Ⅰ 地榜属于计量器具吗
地磅不属于计量器具。因为《中华人民共和国依法管理的计量器具目录(型式批准部分)》没有列入地磅。
为进一步贯彻实施《中华人民共和国计量法》、《中华人民共和国行政许可法》,我局组织制定了“中华人民共和国依法管理的计量器具目录(型式批准部分)”,现予以公布,自2006年5月1日起施行。列入“中华人民共和国依法管理的计量器具目录(型式批准部分)”的项目要办理计量器具许可证、型式批准和进口计量器具检定。
自即日起,未列入本目录的计量器具,不再办理计量器具许可证、型式批准和进口计量器具检定。
附件:中华人民共和国依法管理的计量器具目录(型式批准部分)
二〇〇五年十月八日
附件:
中华人民共和国依法管理的计量器具目录(型式批准部分)
1. 测距仪:光电测距仪、超声波测距仪、手持式激光测距仪;
2. 经纬仪:光学经纬仪、电子经纬仪;
3. 全站仪:全站型电子速测仪;
4. 水准仪:水准仪;
5. 测地型GPS接收机:测地型GPS接收机;
6. 液位计:液位计;
7. 测厚仪:超声波测厚仪、X射线测厚仪、电涡流式测厚仪、磁阻法测厚仪、γ射线厚度计;
8. 体温计:测量人体温度的红外温度计(红外耳温计、红外人体表面温度快速筛检仪);
9. 辐射温度计:工作用全辐射感温器、工作用辐射温度计、500℃以下工作用辐射温度计;
10. 天平:非自动天平;
11. 非自动衡器:非自动秤、非自行指示轨道衡、数字指示轨道衡;
12. 自动衡器:重力式自动装料衡器、连续累计自动衡器(皮带秤)、非连续累计自动衡器、动态汽车衡(车辆总重计量)、动态称量轨道衡、核子皮带秤;
13. 称重传感器:称重传感器;
14. 称重显示器:数字称重显示器;
15. 加油机:燃油加油机;
16. 加气机:液化石油气加气机、压缩天然气加气机;
17. 流量计:差压式流量计、速度式流量计、液体容积式流量计、转子流量计、靶式流量变送器、临界流流量计、质量流量计、气体层流流量传感器、气体腰轮流量计、明渠堰槽流量计;
18. 水表:冷水表、热水表;
19. 燃气表:膜式煤气表;
20. 热能表:热能表;
21. 风速表:轻便三杯风向风速表、轻便磁感风向风速表、电接风向风速仪;
22. 血压计和血压表:血压计、血压表;
23. 眼压计:压陷式眼压计;
24. 压力仪表:弹簧管式精密压力表和真空表、弹簧管式一般压力表、压力真空表和真空表、膜盒压力表、记录式压力表、压力真空表及真空表、轮胎压力表、压力控制器、数字压力计;
25. 压力变送器和压力传感器:压力变送器、压力传感器;
26. 氧气吸入器:浮标式氧气吸入器;
27. 材料试验机:摆锤式冲击试验机、悬臂梁式冲击试验机、轴向加荷疲劳试验机、旋转纯弯曲疲劳试验机、拉力、压力和万能试验机、非金属拉力、压力和万能试验机、电子式万能材料试验机、木材万能试验机、抗折试验机、杯突试验机、扭转试验机、高温蠕变、持久强度试验机;
28. 振动冲击测量仪:工作测振仪、公害噪声振动计、冲击测量仪、基桩动态测量仪;
29. 测速仪:机动车雷达测速仪、定角式雷达测速仪;
30. 出租汽车计价器:出租汽车计价器;
31. 接地电阻测量仪器:接地电阻表、接地导通电阻测试仪;
32. 绝缘电阻测量仪:绝缘电阻表(兆欧表)、高绝缘电阻测量仪(高阻计);
33. 泄漏电流测量仪:泄漏电流测量仪(表);
34. 耐电压测试仪:耐电压测试仪;
35. 电能表:交流电能表、电子式电能表、分时计度(多费率)电能表、最大需量电能表、直流电能表;
36. 测量互感器:测量用电流互感器、测量用电压互感器;
37. 电阻应变仪:电阻应变仪;
38. 场强测量仪:干扰场强测量仪、近区电场测量仪;
39. 微波辐射与泄漏测量仪:微波辐射与泄漏测量仪;
40. 心脑电测量仪器:心电图机、脑电图机、脑电地形图仪、心电监护仪;
41. 电话计时计费器:单机型和集中管理分散计费型电话计时计费器、IC卡公用电话计时计费装置;
42. 噪声测量分析仪器:声级计、噪声剂量计、噪声统计分析仪、个人声暴露计、倍频程和1/3倍频程滤波器;
43. 听力计:纯音听力计、阻抗听力计;
44. 医用超声源:超声多普勒胎儿监护仪超声源、医用超声诊断仪超声源、医用超声治疗机超声源、超声多普勒胎心仪超声源;
45. 焦度计:焦度计;
46. 验光机:验光机;
47. 照度计:紫外辐射照度计、光照度计;
48. 医用激光源:医用激光源;
49. 活度计:放射性活度计、用152Eu点状γ标准源校准锗γ谱仪、低本底α、β测量仪、α、β和γ表面污染仪、γ放射免疫计数器;
50. 环境与防护剂量(率)计:环境监测用X、γ辐射热释光剂量测量装置、环境监测用X、γ辐射空气吸收剂量率仪、辐射防护用X、γ辐射剂量当量(率)仪和监测仪、直读式验电器型个人剂量计、个人监测用X、γ辐射热释光剂量测量装置、X、γ辐射个人报警仪、中子周围剂量当量测量仪;
51. 剂量计:治疗水平电离室剂量计、γ射线水吸收剂量标准剂量计(辐射加工级)、γ射线辐射加工工作剂量计、电子束辐射加工工作剂量计;
52. 医用辐射源:外照射治疗辐射源、医用诊断X辐射源、医用诊断计算机断层摄影装置(CT)X射线辐射源、γ射线辐射源(辐射加工用);
53. 测氡仪:测氡仪;
54. 热量计:氧弹热量计、水流型气体热量计、示差扫描热量计;
55. 糖量计:手持糖量计、手持折射仪;
56. 电导仪:电导仪;
57. pH计:实验室pH(酸度)计、船用pH计;
58. 分光光度计:可见分光光度计、单光束紫外-可见分光光度计、原子吸收分光光度计、双光束紫外可见分光光度计、荧光分光光度计、色散型红外分光光度计、紫外、可见、近红外分光光度计、全差示分光光度计;
59. 光谱仪:发射光谱仪、波长色散X射线荧光光谱仪;
60. 旋光仪:旋光仪、旋光糖量计;
61. 色谱仪:气相色谱仪、液相色谱仪、离子色谱仪、凝胶色谱仪;
62. 浊度计:浊度计;
63. 烟尘粉尘测量仪:烟尘测试仪、粉尘采样器、光散射式数字粉尘测试仪;
64. 总悬浮颗粒物采样器:总悬浮颗粒物采样器;
65. 大气采样器:大气采样器;
66. 水质分析仪:覆膜电极溶解氧测定仪、水中油份浓度分析仪、化学需氧量(COD)测定仪、氨自动分析仪、生物化学需氧量(BOD5)测量仪、硝酸根自动监测仪、总有机碳分析仪、离子计;
67. 有毒有害气体检测(报警)仪:二氧化硫气体检测仪、硫化氢气体分析仪、一氧化碳检测报警器、一氧化碳、二氧化碳红外线气体分析器、烟气分析仪、化学发光法氮氧化物分析仪;
68. 易燃易爆气体检测(报警)仪:可燃气体检测报警器、光干涉式甲烷测定器、催化燃烧式甲烷测定器、催化燃烧型氢气检测仪;
69. 汽车排放气体测试仪:汽车排放气体测试仪;
70. 烟度计:滤纸式烟度计、透射式烟度计;
71. 测汞仪:测汞仪;
72. 水分测定仪:烘干法谷物水分测定仪、电容法和电阻法谷物水分测定仪、原棉水分测定仪;
73. 呼出气体酒精含量探测器:呼出气体酒精含量探测器;
74. 光度计:火焰光度计、非色散原子荧光光度计;
75. 血细胞分析仪:血细胞分析仪
Ⅱ 砝码算非自动衡器吗
砝码算非自动衡器
Ⅲ 哪些设备属于计量器具
根据《中华人民共和国依法管理的计量器具目录(型式批准部分)》以下设备属于计量回器具:
1、测距仪答:光电测距仪、超声波测距仪、手持式激光测距仪;
2、经纬仪:光学经纬仪、电子经纬仪;
3、全站仪:全站型电子速测仪;
4、水准仪:水准仪;
5、测地型GPS接收机:测地型GPS接收机;
6、液位计:液位计;
7、测厚仪:超声波测厚仪、X射线测厚仪、电涡流式测厚仪、磁阻法测厚仪、γ射线厚度计;
8、体温计:测量人体温度的红外温度计(红外耳温计、红外人体表面温度快速筛检仪);
9、辐射温度计:工作用全辐射感温器、工作用辐射温度计、500℃以下工作用辐射温度计;
10、天平:非自动天平。
(3)非自动衡器校准装置扩展阅读:
按结构特点分类,计量器具可以分为以下三类:
1、量具是即用固定形式复现量值的计量器具,如量块、砝码、标准电池、标准电阻、竹木直尺。线纹米尺等;
2、计量仪器仪表。即将被测量的量转换成可直接观测的指标值等效信息的计量器具,如压力表、流量计、温度计、电流表、电压表。心脑电图仪等;
3、计量装置。即为了确定被测量值所必须的计量器具和辅助设备的总体组合,如里程计价表检定装置、高频微波功率计校准装置等。
Ⅳ 谁有DECT的资料
一、前言
1.1 计量的意义和作用
人类为了生存和发展,必须认识自然、利用自然和改造自然,而自然界的一切现象或物质,是通过一定的“量”来描述和体现的。也就是说:“量是现象、物体或物质可定性区别和定量确定的一种属性。”因此,要认识大千世界和造福人类,就必须对各种“量”进行分析确认,既要区分量的性质,又要确定其量值。计量正是达到这种目的的重要手段之一。
计量是关于测量的科学,是实现单位统一、量值准确可靠和与国际一致的科学和管理活动。实际上,人类在科学研究、经济活动和社会活动中,每时每刻都离不开计量。众所周知,尺子、秤、电表、秒表、煤气表都是用于计量的,计量已经渗透到了人类工作、学习、生活的各个方面,人们在不知不觉当中,应用和享用了计量知识和技术。计量与国民经济建设和科学技术的各个领域息息相关,无论是人类的衣食住行、工农业生产、国防建设、科学研究,还是国内外贸易,处处都离不开计量。现代计量已经成为国民经济的重要技术基础。此外,大量的事实证明,物理学上的许多重要发展,都是在精密计量测试的基础上取得的。而许多国防尖端技术的突破,也和计量测试分不开。因此,从这个意义上说,可以将科学技术和计量的关系概括为一句话:“科技要发展,计量须先行”。
俄国科学家门捷列夫说过:“没有测量,就没有科学。”我国著名的两院院士王大珩说:“计量学是提高物理量量化精确度的科学,是物理的基础和前沿”。因此说,计量属于基础科学,没有计量,科学技术就无从谈起。历史的进程充分证明,计量技术发展缓慢,就会严重阻碍科学技术的发展,从而阻碍社会和经济的发展。
1.2计量的对象及发展
在相当长的时间里,计量的对象主要是物理量,随着科技进步和社会发展,逐渐扩展到工程量、化学量、生理量,甚至心理量。在生物工程、医学工程、环保、信息、航天和软件等方面一些高新技术领域的专业计量测试,也正在逐渐形成和不断加强。例如,在生物工程方面,人们希望从蛋白质的控制中了解生命的本质及其生理、生物化学、分子遗传等知识,并且正在对构成蛋白质生产的核糖核酸的15万个标志进行测试和编排。同时,以DNA计算机为首的生物计算机,将为解决当前硅芯片集成器件的计算机处理能力接近极限的难题,提供理想的方案。这时的计量已进入微观领域。
历史上三次大的技术革命,充分依靠了计量,也推动了计量本身的发展。蒸汽机的诞生,给工业带来了第一次技术革命,力学计量、热工计量和几何量计量在这一期间有了迅速的发展。以电的产生和应用为基本标志的第二次技术革命,更加推动了社会生产的发展。电磁计量、无线电计量、温度计量、几何量计量、热辐射计量得到了进一步发展,同时,也把计量从宏观世界带入微观世界。随着量子力学、核物理学的创立和发展,电离辐射计量逐渐形成。核能及化工等技术的开发与应用,导致了第三次技术革命。在这个时期,科学技术和社会生产的发展更加迅速.原子能、化工、半导体、电子计算机、超导、激光、遥感、宇航等新技术的广泛应用,使计量日趋现代化,由经典计量进入量子计量的新阶段,计量由宏观实物基准逐步向自然(量子)基准过渡。新的米定义和原子频标的建立,有着相当重要的意义。长度和频率的精密测定,促进了现代科技的发展。因为光速的测定、原子光谱的超精细结构的探测、航海、航天、遥感、激光等许多科技领域,都是以频率和长度的精密计量为重要基础的。 现在人们所谓的第四次技术革命,是信息技术和能源技术的革命,是以微电子学和计算机为先导的。许多高科技产业,都必须以精密计量为基础。目前的计量,早已不再停留在以往度量衡的基础上,而是形成了一门独立的学科——计量学,涉及长度、温度、力学、电磁学、无线电、时间频率、光学、电离辐射、声学和化学等各种专业,即所谓的十大计量。
1.3 《计量法》的实施
我国是具有五千年历史的文明古国,是世界上计量发展最早、最有成效的国家之一。早在2000多年前就形成了比较完整、先进的计量制度。计量,过去在我国称为“度量衡”,其含义是关于长度、容积和质量的计量,所用的主要测量器具为尺、斗、秤。从秦始皇统一“度量衡”的时代至大约200年前,我国的计量技术一直处于先进行列。但是,从鸦片战争到新中国成立前的约一百年间,由于内忧外患、战争连年不断,整个社会处于动荡不定的状态,导致了科技水平包括计量水平的停滞不前甚至倒退。到1949年,仅长度测量,就有英制、日制、俄制、米制、营造尺等多种单位制并存,全国量值处于混乱之中。新中国成立以后,党和政府非常关注计量事业的发展。为了在全国范围内统一计量制度,1959年6月25日国务院发布“关于统一计量制度的命令”,确定以当时的公制即后来的国际单位制,为国家基本计量制度。1985年9月6日全国人大常委会通过“中华人民共和国计量法”,与此同时,在1985年我国还加入了国际法制计量组织(OIML),这标志着中国的计量工作纳入了法制管理的轨道,计量法律、法规体系已基本完备,并已经与国际法制计量接轨。
1.4 中国计量科学研究院的建立、职责及其任务
国际单位制的7个基本量是长度、质量、时间、电流、热力学温度、物质的量、发光强度,它们的单位分别是米、千克、秒、安培、开尔文、摩尔、坎德拉。主要导出量是由基本量的关系函数得出,基本量和导出量就像共生于一棵大树上的枝干,共同构成计量科学体系。
新中国成立以来,我国计量工作有了迅速发展。1955年成立了国家计量局和中国计量科学研究院(以下简称计量院)。作为国家级的计量科学研究中心和法定计量技术机构,计量院自始至终是全国量值溯源的源头,是国家级法定计量机构,是中国计量技术工作的核心。
计量院承担的主要任务:
· 研究、建立、维护国家计量基准、标准,复现单位值;进行国际比对,保证基准量值和国际一致。
· 进行计量基、标准的后续研究,利用最新科技成果,不断扩展计量基、标准的量程、频段,提高准确度和自动化程度。
· 开展测量理论、量值传递方法的研究,以及共性、基础性、关键性测量技术的研究。
· 实施量值传递工作,组织进行国内重要实验室的量值比对,保证全国量值的统一。
· 根据科学技术、国民经济及社会发展的需要,开展新领域计量技术的研究。
· 承担国家计量认证、技术考核、各专业计量技术委员会等技术管理;国产及进口计量器具的定型鉴定和型式批准的技术工作;进出口贸易中计量仲裁的技术保证;质量认证、实验室评审的技术工作。
培养具备高素质和较强科研能力的计量队伍,建立并不断完善计量院质量体系,严格把好计量证书质量,提高为广大客户服务的能力,是计量院从建立到发展至今一贯坚持和努力的目标。
对新参加工作的人员进行岗前培训,掌握计量基础知识;鼓励具备一定科研能力的人员进行继续深造,去国内大学或国外的计量机构进行学习,提高专业水平;在本院不定期、多形式举办英语、网络编程、技术法规编写等各种培训班。目前计量院现有技术人员中,硕士以上学历的占近20%。
1999年计量院依据ISO/IEC 17025:1999征求意见稿的要求和国家计量院计量基标准及证书互认协议(MRA)的要求建立了比较完善的质量体系并启动运行。计量院的质量体系的结构如图2所示,包括质量手册、程序文件、作业指导书。它符合ISO/IEC 17025:1999的要求,并包含其全部质量要素。
1999年计量院通过了中国实验室国家认可委员会组织的校准和检测实验室现场评审,通过校准项目127项目,检测项目23项,共150项。2000年通过了中国实验室国家认可委员会对计量院校准和检测实验室增项现场评审。2003年5月计量院完成了中国实验室国家认可委员会组织的从导则25到ISO/IEC 17025:1999的转换,并顺利完成了监督评审和扩项工作。2004年9月,通过中国实验室国家认可委员会复评审。到目前为止,计量院能够对外开展校准407项,检测208项。实验室认可项目数随时间变化如图3所示,实验室认可项目覆盖长度、热工、力学、电学、无线电、光学、电离辐射与医学、工程光学、工程技术等各个领域,为社会各界提供校准检测服务,保证了全国量值的准确统一。
随着校准市场的不断发展,为了更全面地服务客户,1998年计量院在原有的检定、测试基础上,增加了校准项目。同时根据ISO/IEC 17025:1999的要求,对所有的证书从格式、内容、安全等方面进行充分考虑,经历了1999、2001、2002、2004不同版本的修改。目前,基本形成了检定、检定结果通知书、校准(中、英、中英文)、测试(中、英)、检测报告等8种格式新版证书。该版本证书具有信息量全、防伪功能强、对检定周期描述严谨、敬告客户内容和方式独特、证书风格新颖等特点。经过一段时间的实践不仅为广大客户所认可,而且作为许多省级技术机构参照的样板证书样式。
2003年6月1日,计量院的仪器收发大厅正式启用,与之相配套的仪器收发软件也开始运行。新软件从“方便客户、简化流程、提高工作效率、尽量减少检定员的工作量”的角度出发。客户只需将仪器送到收发大厅,其送检信息一经录入,相关人员可多次调用。软件充分利用数据库和网络技术,对录入信息进行分析、组合,自动生成证书第一页的内容,对送检的计量仪器/器具的检测状态进行实时监控,全院公布。该软件具有强大的统计、查询、图表等功能,为加强计量院过程管理与提高服务质量提供了必要的第一手基本材料。
二、法制计量
计量的内容和含义十分广泛,而法制计量是计量中一个重要的概念,对于工农业生产、国防科技和人民生活都是必不可少且至关重要的。计量院作为国家法定计量技术机构,在《计量法》实施20年的时间里,建立并不断改进计量基标准;加强国际合作与交流,增强国际地位;开展强制检定,保障人民生命安全;受国家质检总局委托,承担计量标准考核和计量器具型式批准试验任务。
2.1 计量基标准
国家计量基准,是为定义、复现单位的量的测量系统,是国家统一单位量值的依据,是国中之宝。虽然从秦始皇开始就统一了度量衡,但是1949年前,尚未有一件实物基准原器—基准器用于统一量值。我国的现代基准研制工作始于20世纪50年代末,1961年在国家科委的领导下,计量院研制成功了第一项表面粗糙度国家计量基准。至1998年,国家正式批准了11个国家级的计量研究机构研制的191项高精密测量系统作为计量基准。这些基准为我国实施计量法制管理,统一全国计量单位量值,开展现代科学技术研究和发展现代国防建设起到了非常重要的作用。
计量院作为全国最高的计量科学研究中心,经过几代计量科技工作者的艰苦奋斗和刻苦钻研,完成了大批有水平的科研项目,研究建立了最初的国家基准、标准。此后,面对社会发展提出的新需求,不停息地追赶经济建设和科技发展的步伐,追赶世界高新技术发展的潮流,研究水平不断提高,计量基准、标准的数量和覆盖面不断扩大,在国际上的地位也不断上升。我国绝大部分的基准、副基准和国家最高社会公用计量标准都诞生和保存在这里。配合国家《计量法》的实施,在20年里,计量院利用这些基准、标准进行量值传递工作,保证了国内量值的统一可靠和与国际量值的一致。
从1991年至今,计量基准、标准中参与技术改造的约109项,其中部分计量基标准经改造后取得了非常好的结果,测量范围、测量精度等均有了很大的提高。
(1) 水三相点瓶
水三相点是热力学温度的唯一基准点,也是ITS-90国际温标重要的定义固定点。它在热力学温度测量、国际温标复现以及实际温度测量中,都具有十分重要的意义。为了加强对水三相点的深入研究,近几年来,计量院建立了一套新的高质量水三相点容器制作系统,研制出一系列不同结构、尺寸的高质量水三相点容器。在此基础上,研究了冰桥、环境、水源、冻制方法、水的纯化等因素对水三相点温度的影响。这些理论、实验研究提高了水三相点的复现水平,填补了国内研究的空白。新研制的水三相点容器参加了国际计量局组织的水三相点容器国际关键比对(CCT-K7)。技术指标中复现性优于0.03mK, 扩展不确定度为0.16mK(k=2.69,p=0.99)。
(2) 耦合腔互易法声学基准
计量院的耦合腔互易法声压基准建立于1965年, 1990年之前对基准进行了技术改造,使1英寸实验室标准电容传声器在50Hz-2000Hz的校准精度提高到0.05dB(K=3)。2000年对基准再次进行技术改造后,使基准主要技术指标达到了国际标准的要求,同时使复杂的互易校准实现了操作自动化。2002年7月该基准参加了超声功率国际关键量比对(CCAUV.U-k1),比对结果十分理想。2003年3月参加了空气声压(31.5Hz~31.5kHz)国际关键量的比对(CCAUV.A-K3)。
(3) 20MN基准测力机
力学处测力室是计量院建立最早的实验室之一。该实验室研制并保存的20MN基准测力机是目前国内最大的超重型精密力值计量装置。它首次把静压润滑技术应用于单缸结构的工作缸塞系统中,制造技术难度大,全部零件实现国产化。1990年通过原国家技术监督局鉴定,达到国际先进水平。1992年被批准为大力值国家基准,1996年获得国家科技进步一等奖。它的应用为大型工程项目科研与技术开发提供了精密的测试手段,提高了对工程结构和高层建筑安全受力状态的检测水平,也为航空航天技术总体精度的提高创造了必要条件。其力值准确度优于1×10-4 ,力值变动度优于1×10-4 ,灵敏限优于2×10-5 。
1990年10月,计量院与日本NRLM进行大力值比对。中日两台20MN基准机力值比对的结果一致性约在1×10-4,我国的20MN基准机力值波动度处于10-5 量级,优于日本20MN机一个数量级,充分显示了静压润滑工作缸塞系统的优良性能和先进水平。
(4) 单相工频电能
单相工频电能基准由计量院自行研制,于1990年12月通过国家技术监督局组织的鉴定。1996年7月由国家技术监督局批准为国家基准,承担对全国0.01级及以上的电能表的校准、检测和量值传递工作。
它采用独创的双桥功率比较仪技术,主要设备包括一台双桥功率比较仪和一套电流电压互感器。具有准确度高、量程宽和稳定性好等优点。该基准总不确定度为15×10-6(k=3),处于国际领先水平。1992年获院科技进步一等奖,技术监督局科技进步二等奖,1993年获国家科技进步二等奖。
1996年计量院对该基准实验室进行了恒温改造,使实验室全年温度基本满足要求,同时,还购进15对装置中需要的热电偶,以保证今后相当一段时间内正常运行。
1998年至2000年参加了CCEM组织、NIST为主导实验室的国际比对,取得了很好的测量结果,与美国、德国和加拿大处于同一水平。
(5) 脉冲波形参数基准
脉冲波形参数包括:脉冲幅度、上升时间、过冲、预冲、顶部不平度、阻尼振荡、下垂、脉冲宽度、周期、三角波线性等。传统的方法是通过操作人员目测屏幕上的波形,不仅受眼睛分辨力、示波器线性、屏幕聚焦、噪声的影响,更受波形本身失真程度影响,测量精度低。计量院1986年自行研制成功的脉冲波形参数基准,该基准主要由高质量宽频带取样示波器和高速脉冲源及带有数据采集的计算机系统组成。承担全国脉冲仪器的量值传递工作。该系统具有功能强、测试软件丰富、性能稳定可靠、自动化程度高、设计思想先进、有高的性能投资比等特点,在脉冲参数自动测试领域中达到世界先进水平,处于国内领先地位,在我国脉冲计量方面发挥了重大作用。1989年7月获国家科学技术进步三等奖。
1996年~1998年对本系统进行了技术改造,重新研制了数据采集箱,更换计算机系统,重新编写测试软件,改进了示波器校准系统,大大提高了检测能力和数据处理的效率。目前基准的技术指标为:脉冲幅度:10mV~200V;测量不确定度0.05%;脉冲上升时间:25ps~1ns;测量不确定度:1%+5ps 。
随着数字电子技术的发展,需要对更高速的脉冲信号进行计量,脉冲参数的发展朝着高速化,信息化的方向努力发展。脉冲参数组目前与北京工业大学合作研究的“基于NTN技术的新脉冲波形国家基准建立的研究”,该课题可将现有上升时间21ps的脉冲波形参数国家基准提高7ps。
(6) 光谱辐射照度、辐射亮度基准
该项基准装置为计量院1975年自行研制,1986年被国家计量局批准为国家基准。1978年获得全国科技大会奖,1990年获得国家技术监督局科技进步二等奖。整套基准装置使用方便,性能稳定可靠。二十多年来该项基准为我国的光谱辐射亮度和照度测量提供了最高计量标准,是国家光学计量中的重要基准之一,也是国际计量局(BIPM)确定的国际关键比对项目。光谱辐射亮度和照度的测量广泛应用于光电子、航空航天、国防、照明工程、遥感及医疗卫生等领域,具有重大社会效益。
该项基准装置先后进行了两次技术改造。改造后的基准装置,将高温黑体的高端工作温度扩展至3200K,为光谱辐射度测量提供了更强的短波紫外信号;针对探测器系统的紫外和近红外波段灵敏度低的缺点,采用紫敏型光电倍增管R3896和大面积2mm×10mm制冷型PbS探测器;针对交流式光电高温计引出的较大的测温误差的现状,采用直流光电高温计和温度标准灯,利用单色亮度比较法进行温标延伸,与以前的温度测量方法相比,改善了测温不确定度。
1990年和2001年两次代表我国参加CCPR组织的十几个国家参加的光谱辐射照度国际比对。1990年的比对结果表明我国的光谱辐射度测量总体上处于国际先进水平,尤其是可见范围的光谱辐射照度测量水平居国际领先。2001年的国际比对正在进行中。
2.2 国际交流与合作
(1) 签署MRA
为顺应WTO提出的消除技术性贸易壁垒的要求,1999年10月14日在法国巴黎国际计量局(BIPM)召开的一次会议上,38个米制公约成员国国家计量院的院长和2个国际组织的代表共同签署了《国家计量基、标准和国家计量院颁发的校准和测量证书互认协议》(简称“互认协议”—MRA)。MRA由国际米制公约组织授权,国际计量委员会(CIPM)起草,国际计量局(BIPM)为主协调人。计量院院长潘必卿受国家质检总局委托,代表中国签署了MRA协议。MRA协议的过渡期为4年,2004年1月1日起开始正式实施。
MRA的目标是建立一个开放、透明的综合性计量体系,向世界各地用户提供可靠的关于各国国家计量基标准可比性的定量信息,以期为政府和其他各方在签署国际贸易、商业和法务方面的协议提供技术基础。核心内容是在BIPM的主持下,由CIPM的10个咨询委员会(CCs)负责,并由各区域计量组织(RMOs)配合,有计划地开展以米制成员国计量院为主体的计量基标准的国际比对,包括关键比对和辅助比对,从而给出各国基标准的等效性。
签署MRA有利于我国经济的对外开放,开展国际科技交流和国际贸易,同时,提高了计量院校准与测量证书的权威性和“含金量”。另一方面,MRA的签署对我国计量基标准的建立、改造及正常维护提出了严格要求,对我国计量技术机构的实验环境、管理制度、人员素质及资源配置等质量体系的运行提出了高标准和新要求。
(2) 签署其它互认协议
中荷互认
1999年计量院质量称重实验室代表计量院与荷兰国家计量院就非自动衡器试验能力进行了现场评审,双方技术人员进行了技术培训及交流,协调了双方的试验方法,商讨确定了互认协议的内容。1999年11月3日,在深圳签署了中荷非自动衡器型式试验结果互相承认协议。中荷非自动衡器型式试验报告的互相承认,避免了双方非自动衡器在进入对方国家市场前的重复型式试验,为促进我国非自动衡器出口欧洲创造了有利条件。
中德互认
2001年4月~8月在“国家质量监督检验检疫总局与德国联邦物理技术研究院(PTB)非自动衡器和称重传感器型式试验报告相互承认协议”项目中,质量称重实验室和测力实验室分别作为非自动衡器和称重传感器型式试验报告互认协议的指定实验室,参加并完成了中方硬件设备、英文技术资料(包括质量手册中的院长声明、溯源体系、设备明细、操作细则等)、OIML试验报告的准备工作。同年6月计量院接受了PTB三位专家对力学处质量称重实验室和测力实验室、工程电子部的环境实验室、无线电处的电磁兼容实验室,以及中北联合实验室的现场技术评审。8月计量院派两名专业技术人员参加总局的专家小组(六人)赴德国PTB完成实验室同行的现场评审和技术文件交换 ,从而为中德互认协议的最终签署奠定了技术基础。
2001年11月1日在北京人民大会堂举行的、德国总理施罗德参加的中德双方29个合作项目的签字仪式上,国家质检总局计量司宣湘司长和德国联邦物理技术研究院(PTB)的副院长Manfred Kochsiek正式签署了此项协议。中德非自动衡器和称重传感器型式试验报告互认协议的签署,有利于推动我国非自动衡器和称重传感器产品跻身欧洲市场并抢占市场份额。
型式试验报告的国际计量双边互认,适应了经济全球化的需要。同时,扩大了我国法制计量工作在国际上的影响,提高了我国计量技术机构在国际上的声誉,推动我国法制计量工作与国际接轨。
(3) 参加国际比对
MRA的第一部分是国家计量基标准之间的等效度,其技术基础是由CCs、BIPM、RMOs经过一定时间的关键比对所取得的一整套结果。由CCs或BIPM进行的关键比对称为“CIPM关键比对”,由RMOs进行的关键比对称为“RMO关键比对”。
由CIPM关键比对得出的参考值,被称为“关键比对参考值”。所谓“计量基标准等效度”,意指这些基标准和关键比对参考值的一致程度。每个国家计量基标准的等效度,可用两值来定量表示:与关键比对参考值的偏差;以及该偏差的不确定度(置信水准为95%)。两个国家计量基标准之间的等效度,则用它们与参考值偏差的差以及该差的不确定度来表示(置信水准为95%)。
关键比对的实施方案如图6所示。中间的大圈为CCs和BIPM主持或实施的比对,周围的小圈为各区域计量组织主持或实施的比对,此外,大小圈四周还有一些与参加国际或区域关键比对的计量院的直接的双边比对。
计量院从1999年签署互认协议以来,便积极参加由CIPM和BIPM组织的关键量的比对。到目前为止,参加完成了62项关键比对(不含标准物质),其它双边或多边比对2项。 其中有些比对结果非常好,达到了国际先进水平。如2004年底完成的100Ω的量子化霍尔电阻比对(CCEM-K10)中,Draft A结果显示,仅有中国计量院(NIM)、德国计量院(PTB)、美国计量院(NIST)的测量结果落在了平均线上,为提高我国在国际计量领域的地位提供了有力的证明。
(4) 参加区域比对
RMO关键比对的结果,是通过一些计量院既参加CIPM比对又参加RMO比对,而和CIPM关键比对所建立的参考值联系起来。比对数据的不确定度,是依据参加两种比对的计量院的数量以及这些计量院所报告的结果的质量来传播的。RMO关键比对的目的,是使CIPM关键比对建立起来的计量等效度,扩大到更多的NMIs,包括那些国际计量大会(CGPM)附属成员或经济体的NMIs。
作为亚太计量组织(APMP)的重要成员之一,积极参加区域之间的比对,支持亚太地区计量的发展也是计量院义不容辞的责任和义务。多年来,计量院在参加国际关键比对的基础上积极参加区域比对,截至2004年,共参加APMP关键比对10项,区域内的双边和多边比对9项。
(5)举办发展中国家计量技术培训班
从1990年至今,计量院已经承办了11届发展中国家计量技术培训班,为越南、马来西亚、蒙古、泰国、菲律宾等众多发展中国家培养了涉及长度、热工、力学、电磁等各个专业的计量人员近300人。通过举办“发展中国家计量技术培训班”,加深了他们对计量院的了解。培训期间分别与新加坡、马来西亚、土耳其等国家签订协议10余项,合作和研发项目10余项。此外还多次被邀请到国外举办培训班,学员共计100余人。
通过举办发展中国家计量技术培训班,为伊朗、越南、朝鲜、蒙古等国家计量院的有关计量基准,如电池、电阻、标准电容、功能表、硬度块、测力计、高温温度灯、功率计等提供了便利的溯源途径;同时量子部还携带仪器协助新加坡、文莱、马来西亚、韩国等国家测量当地的绝对重力加速度值;1994年到1996年期间计量院协助马来西亚国家计量院建立了高温基准、标准等装置,形成了初具规模的高温实验室。通过该培训班的交流,提高了计量院在发展中国家中的信誉和知名度,同时为促进发展中国家计量事业的向前发展做出了贡献。
2.3 强制检定
凡列入《中华人民共和国强制检定的工作计量器具目录》并直接用于贸易结算、安全防护、医疗卫生、环境监测方面的工作计量器具,以及涉及上述几个方面用于执法监督的工作计量器具必须实行强制检定,最常见的如煤气表、水表和电能表等。配合《计量法》的实施,计量院在电能表检定和 “医用三源”的检定方面实行从严把关和提高自身计量水平相结合,为保证国家实施计量监督管理,减少商贸等各种领域的纠纷,维护国家和消费者的利益做出了很大的贡献。
随着人们对健康日趋关心,先进的医疗设备发展迅速,愈来愈多的测量方法和计量器具被应用于医疗和保健,从而形成了“医疗计量”分支,它涉及温度、压力、质量、超声、电离辐射、生物力学、脑电流、血液成份、心电脑监护等有关参量的测量、分析及监控。在我国的强制计量器具中医用计量器具占
Ⅳ 福州计量校准哪家公司好
直接去福建省计量科学研究院校准最好了。
该院始建于1960年,隶属于福建省质量技术监督局,为依法设置的省级法定计量检定机构,是全省量值溯源中心和最高层次的计量科学研究机构. 承担了国家法定计量检测任务,同时开展计量技术研究,为促进产业创新、提升产品质量提供技术支撑。
(一)主要职能 建立社会公用计量标准、开展量值传递(溯源)、承担计量器具产品型式评价及质量监督,开展计量器具检定/校准/检测和型式评价以及计量相关的技术科学研究。
(二)人员编制 全院编制数151人,目前职工341人,其中博士17人、硕士97人、本科167人;教授级高工24人,高级工程师46人、国家计量专业委员会委员23人,享受国务院特殊津贴2人,列入百千万省级工程人选1人。
(三)机构设置 设有长度、热工、力学与声学、电学、化学、建设与交通、流量与容量、医学工程与电离辐射、智能测量等9个计量研究所和网络信息等5个专业科技研究中心及党政办等7个职能部门。
该院是国家质检总局首批三个“质检科技成果推广转化基地”之一,建有全国首个国家城市能源计量中心、国家蒸汽流量计产品质检中心、国家光伏产业计量测试中心、福建省能源计量重点实验室、福建省计量器具型式评价技术公共服务平台等一批具有国内先进水平的科技创新服务检测平台。
(四)资质与能力 近年来该院计量事业实现了跨越发展,综合实力已经跻身于全国省级院先进行列。现有实验室及办公用房建筑面积约60133平方米。该院已通过国家实验室认可复评审的校准能力606项,检测能力119项。法定计量授权检定项目472项,校准项目521,计量标(基)准总数289项,已取得电能表、非自动衡器、称重显示器等6个国家型式评价实验室资质,能够为我省重点产业发展及民生领域提供技术支撑保障。
(五)科技创新与成果应用 科技创新与成果应用 面对新一轮产业变革需求,该院坚持坚持“检测”与“科研”两翼齐飞,科技工作实现重大突破性进展,得到了省委省政府、国家质检总局及有关方面的高度肯定。
近5年来,5项成果达到国际领先水平,1项成果达到国际先进水平,45项成果达到国内领先水平,获省部级成果奖13项;获发明专利授权19项。其中“汽车衡新校验方法及装置(液压式)”获得2015年度中国计量测试学会科技进步一等奖,“锅炉煤耗/效率在线监测系统的研究与应用” “PH/离子计自动检定方法的研究”“能源计量数据在线监测公共平台关键技术的研究”等获得省科技进步二等奖, “日射法一级参考太阳能装置”等获得省科技进步三等奖,“在线烟气监测系统研究与应用”获得国家质检总局科技兴检三等奖。
(六)基础建设 该院围攻绕科技创新服务产业发展的工作主线,积极建设位于福州市闽侯铁岭工业区的科研基地,占地约82亩。一期工程已建有6栋工作大楼,实验室及科研办公面积32000平方米,其中恒温恒湿实验室约3000平方米,重点建设60MN力标准机、高精度衡器载荷测量仪、大型瞬态太阳模拟器等一批具有国际、国内先进水平的社会公用计量标准项目。正在规划设计的二期工程建筑面积6000㎡,计划建设测力、电学、环境医学、标准物质等计量检测实验楼。预计2019年完成并投入使用。
(七)对外交流 该院不断提升国际交流合作水平,拓展境外校准业务,创新闽台计量合作发展。2016年5月该院参与了欧洲计量研究计划(EMRP)项目,这是世界上第一个大型计量合作研究计划,总投资为4亿欧元,有22国共同参与。该院是全国首个参与该项目的省级计量院,大大提高我国在超大力值计量领域的技术水平。该院还与德国联邦物理技术研究院(PTB)、南非国家计量院签订科研框架合作协议,与与德国GTM传感器公司、HBM传感器生产企业签订合作协议,开展国际大力值计量校准服务。此外,该院还代表中国在该领域首次承担国际标准《振动与冲击传感器磁灵敏度测试方法》的研究和制定任务。
(八)成绩荣誉 该院被评为第十届省直文明单位和第十一届省级文明单位;2011-2012年连续两年被评为“全国质检系统民生计量工作先进单位”; 2013年获评“福建省五一劳动奖状”; 2015年被全国总工会评为“全国模范职工之家”荣誉称号 。
Ⅵ 如何检定电子秤
电子秤属于衡器中的一类产品,它是国家强制管理的产品.按照国家计量法的规定:社会公用计量标准器具,部门和企业、事业单位使用的最高计量标准器具,以及用于贸易结算、安全防护、医疗卫生、环境监测方面的列入强制检定目录的工作计量器具,实行强制检定。未按照规定申请检定或者检定不合格的,不得使用。使用电子衡器[电子秤]的个人和单位,必须到当地计量部门[国家授权的检定部门]对新购买的电子秤进行首次坚定,检定合格后才可以使用.并且在以后每年都要进行年检. 电子秤检定的重要性:经过计量检定,可以确定电子秤的计量准确性,避免因称量不准带来贸易纠纷和计量数据错误.还有一点是可以避免外地厂家的衡器产品,异地使用引起的地区差的影响.使用中的电子秤产品更需要计量坚定,因为电子秤属于电子测量仪器,其中关键元件[称重传感器]随着使用时间的延长,会出现零点信号变化和老化,称重时会产生准确性的变化.计量检定时会重新校准并且按照国家检定规程进行逐项检查,如果检定不合格就会禁止使用,这样就可以及时避免各种纠纷和和错误的出现,保障了企业和个人的利益.所以说电子秤的计量检定很重要。 一、引言 国家计量检定规程是为评定计量器具特性,作为确定计量器具法定地位的技术文件。JJF1002-1998《国家计量检定规程编写规则》3.1款规定了计量检定规程各项要求科学合理,并考虑操作的可行性及实施的经济性。根据这一原则,仔细对照 JJG539-97《数字指示秤》检定规程(以下简称规程)要求,以及大型衡器实际检定工作的现状,我们不难发现,该规程在实际检定工作中,存在着通用性差和与实际脱节,没有考虑到成本和效益的关系。因此,就规程操作的可行性问题,冒昧地提出本人的拙浅看法。 二、规程在检定工作中存在的问题 随着运输车辆载重量的不断增加,电子汽车衡的最大称量和台面尺寸也相应地发生较大的变化。以我们淮北矿业(集团)公司为例,1997年以前,煤炭销售衡器大部分为30t杠杆式机械衡,台面尺寸多为3m×12m。2000年以后,为适应运输车辆变化的要求,煤炭销售衡器逐步更新为 SCS-100电子汽车衡,最大称量为100t,台面尺寸为3.5m×21m。个别单位已提出100t称量尚不能满足计量要求,要求购置150t~200t称量的电子汽车衡。鉴于以上情况,1997年批准的《数字指示秤》检定规程,在检定工作的实际操作中,存在着以下问题,下面以一台100t电子汽车衡为例加以说明: 1、偏载测试达不到规程要求 一台100t电子汽车衡,台面尺寸为3.5m×21m,8个支承点。规程要求每个支承点加载测试砝码为max/N-1,约为14t。秤台面积为73.5m2,一支承点加载面积为承载器的1/N,约为9.2m2。每个1t砝码底面积约为0.7m2,如果按照规程要求不叠放、不超界,理论上最多能放13个。实际上由于1t砝码结构形状和吊车吊放不紧凑等原因,每个支承点仅能放置8~10个,达不到规程要求的14t。若采用20kg小砝码组合,按照不叠放、不超界原则,每个支承点仅能放置6t(20kg小砝码底面积为0.03m2),也同样达不到规程要求. 2、一些计量检定部门无检定手段和能力 (1)无法满足规程要求的四等砝码100t的条件 我们从规程要求的称量测试、重复性测试、鉴别力测试中可以看到,三种测试都需要测试最大称量。而目前检定部门的现状是:县级乃至市级检定部门,仅拥有20kg四等标准砝码,其总量仅为5t~10t左右。用这些砝码去检定100t衡器,距离规程要求的100t砝码显然是远远不够的。近年来,有些省级市的检定部门购置检衡车,根椐目前掌握的信息表明,最大检衡车仅为30t标准砝码,也远远不能满足规程要求. (2)运输能力无法达到 100t标准砝码需要10辆10t载重车运输,检定部门即使有100t标准砝码,也无如此庞大的运输能力。另外砝码运输安全性,也是一个不能忽视的问题,吨级砝码运输中,在车厢内应设置专用定位架,否则在运输过程中很容易发生位移,造成车辆偏载翻车. (3)人力资源无法实现偏载测试:根据规程要求,每个支承点偏载测试重量为14.28t,按14t计算,8个支承点偏载所需加卸砝码约224t。 称量测试:规程要求5个测试点,在分别为最小称量、500e、2000e、50%最大称量、最大称量各测试点加卸砝码(e为检定分度值),按检定分度值e=20kg计算,合计所需加卸砝码约400t. 偏载与称量测试过程所需加卸砝码总量约为624t,这个数字是什么概念?如此巨大的工作量,任何—个检定部门均无法去完成。 这里所计算的工作量仅为较顺利地完成一台汽车衡检定工作量。实际检定过程中,这种情况较少,往往由于基础、限位、接地、屏蔽、系统联接等等原因,检定过程需要调整、反复。其所需人力资源情况就可想而知了。 以上所谈的问题是规程中首次检定的要求,计量部门大量的检定工作是随后检定。规程中规定的随后检定,只是称量测试中最大称量可减少至2/3最大称量,以上问题依然存在。 与以上问题相关的还有一个标准砝码替代问题。规程规定重复性误差不大于0.3e、0.2e,标准砝码可以减少至35%、20%最大称量。而重复性误差是将约为50%最大称量砝码,在承载器上施加3次来确定的,这里的问题很明显: 其一:为了确定重复性误差,在承载器上需要装卸砝码300t,工作量决非一般。 其二:重复性误差0.3e,需要替代两次。重复性误差0.2e,需要替代四次,检定现场要组织这么多替代物也不符合实际。 其三:采取替代法检定大型衡器,人力、物力消耗较直接采用标准砝码更大,操作的可行性更差。 3.检定成本与效益的关系上面已经谈到人力资源成本巨大,除此之外,按规程要求,尚存在标准器的购置费用、检定费用、运输费用、车辆附加税、过路过桥费、燃油费等等。这些费用无需认真计算,肯定是一个较大数字。但按国家检定收费标准,皖价费[2003]190号,测量范围80t-100t的非自动衡器,检定收费为2500元/台。如果检定部门都按规程要求去检定,无疑成本与效益的关系会形成较大的不对称,这也是一个需要面对的问题。 三、大型衡器准确度现状及对策 错误,按照规程要求检定衡器,才能保证衡器的准确度。但是,在实践中,在操作的可行性方面,规程只能是空中楼阁、可望不可及,原因前面已经阐述。现实检定工作中,有多少检定单位能够完全按规程检定,本人不能猜想,但可以妄言,绝大部分检定单位不能按规程检定衡器,而且相差甚远,这已是同行业内人士心照不宣之事。 接下来就引发出一个问题,大型衡器准确度现状是什么?曾经发生这样一个例子:某单位用油罐车到A地购油,在50t电子汽车衡上计量付款,回单位后在本单位50t电子汽车衡上复核,结果发现负误差是衡器允许误差的10倍。而2台50t衡器均有两个地区计量检定部门的检定合格证,并都说自己的衡器经检定是准确的。现在的问题是哪台50t衡器计量是不准确的呢?答案十分清楚。只要按规程要求,对两台衡器进行仲裁检定,孰是孰非,自然明了。但企业总不能为千元利益去打一场并非简单的官司吧。此例似乎已经给出了目前大型衡器准确度现状的答案,但大型衡器准确度现状是什么,这个问题,又似乎是一个无解的难题。那么,如何来解决这个难题呢?实际上,同行业人士早就认识到规程操作的可行性问题,也发表了一些可贵的见解,试图来解决这一难题。如: 1、用模拟的方法进行标定。其方法为:用模拟器接入已标定的电子秤中,用它替代砝码加载后的传感器的输出。调整模拟器,使称重显示器分别显示零点和满量程,记录下二信号的刻度位置,当更换称重显示器或传感器后,便可用它替代砝码标定。此方法的条件是电子秤必须按规程检定,模拟器必须具有高精度、高分辨力,要求细调量程每圈0.02mV/V。 2、用叠加法检定大型衡器。这是较新颖的大型衡器检定思路,其方法摆脱了多年来传统的用标准砝码检定衡器的方法,如果用叠加法检定大型衡器可行,那么检衡车上拉的就不是标准砝码,而是液压系统和检测结构了。此方法可解决本文提出的规程在操作上可行性所存在的问题。但它涉及规程立法问题。 综上所述,《数字指示秤》检定规程可行性问题,关系到国家检定规程的权威性,关系到量值溯源的准确性,关系到贸易结算纠纷仲裁等问题。本人就此问题谈了一点不成熟的想法,意在抛砖引玉,使规程在实际检定工作中更易于操作可行。
Ⅶ 电子天平的原理
原理:采用了电磁力补偿平衡原理,实质也是一种杠杆平衡,只是在杠杆的一端采用了电磁力。
(1)当天平处于空称零位时,则产生的力矩M=m1×g×Ll、M右=F×L2,由于零位时天平达到平
衡,则M左= M右。即m1×g× Ll= F×L2。
(2)当称盘上加载称物m2时,杠杆偏离零位,此时零位指示器有偏差信号产生,经过放大器和调节器等一系列转换后,使线圈的电流I增大,电磁力矩右也将一起增大,杠杆回到原来平衡位置,即天平的零位。
最终则使M左= M右,即m2×g×Ll= F×L2,最后把电信号处理成为数字信号,数显在显示屏上。从而得出以下重要结论:在磁场中通过线圈的电流强度I与被称物体的质量m成正比。
(7)非自动衡器校准装置扩展阅读:
电子天平及其分类按电子天平的精度可分为以下几类:
1、超微量电子天平:超微量天平的最大称量是2至5g,其标尺分度值小于(最大)称量的10-6,如Mettler的UMT2型电子天平等属于超微量电子天平。
2、微量天平:微量天平的称量一般在3至50g,其分度值小于(最大)称量的10-5,如Mettler的AT21型电子天平以及Sartoruis的S4型电子天平。
3、半微量天平:半微量天平的称量一般在20至100g,其分度值小于(最大)称量的10-5,如Mettler的AE50型电子天平和Sartoruis的M25D型电子天平等均属于此类。
4、常量电子天平:此种天平的最大称量一般在100至200g,其分度值小于(最大)称量的10-5,如Mettler的AE200型电子天平和Sartoruis的A120S、A200S型电子天平均属于常量电子天平。
5、分析天平:其实电子分析天平,是常量天平、半微量天平、微量天平和超微量天平的总称。
6、 精密电子天平:这类电子天平是准确度级别为Ⅱ级的电子天平的统称。
注意事项:
因为天平砝码一般精度都比较高,对环境及操作要求也比较多,日常使用的时候应该注意哪些问题,该如何延长电子分析天平的使用寿命。
1 天平砝码不要放置在空调器下的边台上。搬动过的电子分析天平必须重新校正好水平,并对天平的计量性能作全面检查无误后才可使用。
2 称取吸湿性、挥发性或腐蚀性物品时,应用称量瓶盖紧后称量,且尽量快速,注意不要将被称物(特别腐蚀性物品)洒落在称盘或底板上;称量完毕,被称物及时带离天平,并搞好称量室的卫生。
3 同一个实验应使用同一台天平进行称量,以免因称量而产生误差。
水平调节
1、当水平泡处于水平圈的上方时,表明电子天平的上方位置偏高,我们要通过旋转电子天平的上部的两个转角,使泡泡下移。
2、当水平泡处于水平圈的下方时,表明电子天平的下方位置偏高,我们要通过旋转电子天平的下部的两个转角,使泡泡上移。
3、当水平泡处于水平圈的左侧时,表明电子天平的左侧位置偏高,我们要通过旋转电子天平的左侧的两个转角,使泡泡右移。
4、当水平泡处于水平圈的右侧时,表明电子天平的右侧位置偏高,我们要通过旋转电子天平的右侧的两个转角,使泡泡左移。
提示:有时候水平泡出于斜角的位置,这就需要我们几个转角来回配合使用。
Ⅷ 汽车衡分度值规定
对汽车衡分度值问题的认识
【摘 要】 针对国内目前对汽车衡检定分度值和实际分度值争议比较多的情况,本文从设计角度谈一点个人的看法。任何一台衡器的初始固有误差,实际上是在设计过程中就已经基本确定了的,不是仅仅靠改变分度数就能提高其准确度的等级。后天(校准时)通过认真地调试是可以提高一定的计量性能,但这是有限的。
【关键词】 汽车衡;检定分度值;实际分度值
一、国内现状
目前不论是汽车衡使用单位,还是制造单位都喜欢将汽车衡分度数说的比较大,像最大秤量为120t汽车衡的分度值定为20kg,分度数即为6000;最大秤量150t汽车衡的分度值定为20kg,分度数即为7500。那么,为什么会出现这种情况呢?
1、衡器使用单位
对于使用衡器的单位来讲,有两个指导思想:一是认为一台衡器的分度值越小越好,特别是称量单价比较高的物品;二是想衡器的分度值能够尽量小一些,就可以使用大秤量的衡器称量比较轻的物品,可以节省,不需要再购买小秤量的衡器。
2、衡器制造销售企业
总想将衡器分度数的多少作为一个卖点,好像谁的产品分度数越多,其性能就越好一样。殊不知这样给自己的产品带来稳定性差的隐患,只要使用现场有一点风吹草动,称重仪表上的示值就上下变化。
我个人认为之所以会出现以上情况,有两种原因:一是对概念不清楚,一是处于一种私利。
对于概念问题,就必须先来明确何为“检定分度值”和“实际分度值”?
检定分度值e:用于衡器分级和检定的,以质量单位表示的值。
检定分度数n:最大秤量与检定分度值之比,即n = Max/e。
实际分度值d:以质量单位表示的下述数值:
——对于模拟指示,系指相邻两个标尺标记所对应的值之差;
——对于数字指示,系指相邻两个示值之差。
对于私利问题,是不了解产品的实质,只是看到表面的现象,不能正确掌握产品的性能特点,其目的是想钻管理的漏洞。作为使用单位来说,往往采购者只是考虑准确度的高低,而使用者则考虑产品的长期稳定性。作为销售人员,总是与竞争对手比拼衡器的分度数多少,而不是产品的可靠性、稳定性。
二、标准与规程情况
在目前我们能够看到的,不论是国际建议,还是产品标准和检定规程,都对汽车衡产品进行了
严格而全面的规定。
1、有关规定
(1)衡器的检定分度值与实际分度值相等,即e=d。
衡器的类型 检定分度值
有分度衡器,无辅助指示装置 e=d
有分度衡器,有辅助指示装置 e 由制造商根据3.2 和3.4.2 的要求选择。
但是,又规定:
只有特种准确度级(Ⅰ)和高准确度级(Ⅱ)衡器可以配备辅助指示装置,该装置可以是:
——配游码的装置;
——插值读数装置;
——补充显示装置;
——有微分标尺分度的指示装置。
换句话说,就是“中准确度级(III)”衡器只能执行e=d 的规定。
(2)e≠d 的衡器
从以上规定可以看出,只有特种准确度级(Ⅰ)和高准确度级(Ⅱ)的衡器,其检定分度值e由下
列表达式确定:
d≤e≤10d
e=10k kg,k是正整数、负整数或零。
(3)其他影响量和限制
安装在室外的衡器,且没有采取适当保护措施防止大气环境影响时,如果衡器检定分度数n 相
对较大,通常可能无法满足其计量要求和技术要求。
(4)关于nLC≥n的规定
对于每只称重传感器,称重传感器的最大分度数nLC应不小于衡器的检定分度数n:
nLC ≥ n
这个规定实质上就限制了衡器的分度数。也就是说,汽车衡如果采用了C3 级(3000v)的称重
传感器,其检定分度数也就最多只能为3000e。
2、对结构的要求
(1)应用的适用性
衡器的结构设计应符合预期的使用目的。在刚刚发布的GB/T7723-2008《固定式电子衡器》中,
针对此条规定,对目前国内正常使用的,最大秤量为30t 至150t 大型衡器的承载器,提出了相对
变形量的要求。即,新安装后的首次检测时,承载器最大相对变形不大于1/800。
(2)使用的适用性
衡器的结构应合理、坚固、耐用,以保证其使用期内的计量性能。并且,对于安装在基础上的
衡器,其基础应达到如下要求:
1)必须满足该衡器最大载荷时承载力要求;
2)基础两端应有一条长度等于承载器一半(但不要求超过12m)、宽度等于承载器的,并与承载器保持在同一水平面的平直通道。靠近承载器两端至少有3m以上的,应用混凝土或其它坚固材料制造,可承受与衡器承载器相等的所有载荷;地上衡通道剩余部分的斜坡应确保便于车辆驶入。
(3)检定的适用性
衡器的结构应符合测试的要求,其承载器应能使砝码方便且绝对安全地放置其上,否则应附加支撑装置。
3、安全性
衡器不应有容易做欺骗性使用的特征。
衡器结构应满足在控制元件意外失效或偶然失调时,应有显著警示,除非不可能产生易于对确切功能的干扰。
衡器可以设置自动或半自动量程调整装置。该装置应安装在衡器内部与其组成一体。被保护后,外部不可能对它产生影响。
三、规定e=d的原因
1、初始固有误差
这是一个与衡器的基本构成部分有着密切关联的名词。
“初始固有误差”是指:衡器在性能测试和量程稳定性测试前所确定的误差。
从“初始固有误差”的定义可以明确看出:任何一台衡器自其设计制造安装结束之后,这台衡器的命运就已经确定的了。为什么要这样讲呢?因为,一台衡器是由承载器、称重传感器、称重仪表及基础等四大部分组成的。在设计过程中,承载器的刚度、强度都是设计所决定的,称重传感器的技术指标也是设计时选择的,称重仪表的参数也是设计时选择的,而基础的质量是在施工制造中确定的。在这些原始数据确定的前提下,自然这台衡器固有误差也就确定了。
如果一台最大秤量为150t的汽车衡,检定分度值为50kg,当实际分度值为20kg时,实际使用时的称量值不可能反映真实的载荷重量,这是因为按照50kg的分度值检定时,其反映的是50kg初始固有误差的情况。如果这时将分度值调至20kg,在称量时显示的示值,不能代表该称量载荷的实际重量值,只有按照20kg分度值进行设计、制造和安装,才能反映实际的重量值。从下图就可以清楚看出一台相同秤量的汽车衡,其初始固有误差的曲线在不同误差带中的情况。
2、环境影响问题
固有误差:衡器在标准条件下确定的误差。
从固有误差的定义可以看出:在现场一定的环境条件、电源电压、电磁场干扰情况相对稳定时,经过精心调试是可以改变一定的计量性能,但是不能根本改变其计量指标。所以R76-1国际建议才推荐:一般衡器的n=3000,只有采用非常特别的方法测试时,n才可以大于3000。此外,公路车辆衡和轨道衡,其检定分度值不应小于10kg。
我曾经于90年代初设计过一台高准确度的衡器,作为标定质量流量计的校准装置,其检定分度数达到7500。其前提是:在室内温度变化只有10℃的环境下使用,且没有流动性气流影响。为此,设计时从众多0.02%级的称重传感器中挑选重复性好的,同时挑噪声指标最小的称重指示器,承载器的设计刚度优于1/2000,要求安装基础要整体性的同时,又要足够的承载力。最后验收检定时,各个称量点的最大误差仅有允许误差的一半。
四、结论
任何一台衡器性能主要是在设计的先天确定了的,不论是最大秤量,还是称量准确度等级,后天在一定条件下只是可以改变局部的部分性能。如果想要获得一台高准确度等级的衡器产品,只有从设计开始,直至到制造、安装、调试的每一个环节,都必须按照高准确度等级的标准去努力,而不是单单靠现场调试时改变分度值大小的工作。
同时,必须注意到高准确度等级的衡器,必须有相应准确度等级的标准砝码进行量值传递。也就是讲,没有M1级的标准砝码进行检定,是不可能确定1/6000准确度等级衡器的。
参考文献
1.R76-1《非自动衡器》(2006E)国际建议。
2.GB/T7723-2008《固定式电子衡器》国家标准。
3.陈日兴“关于室外使用的衡器检定分度数n不能大于3000的论述”,《称重科技》,2006。
Ⅸ 上海鹰牌衡器有限公司的应用知识
衡器小知识 电子秤选购指南:(1)根据所称物品:经济价值高的物品要选精确度高的秤(称黄金要选0.1mg的天平,称鸡蛋就可以选1/3000精度的计价秤就可以了)。(2)根据所用称量:如经常称几十公斤的物品,可以选择100公斤的台秤(经常称的重量值应在最大称量的中值最好)。选择的太小会损传感器,造成不必要的经济损失;选择的太大会使称重不准确,影响计量的准确性。(3)根据使用功能:如需要计算物品的数量,就以选计数秤;定量包装的物品可以选计重秤。
电子秤使用常识:(1)电子秤是由称重传感器感知外界的重力,再把转换的电信号传送给电子电路的。在称重时不要过力,特别是小称量的秤,所称的物品要轻拿轻放,以免损坏传感器。(2)要定时给蓄电池充电,使电子秤有稳定的工作电压,使之提高称重的准确性。(3)电子秤最好在干燥通风的环境中使用(防水秤除外),因为传感器和电子元件长期工作在潮湿的环境中会缩短使用寿命,给您带来经济损失。(4)电子秤内部使用的是高运算A/D和单片机电路,为使您称重准确,应远离强电磁干扰源,如(电焊机,电钻,磁铁,大型电动机)等。 鹰牌地磅在使用中令顾客棘手的三方面
上海鹰牌地磅有限公司将介绍地磅在使用中令顾客棘手的三方面,希望有所帮助。
1.大型鹰牌地磅在使用时出现失准情况不易及时发现和确认
2.鹰牌地磅发生故障,进行检测分析比较麻烦,要拆卸设备或连线等,故要及时联络公司修理人员,进行确认。
3.对地磅进行检定校准比较费事、费时、费力和费钱.如称量100 t的地磅要进行检定校准,就要搬运100 t的大砝码,还要吊车、铲车等配合.由于此方法工作量大,一般只能预约、定期进行。 地磅质量鉴定操控关键的应用说明
上海鹰牌地磅有限公司将介绍地磅质量鉴定操控关键的应用说明,希望有所帮助。
围绕电子地磅产品安全、有效、品质可控等关键环节,推动出一批饮片、成药的生产过程品质操控关键工艺应用,为形成鹰牌地磅产品生产过程操控工艺标准和规范体系奠定基础,为整体提升电子地磅工艺水平和工艺含量提供示范,以保障饮片、成药的品质达到稳定可控,保障用药的安全、有效。电子地磅由市电电网供电时,从配电室到安装地有根长一段空间距离,那么秤台到秤房也有一段较氏距离的信号电线,不难设想,如果雷击通过电磁感应途径,在引线上引人高电位,鹰牌地磅就有可能造成称重仪表的损坏,故称重传感器的信号线和激励称重传感器的电流电源线采用将屏蔽层接地的电线连接,以消除电磁感应雷击破坏或引起燃爆的可能。电子地磅的灵敏度通常是指分度灵敏度,其在数值上应正好等于该电子地磅相应载荷的检定分度值。电子地磅对具有数字指示和自动或半自动校准装置的电子地磅,可免检该电子地磅的灵敏度。当电子地磅检定分度值e≥lmg的情况下,可以测定其鉴别力,方法如下:在空载或加载时处于平衡状态的电子地磅上,把相当于数字标尺分度值1.4倍的一个外加载荷(1.4d),轻缓地加放在鹰牌地磅称盘上时,原来的电子地磅示值必须有所变化。 鹰牌150吨电子地磅受力均匀抗折扭能力强
鹰牌150吨地磅采有U型截面梁或型钢作为秤体的力学结构,秤体刚性强,受力均匀,抗折扭能力强。焊接采用二氧化碳保焊连续焊缝,型腔全密封,耐腐蚀。秤台经严格的除锈及去氧化皮处理,喷涂两遍优质品牌的环氧富锌防锈底漆,面漆为丙烯酸聚氨脂桔纹般用漆,耐磨耐压耐老化,防锈性能大大提高。安装传感器部位及多台秤体搭接部位设计合理巧妙。秤台设计模块化、标准化、系列化、可以自由组合多种规格。 地磅整体安装使用环境要求低,适应性强,计量性能优越,准确度高长期稳定性好。安装维护方便。鹰牌150吨地磅标准配置:鹰牌地磅主要由承重传力机构(秤体)、高精度称重传感器、不锈钢防水接线盒、称重显示仪表四大主件组成(见图),由此即可完成最基本的称重功能,也可根据不同用户的要求,可选配打印机、大屏幕显示器、电脑管理系统,以完成更高层次的数据管理及处理的要求。承重和传力机构(秤体)——将物体的重量传递给称重传感器的机械平台。常见有全钢结构及钢混结构二种型式。高精度称重传感器——它的优劣直接关系到整台地磅的品质,是地磅的核心部件,起着将重量转换成相应的可测电信号的作用。信号集成接线盒---无论是4只传感器还是6只、8只以及更多传感,其信号都需经过接线盒集中,然后通过信号电缆传输到称重显示仪表。接线盒还起到调节电子地磅各角位偏差的作用。称重显示仪表——用于测量传感器传输的电信号,通过专用软件处理显示重量读数,并可将资料进一步传递至打印机、大屏幕显示器、计算机管理系统。鹰牌150吨地磅安装: 首先的做基础:地上衡和地下衡 电子地磅的安装首先应该有比较适宜、宽敞的场地,并且应保证基础有较大的承载力。 电子地磅激励反馈技术的运用
上海鹰牌衡器有限公司将介绍电子地磅激励反馈技术的运用,希望有所帮助。
上海鹰牌衡器有限公司据悉,非自动衡器标准规定只有采用有远距离长线补偿(地磅对称重传感器激励电压)六线制技术的称重仪表,才允许与加长了电缆线的传感器或者多个称重传感器通过单独的称重传感器接线盒想连接。但是,称重传感器或或称重传感器接线盒与称重仪表之间的(附加)电缆长度不得超过称重仪表规定的最大附加电缆长度。电子地磅不需要延长传感器的电缆时,不需要采用激励反馈技术,只用激励电压和信号电压两对4根信号线即可,这就是四线制仪表。若六线制仪表作为四线制仪表使用时,必须将激励电压和激励电压反馈端对应短接,否则仪表不能正常工作。需要注意的是,由于传感器生产时其额定输出的稳定特性是包括电缆在内一起进行补偿的,因此称重传感器的电缆不要随意截短,以免造成称重传感器的温度稳定性下降。
关键字:电子地磅 上海鹰牌衡器
Ⅹ 长度计量器具怎么分类
1、长度计量常见计量器具有哪些
千分尺、量块、卡尺类、指示表类、测厚规、立式接触式干涉仪、光学投影类仪器(投影仪)、机械式比较仪、立式测长仪、感应同步器、圆锥量规、直角尺、经纬仪、水准仪、分度头、圆度仪、比较样块、粗糙度、轮廓度、测量仪、表面粗糙度样板、平面平晶、铸铁平板、钢平尺和岩石平尺、光学仪器、标准玻璃网格板、塞尺、全站仪(测距)、测距仪、激光干涉仪、田径场塑胶跑道、游泳馆体育场馆、螺纹量规、螺纹校对量规、石油螺纹单项(参数)检查仪、坐标测量机、镀层膜厚标准块、显微镜、电子水平仪、显微镜、光学仪器用玻璃分划尺、位移传感器、测微仪、直角尺检查仪、水平仪、GPS接收机、激光跟踪仪、高精度线纹尺、限界仪/隧道断面仪
2、热工计量常见计量器具有哪些
A、温度:工业铂铜热电阻、热电偶、辐射温度计、热像仪、红外温度筛检仪、红外耳温计、红外体温计、热能表
B、压力:压力表、液体压力计、数字压力计、血压计、补偿微压计、倾斜式微压计、活塞式压力计、压力变送器、电离真空计、电阻真空计、热偶真空计
C、流量:水表、热能表、流量计、水流量检定装置、气体流量检定装置、临界流音速喷嘴
3、衡器计量常见计量器具有哪些
天平,砝码,指示称,非自动衡器,非连续累计自动衡器、连续累计自动衡器、电子皮带秤自动分检衡器、重力式装料衡器、动态公路车辆自动衡、称重显示控制器、非自动天平
4、硬度测力计量常见计量器具有哪些
硬度计;金刚石压头;测力仪;万能试验机;扭矩扳子/扭矩改锥;扭矩扳子检定仪;标准扭矩计;转矩转速传感器;转矩转速测量仪;预应力用液压千斤顶;振动测量仪和传感器;离心机;冲击测量仪和传感器;测速仪
5、容量计量常见计量器具有哪
实验室玻璃仪器-量杯、量筒、滴定管、单标线容量瓶、分度吸量管、单标线吸量管;注射器;移液器;计量罐;加油机;标准金属量器;一次性使用无菌注射器;标准金属量器
6、电器计量常见计量器具有哪些
电能表、电阻表、耐电压测试仪、感应分压器、交流电阻器、交流电阻箱、标准电容箱、LCR阻抗测量仪(表) 、变压比电桥、电阻应变仪、标准电容器、标准电感器、标准电感箱、交流电桥、(L、C、R及分选仪等)、数字多用表、数字多用表校准仪、电能表检定装置、电能质量分析仪、谐波功率标准、电导率标块、涡流电导率仪、高电压冲击试验用数字记录仪、冲击电压源、铷原子频率标准、示波器、示波器校准仪脉冲信号发生器、高频开关电源信息技术设备用不间断电源、卫星数字电视接收机、音频,视频和类似电子设备、信息技术处理设备、信息技术设备、电视和声音信号电缆分配系统
7、化学计量常见计量器具有哪些
粘度计、浊度计、采样器、水分仪、离子计、可燃气体检测报警器、紫外可见分光光度计、半自动生化分析仪、高效液相色谱仪、气相色谱仪、荧光分光光度、荧光光度计
8、声学计量常见计量器具有哪些
声级计、声校准器、纯音听力计、带通滤波器、超声功率计、标准超声、功率源、消声室、半消声室、混响室、噪声统计、分析仪、标准、传声器、仿真耳、仿真乳突 9、光学计量常见计量器具有哪些
光照度计、角膜曲率计、照相物镜及其它光学镜头、试镜架、角膜接触镜、验光镜片箱、眼镜镜片、配装眼镜、太阳镜、光泽度计、验光机、焦度计、视力表、综合验光仪、眼镜片中心透射比测量装置、光电探测仪、激光器、滤光片、折射仪
10、电离辐射计量常见计量器具有哪些
电磁屏蔽室、开阔实验场、半电波暗室、全暗室及天线暗室、干扰场强仪和近区场强仪频率为9KHz~40GHz的电磁场传感器和探头、机动车电子电器组件的电磁辐射抗扰性、电磁辐射环境影响评价、环境电磁波、固定式场所监测用剂量、剂量率、剂量报警器、辐射探测器、治疗水平电离室剂量计、诊断水平剂量计、X射线防护剂量、剂量率仪、10kV60kV X射线治疗机、60kV250kV X射线治疗机、60Co、射线远距离治疗机、医用电子加速器、后装γ近距离治疗源、医用诊断、X射线机、医用X射线计算机断层摄影装置、治疗用X、辐射装置,X、射线探伤机,X、射线探伤机,X、射线防护剂量、剂量率仪、剂量报警器,X、射线环境空气吸收剂量率仪,固体射线源,非介入式kV表,非介入式kV表,辐射防护器具材料,各类辐照场,利用放射源的电测量仪表,闪烁探测器,表面污染仪,放射性活度计(4电离室、医用活度测量装置),标准放射源(含固体和液体样品),γ放射免疫计数器,液体闪烁计数系统,低本底放射性测量仪,X、γ能谱仪,中子剂量测量仪