈纯度。而行业标准sht-1627《工业用乙腈纯度及有机杂质的测定》法中可以测定乙腈纯度,但该法仅仅适用于纯度在98重量%以上的乙腈,其使用的ffap色谱柱为极性色谱柱,无法有效分离c1-c4烃,且sht-1627仅仅测定了丙酮、丙烯腈、丙腈等有机组分,没有对甲醇、乙醇和异丙醇等组分进行定性分析,因此无法测定纯度低于98重量%的乙腈,更无法详细检测乙腈中溶解的c1-c4烃、甲醇、乙醇和异丙醇等组分的含量。技术实现要素:本发明的目的是克服现有技术的方法仅适用于纯度在98重量%以上的乙腈,且仅仅测定丙酮、丙烯腈、丙腈等有机组分,并没有适用于乙腈抽提工艺生产丁二烯过程的检测方法的缺陷,提供一种测定样品中乙腈的含量的方法。为了实现上述目的,本发明提供了一种测定样品中乙腈的含量的方法,所述样品含有有机杂质和乙腈(不仅限于纯度在98重量%以上的乙腈),该方法包括:对样品进行气相色谱分析以确定有机杂质的含量,再通过差减法计算乙腈的含量,所述有机杂质包括c1-c4烃、甲醇、乙醇、异丙醇、丙酮和二聚物。本发明的方法非常方便和快捷,因此通过本发明的方法,能够准确地测定乙腈纯度较低的样品(特别是乙腈抽提工艺生产丁二烯过程中的循环乙腈溶剂)中的乙腈的含量,实时监测各有机杂质(如c1-c4烃、甲醇、乙醇、异丙醇、丙酮和二聚物等)的含量,有利于及时发现并去除一些有害杂质(如乙烯基乙炔),还有利于抽提工艺装置长周期高经济性地稳定运行。本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。具体实施方式以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。本发明提供了一种测定样品中乙腈的含量的方法,所述样品含有有机杂质和乙腈,该方法包括:对样品进行气相色谱分析以确定有机杂质的含量,再通过差减法计算乙腈的含量,所述有机杂质包括c1-c4烃、甲醇、乙醇、异丙醇、丙酮和二聚物。根据本发明,所述差减法为用100重量%减去各有机杂质及水的含量的计算方法。其中,含量指的是基于样品总重量而计算得到的质量百分数,即重量%
⑦ 1,3-丁二烯的主要来源是什么
全球丁二烯主要来源及生产方法
目前,世界丁二烯的来源主要有两种,一种是从乙烯裂解装置副产的混合C4馏分中抽提得到,这种方法价格低廉,经济上占优势,是目前世界上丁二烯的主要来源。另一种是从炼油厂C4馏分脱氢得到,该方法只在一些丁烷、丁烯资源丰富的少数几个国家采用。世界上从裂解C4馏分抽提丁二烯以萃取精馏法为主,根据所用溶剂的不同生产方法主要有乙睛法(ACN法)、二甲基甲酰胺法(DMF法)和N-甲基吡咯烷酮法(NMP法)3种。
(1)乙腈法(ACN法)
该法最早由美国Shell公司开发成功,并于1956年实现工业化生产。它以含水10%的ACN为溶剂,由萃取、闪蒸、压缩、高压解吸、低压解吸和溶剂回收等工艺单元组成。1977年Shell公司在改造中增加了冷凝器和水洗塔,并将闪蒸和低压解吸的气相合并压缩,其中约8%经冷凝送往水洗塔洗去溶剂,塔顶气相返回原料蒸馏塔,这样就除去了C4烃中的C5烃。其余气体一部分送往高压解吸塔,另一部分送往萃取蒸馏塔塔底作为再拂气体提供热能,从而省去了一台再沸器,降低了蒸汽用量。水洗塔底溶剂约1%送往溶剂回收精制系统,以保证循环溶剂的质量。该法对含炔烃较高的原料需加氢处理,或采用精密精馏、两段萃取才能得到较高纯度的丁二烯。该方法以意大利SIR工艺和日本JSR工艺为代表。意大利SIR工艺以含水5%的ACN为溶剂,采用5塔流程(氨洗塔、第一萃取精馏塔、第二萃取精馏塔、脱轻塔和脱重塔)。在第一萃取精馏塔前加一氨水洗涤塔,用以除去原料中0.04%~0.08%的醛酮。炔烃由第二萃取蒸馏塔第75块塔板侧线采出,送往接触冷凝器。脱重塔塔底和接触冷凝器底部物料合并,其热能回收后用于原料蒸发器。该工艺不仅能使丁二烯收率达到96%~98%,还能使丁二烯与炔烃分离,丁二烯产品纯度可以达到99.5%以上。该技术的特点为流程简单,溶剂解吸在萃取精馏塔下段完成;第一萃取精馏塔采用两点进料,有利于改善塔内液相的浓度分布,减少该塔上段的液相负荷,降低能耗;在第一萃取精馏塔下部设置一台换热器,起中间再沸器的作用,可充分利用塔底热能提高烃类从溶剂中的分离效率;采用在第二萃取精馏塔第75块塔板侧线除炔烃的技术,使丁二烯与炔烃几乎完全分离。日本JRS工艺以含水10%的ACN为溶剂,采用两段萃取蒸馏,第一萃取蒸馏塔由两塔串联而成。该工艺经过了1980年和1988年两次重大的改造。1980年的改造是采用了热偶合技术,即将第二萃取蒸馏塔顶全部富含丁二烯的蒸汽,不经冷凝直接送入脱重塔中段,同时将脱重塔内下降液流的一部分从中段塔盘上抽出,送往第二萃取蒸馏塔作为塔顶回流液,这样第二萃取蒸馏塔塔顶不需要冷凝器,这部分的热量将全部加到脱重塔,使该塔塔底再沸器的热负荷比热偶合前降低40%左右,从而实现大幅度节能。1988年的改造主要解决系统热能回收问题,即在提浓塔和脱轻塔安装中间冷凝器,将提浓塔从进料板附近上、下两段串联相接,这样即可使上塔负荷大幅度降低,又不会影响塔的操作条件。将塔分为上下两段,下塔操作压力提高,塔内温度相应升高,这样中间冷凝器就可回收到高品位的热能。此外,溶剂回收塔塔底废水的热能,可用于该塔进料管线的预热器,加上解析塔从侧线采出炔烃也可回收部分热能,因而该工艺在同类工艺中的能耗是最低的。采用ACN法生产丁二烯的特点是沸点低,萃取、汽提操作温度低,易防止丁二烯自聚;汽提可在高压下操作,省去了丁二烯气体压缩机,减少了投资;粘度低,塔板效率高,实际塔板数少;微弱毒性,在操作条件下对碳钢腐蚀性小;分别与正丁烷、丁二烯二聚物等形成共沸物,致使溶剂精制过程较为复杂,操作费用高;蒸汽压高,随尾气排出的溶剂损失大;用于回收溶剂的水洗塔较多,相对流程长。
(2)二甲基甲酰胺法(DMF法)
DMF法又名GPB法,由日本瑞翁(Geon)公司于1965年实现工业化生产,并建成一套4.5万t/a生产装置。该生产工艺包括四个工序,即第一萃取蒸馏工序、第二萃取蒸馏工序、精馏工序和溶剂回收工序。原料C4汽化后进入第一萃取精馏塔,溶剂DMF由塔的上部加入。溶解度小的丁烷、丁烯、C3使丁二烯的相对挥发度增大,并从塔顶分出,而丁二烯、炔烃等和溶剂一起从塔底导出,进入第一解吸塔被完全解吸出来,冷却并经螺杆压缩机压缩后进入第二萃取精馏塔进一步分离。不含C4组分的溶剂从解吸塔底高温采出,用作萃取精馏、精馏、蒸发等工序的热源,热量回收后重新循环使用。炔烃、丙二烯、硫化物、羰基化合物这些有害杂质在溶剂中的溶解度较高,为防止乙烯基乙炔爆炸,并进一步回收溶剂中的丁二烯,第二萃取塔底排出的富溶剂送往丁二烯回收塔,塔顶为粗丁二烯。回收塔塔顶馏出的丁二烯和少量杂质返回第二萃取塔前的压缩机人口,塔釜含炔烃的溶剂送至第二解吸塔,从该塔塔顶分出乙烯基乙炔,稀释后用作锅炉燃料,釜液为溶剂,循环回萃取精馏塔。经两段萃取精馏得到的粗丁二烯中的杂质采用普通精馏除去。比丁二烯挥发度大的C3、水分等,在脱轻塔顶除去,比丁二烯挥发度小的残余2-丁烯、1,2-丁二烯、C5以及在生产过程中产生的少量丁二烯二聚物在脱重塔塔底除去。脱重塔顶可以得到纯度在99.5%以上的聚合级丁二烯。DMF法工艺的特点是对原料C4的适应性强,丁二烯含量在15%~60%范围内都可生产出合格的丁二烯产品;生产能力大,成本低,工艺成熟,安全性好、节能效果较好,产品、副产品回收率高达97%;由于DMF对丁二烯的溶解能力及选择性比其他溶剂高,所以循环溶剂量较小,溶剂消耗量低;无水DMF可与任何比例的C4馏分互溶,因而避免了萃取塔中的分层现象;DMF与任何C4馏分都不会形成共沸物,有利于烃和溶剂的分离;但由于其沸点较高,溶剂损失小。热稳定性和化学稳定性良好,无水存在下对碳钢无腐蚀性。但由于其沸点高,萃取塔及解吸塔的操作温度都较高,易引起双烯烃和炔烃的聚合;DMF在水分存在下会分解生成甲酸和二甲胺,因而有一定的腐蚀性。
(3)N-甲基吡咯烷酮法(NMP法)
N-甲基吡咯烷酮法由德国BASF公司开发成功,并于1968年实现工业化生产,建成一套7.5万t/a生产装置。其生产工艺主要包括萃取蒸馏、脱气和蒸馏以及溶剂再生工序。粗C4馏分气化后进入主洗涤塔底部,含有8%水的N-甲基吡咯烷酮萃取剂由塔顶进入,丁二烯和更易溶解的组分及部分丁烷和丁烯被吸收,同时不含丁二烯的丁烷和丁烯从塔顶排出。主洗塔底部的富溶剂进入精馏塔,在此溶剂吸收的丁烷和丁烯被更易溶的丁二烯、丙二烯和乙炔置换出来,含有乙炔和丙二烯的丁二烯从精馏塔侧线以气态采出进入后洗塔。在后洗塔中,用新鲜溶剂将其他组分溶解,粗丁二烯由其塔顶蒸出后冷凝液化进入蒸馏工序,塔釜富溶剂返回精馏塔的中段。精馏塔釜的富溶剂先进入闪蒸罐中部分脱气,再进人脱气塔脱烃,并控制NMP中的水平衡,少量炔烃从侧线离开脱气塔,其余脱下的烃经冷却塔进入循环压缩机,最后返回精馏塔底部。从后洗塔出来的粗丁二烯在第一蒸馏塔脱除甲基乙炔,在第二蒸馏塔中脱除1,2一丁二烯和C5烃,由第二蒸馏塔顶得到丁二烯产品。汽提后的溶剂抽出总量的0.2%进行再生,以免杂质积累。NMP法工艺的特点是溶剂性能优良,毒性低,可生物降解,腐蚀性低;
原料范围较广,可得到高质量的丁二烯,产品纯度可达99.7%~99.9%;C4炔烃无需加氢处理,流程简单,投资低,操作方便,经济效益高;NMP具有优良的选择性和溶解能力,沸点高、蒸汽压低,因而运转中溶剂损失小;它热稳定性和化学稳定性极好,即使发生微量水解,其产物也无腐蚀性,因此装置可全部采用普通碳钢;为了降低其沸点,增加选择性,降低操作温度,防止聚合物生成,利于溶剂回收,可在其中加入适量的水,并加入亚硝酸钠作阻聚剂。
--- 详细信息
⑧ 1,3丁二烯的制法
1.乙醇法 以乙醇为原料,以氧化镁一二氧化硅为主催化剂,加入活性添加剂,在360-370℃下,催化脱氢和脱水,生成丁二烯。2C2H5OH→CH2=CH-CH=CH2+2H2O+H2
2.抽提法 乙烯裂解装置副产C4馏分,用溶剂抽提法提取丁二烯,依采用的溶剂不同,可分为乙腈抽提法和N,N-=甲基甲酰胺抽提法。
(1)乙腈抽提法 以乙腈为萃取剂。将乙烯裂解装置副产的C4馏分送人丁二烯萃取精馏塔,顶部加入乙腈,丁烯及少量丁烷从塔顶排出;丁二烯、炔烃和乙腈进入第一解吸塔,乙腈被解吸出来,并返回萃取精馏塔。丁二烯和炔烃进入第二萃取塔,塔顶加入乙腈,丁二烯从塔顶出来,进入水洗塔,再经精馏脱水得聚合级丁二烯。N,二甲基甲酰胺为萃取剂。Q馏分f取,二次精馏,制取合格的丁二一次萃取脱除比丁二烯难溶于N,N二甲基甲酰胺的杂质,如丁烯、丁烷;第二次萃取脱除比丁二烯易溶于N,N.二甲基甲酰胺的杂质,如乙烯基乙炔。第一次精馏脱除比丁二烯轻的组分,如甲基乙炔;第二次精馏脱除比丁二烯重的组分,如顺2-丁烯,1,2-丁二烯、C5馏分及高沸点物,、最后得到99.5%以上的1,3一丁二烯成品。
⑨ 国内外有几套MTBE(甲基叔丁基醚)装置,每套装置的优缺点分别是什么
据不完全统计,2009 年我国有MTBE 生产装置
50 多套,总产能319.4 万吨/年。其中,中石油3 万
吨/年以上的装置13 套,合计产能为93.3 万吨/年;
中石化共有19 套装置,合计产能122.9 万吨/年;其
余为地方企业装置,合计产能103.2 万吨/年。国内
10 万吨/年(含10 万吨/年)以上的大型MTBE 生产
装置共有6 套
截至2010 年3 月统计,国内MTBE 装置,中石
化拥有23 套,产能123 万吨;中国石油共有21 套,
产能95 万吨;地炼装置共有18 套,约为120 万吨。
2010 年2 月26 日, 镇海炼化公司百万吨乙烯
主体生产装置之一———MTBE/1-丁烯装置投产成
功。镇海炼化年产13 万吨的MTBE/1-丁烯装置
采用中国石化科技开发公司的专有技术, 以丁二烯
抽提装置产出的抽余碳四和工业甲醇为原料, 生产
MTBE(甲基叔丁基醚)和1-丁烯产品。
http://wenku..com/view/e2e7e81b227916888486d744.html