导航:首页 > 装置知识 > eh油再生装置的组成及作用

eh油再生装置的组成及作用

发布时间:2022-06-18 10:37:17

『壹』 润滑油泵在滤油机里的有什么作用

重庆万美滤油机研究所为您友情解答!
润滑油泵主要用于滤油机设备中的润滑系统中输送润滑油,适用于输送粘度在10。E(75C.S.t)以下,温度在300℃以下的具有润滑性的油料。
润滑油泵的相关技术知识:
润滑油泵主要由泵体、齿轮、轴、轴承、前盖后盖、密封部件、联轴器等部件组成。
轴端密封有二种形式:填料密封、机械密封。
工作原理 啮合的齿轮在泵体内旋转时,轮齿不断进入和退出跟啮合。在吸入室,轮齿逐渐退出啮合状态,这样吸入室的容积逐渐增大,压力降低,液体在液面压力的作用下进入吸入室,随齿轮齿间进入排出室。在排出室,轮齿又逐渐进入啮合状态,齿轮的齿间逐渐被一齿轮的轮齿占据,排出室的容积减少,排出室内液体压力升高,于是液体从泵的排出口被排出泵外,齿轮边续旋转,上述过程不断进行,形成连续的输油过程。
故障与排除
不排油或排油少
原因:
1.吸入高度太高超过额定值
2.吸入管道漏气
3..旋转方向不对
4.吸入管道堵塞或阀门关闭
5.液体温度低而使粘度增大
6.齿轮与泵体麿损严重
方法:
1.提高吸油面或减少管阻力
2.检查各接合处是否漏气或漏液并加石棉等密封村料加以密封
3.按泵的指示方向纠正转向
4.清除堵塞物,开启阀门
5.预热液体,如不可能则降低排出压力减少排油量
6.拆卸检查有关另件并更换之
密封漏油
原因:
1.轴封处未调整好
2.密封圈磨损,间隙增大
3.机械密封静环和动环的磨擦面损坏或有毛刺划痕等缺陷
4.弹簧松弛
方法:
1.重新调整
2.造量拧紧螺母,或更换密封圈
3.更换动静环或重新研磨
4.更换弹簧 噪音或振动大
原因:
1.吸入网或滤网堵塞
2.吸管伸入油池较浅
3.管道进入空气
4.排出管道阻力太大
5.齿轮、轴承或侧板磨损严重
6.吸入液体的粘度太大
方法:
1.清除滤网上的污物
2.吸入管应伸入油池0.5米左右
3.检查各连接之处使之密封
4.对管道和阀门进行检查,并排出堵塞之物,或调整管路减少弯头、阀门等
5.更换新齿轮、轴承或侧板 6.按第一段第六条处理

『贰』 谁有汽轮机EH油系统工作原理详细解答

汽轮机EH油系统一般是由油泵、冷油器、滤油器、管道组成(大型机组还有再生装置、加热器、高压蓄能器等组成) 抗燃油泵工作给汽机调速系统供油、通过

『叁』 eh油系统管道三通为什么是方的

功能需要。
1、EH油管三通带压堵漏装置通过密封层的作用能够将机体和堵漏外壳之间的空隙密封,通过注胶孔向各安装腔注入密封胶,密封胶挤压使得半圆锥密封体紧紧抱住EH油管从而实现对EH油管道与机体结合处的密封。
2、有效对本装置各处的缝隙进行密封,无需对本装置进行捻打,有效保护EH油管,保障机组的安全运行。
3、为了更好地提高性能因此选用方形。

『肆』 汽轮机控制系统

0 概述
随着国民经济宏观调控政策的实施和电力体制改革步伐的加快以及电网峰谷差的日趋增大,各发电厂机组的变负荷调峰运行更加频繁,要求机组具有高度的自动化水平,并实现AGC方式运行。半山电厂4号机系上海汽轮机厂生产的N125-135/535/535型超高压、中间再热、凝汽式汽轮机,于1984年投产发电。由于该型机组设计年代早,受当时设计技术和工艺制造水平的限制,机组的经济性、可靠性及其调峰性能较差,尤其是调节控制系统采用纯液压调节系统,存在着调节性能差、控制精度低、响应速度慢、可靠性差、经济效益低、自动化水平低等诸多缺陷。因此,应用国内外大机组普遍采用的比较成熟先进的DEH电液调节控制系统对原汽轮机液压调节系统进行了技术改造,提高其自动化水平,以满足现代化电网的要求。
4号机应用上海新华控制公司生产的DEH-ⅢA型汽轮机电液调节控制系统,本文胖囟愿脑斓募际跆氐恪⒛谌荨⒓捌湓诵星榭鼋�胁�龊头治觥?BR>1 DEH-ⅢA技术规范及控制功能
DEH-ⅢA控制系统,是主机不可分割的组成部分,它由电气和液压两部分组成,它们通过电液伺服阀连接。
1.1 DEH-ⅢA技术规范
转速控制范围:30~3400 r/min,精度±1 r/min;
负荷控制范围:0%~115%,精度0.5%;
转速不等率:3%~6%可调;升速率控制精度:±1r/min;系统迟缓率:<0.06%;
最高飞升转速:当汽轮机从额定工况甩负荷时转速的最高飞升小于7%额定转速;
快速关闭时间:油动机全行程快速关闭时间约0.2s。
1.2 DEH-ⅢA基本控制功能
DEH-ⅢA的基本自动控制功能是汽轮机的转速控制和负荷控制,主要功能有:汽机复位(挂闸);手动/自动升速/ATC自启动;可按经验曲线的程序启动;摩擦检查;在DEH控制下进行103%、110%超速保护试验、机械超速保护试验;同期;机组并网后DEH将自动带初负荷以防止逆功率运行且有负荷限制功能;DEH可按运行人员给定的目标值及负荷变动率自动调节机组的电负荷;主汽压控制及限制;可根据需要决定机组是否参与一次调频;能够与CCS系统配合实现机炉协调;接收AGC控制指令;故障诊断报警;OPC超速保护(103%nH关高、中压调门;110%nH关所有阀门停机);可以实现与DCS通信提供DCS所需信息;停机状态下可进行软件仿真试验(在工程师站进行);可以在工程师站进行参数修改、组态;实现阀门管理和在线试验;能进行在线切换;实现节流调节和喷嘴调节;实现运行过程中的监视等。
2 改造的主要技术措施
本次汽轮机DEH控制系统改造中增加一套独立的高压抗燃油供油装置,保留原液压系统的主汽门操纵座和危急遮断系统,低压安全油与高压抗燃油用隔膜阀联系。每一个调节阀操纵机构配备一只高压油动机与伺服阀,用高压抗燃油驱动,高压调门油动机4个,中调门油动机2个,共用6只单侧进油油动机。
低压系统改造中保留主汽门执行机构及安全保安油系统,仅将原来上汽厂调节阀的低压油动机换成高压抗燃油油动机,并可拆除液压调节油管路。调门快关由OPC电磁阀进行,OPC安全油通过隔膜阀与低压安全油相连,保证安全停机。
2.1 调节系统改造
调节系统改造中将原来液压调节部分改用高压抗燃油及计算机控制器。原来的旋转阻尼、放大器、同步器及高、中压油动机均不用。
(1)增加DEH-ⅢA控制器,DEH-ⅢA中实现转速、功率等的多种自动控制功能,并提供Pen-tiumⅡ操作员站和工程师站,对系统进行显示、操作、组态和维护。
(2)高压调节阀共4只,中压调节汽门2只分别配备高压单侧油动机,由MOOG阀直接控制调节阀的开度,以调节进汽量。
(3)高压调节汽阀油动机直接安装在高压调门的顶部,由油动机直接带动阀门,原传动机构予以拆除。
(4)中压调门单侧油动机仍安装在原中压油动机的位置,通过杠杆带动阀门开启或关闭,在阀门蒸汽室盖上端增加关闭阀门的弹簧箱。
(5)高压油动机和中压油动机共6只,每只油动机中主要部件包括:截止阀、单向阀、卸荷阀、伺服阀、滤网等。油动机关闭时有缓冲器,关闭时间常数<0.15 s。
2.2 保安系统改造
原透平油保安系统全部保留,包括安全油控制的高压及中压主汽门操纵座,危急遮断装置,两只机械飞环式危急遮断器及其附属部套包括:危急遮
断油门、试验装置、喷油装置、超速指示器、电磁阀等,但危急继动器、防火油门取消不用,增加两只超速保护控制OPC电磁阀(110 VDC,0.1A);增加隔膜阀一只,透平油安全油压1.2MPa,动作油压0.8 MPa。
2.3 启动阀改造
采用纯电调系统,对启动阀进行了下列改进:增加一只复位电磁阀,接在保安系统复位油管路上;在原启动阀上部活塞套筒的复位油端加装一只特殊法兰,使其将复位油封住;将启动阀操作手轮置于全开位置不动;当机组启动时,只通过操作挂闸按钮使电磁阀动作,建立复位油,使系统复位挂闸并随即建立安全油及启动油,使主汽门全开。
2.4 供油装置及油管路
高压抗燃油供油装置为所有油动机提供动力油,正常工作油压为14.5 MPa,主要由下列部件组成:抗燃油油箱;两台相同进口等压变量PV29型柱塞EH高压油泵,1台运行、1台备用;磁性过滤器、25L蓄能器;控制块;回油过滤器;再生装置(硅藻土滤芯和波纹纤维素滤芯);自循环滤油系统;EH油冷油器等。EH供油装置的控制部分由DCS操作系统直接控制。
油管路系统主要由一套不锈钢管和4个高压蓄能器及2只低压蓄能器等组成。
3 改造后运行异常问题分析
4号机调节控制系统改造成DEH纯电调控制后,机组运行中曾经2次发生在EH油泵工作正常时出现EH母管油压下降的情况,危及机组的安全正常运行。
3.1 EH母管油压异常现象
第一次EH母管油压下降出现在机组改造后的试运行阶段,当时由于冲转过程中2、3号轴振偏大造成轴振保护动作(当时汽轮机转速为1400 r/min左右),发出信号使磁力断路油门电磁阀通电动作,同时根据DCS主保护的设计,发出信号使EH油系统中的OPC电磁阀动作,泄去OPC安全油,这时出现了主汽门未关、EH母管油压逐步下降,调门逐渐关小、转速逐渐下降的非正常状态。检查发现磁力断路油门动作后未能正确泄去透平安全油,而接在透平安全油管路上的挂闸压力开关因此未能正确反映信号,DEH控制装置接到的信号仍在“挂闸”状态,因此阀限仍为100%,即转速给定值没有置零。这时出现了调门油动机油缸下腔进油、泄油同时发生的所谓“导通”现象,造成EH母管油压下降。当时采取手拍危急保安器脱扣停机的办法来关闭主汽门和调速汽门,同时EH母管油压恢复正常,待磁力断路油门电磁阀及油系统检查正常后重新冲转。
另一次异常情况发生在滑参数停机过程中,机组当时带80MW负荷运行出现3号瓦振高达0.07mm的情况,被迫减负荷至零,拍车停机。但由于当时的高压内缸温度高达420℃以上,对开缸检修十分不利,决定采用重新冲转并网并继续滑停方法处理,当挂闸主汽门开启后出现了汽轮机转速直线上升的情况,直至超过3000 r/min,即拍车停机。拍车后DEH的转速给定值仍高达2999r/min,且挂闸信号仍然存在,脱扣信号不出现。同时EH母管油压出现了下降直到备用EH油泵启动,最终出现EH母管油压低的跳机保护信号。当时被迫采取了不挂闸,设定目标转速为零,使得转速给定值下降的办法来减小DEH控制调门开度的输出量,当给定转速接近零时,重新挂闸,按常规冲转。
3.2 异常问题分析
针对机组出现的上述情况,分析认为问题的关键在于透平安全油管路上的挂闸压力开关上,由于两个挂闸压力开关中的一个出现了故障,不能按设计要求正确地反映出脱扣的信号(即安全油压低于0.65MPa),而DEH在未接到脱扣信号前自动保持挂闸时的阀限无100%,同时保持给定转速,使DEH保持了汽轮机转速维持在3000r/min左右的调门开度输出,同时由于拍车停机造成了透平安全油压降低,隔膜阀动作,OPC安全油压下降,于是出现了非DEH控制的状态,即调门油动机油缸下腔一方面要保持调门的开度而进油,另一方面由于OPC安全油压泄去而泄油,最终造成EH母管油压下降的异常现象。
机组出现的主汽门开启后一经挂闸,汽轮机转速直线上升的情况,也是由于挂闸压力开关故障造成的。即调门开度在3000r/min左右的水平上,一旦主汽门开启,调门完全不能起到控制转速的作用,会出现转速飞升的情况。
因此,对这类DEH改造的机组来说,透平安全油压在停机时能否正常、迅速泄去,且将信号正确传给DEH控制系统是十分重要的,它将直接影响DEH对调门开度控制的正确性。另一方面,DEH控制系统只根据挂闸压力开关的信号来判断是否挂闸,从而决定调门的阀位开度是0%或100%,似乎显得不够完善,当挂闸压力开关故障或透平安全油压出现不正常时,将使DEH控制器发出错误的指示信号,从而影响机组调速系统的正常运行。
4 结束语
4号汽轮机液压调节系统改造成DEH纯电调控制,基本实现了设计的各项功能,取得了较好的效果,极大地提高了系统的安全性、可靠性和自动化水平,基本满足了现代电网对火电机组的控制要求,为省内外一大批125 MW汽轮机液压调节系统改造成DEH纯电调控制系统提供了有益的经验。

『伍』 什么是汽轮机EH油系统

汽轮机eh油系统一般是由油泵、冷油器、滤油器、管道组成(大型机组还有再生装置、加热器、高压蓄能器等组成)
抗燃油泵工作给汽机调速系统供油、通过

『陆』 汽轮机抗燃油作用。

汽轮机控制系统采用高压纯电调系统(DEH),由上海新华控制工程有限公司生产,是在美国西屋公司产品基础上优化设计的。抗燃油使用的是美国AKZO化学公司的Fyrquel磷酸抗燃油,其系统油压正常控制值为12.7MPa~14.7MPa。该系统能进行汽轮机的自动调节,有较完备的汽轮机超速保护,能进行汽轮机运行和启停时的监控等,通过计算机对应转换和负荷所需要的指令后将要求的主汽门、调门位置信号送至伺服阀、伺服油动机,由此来实现调节和控制,并且通过这套高压的油系统来实现紧急情况下关闭各汽门的保安功能。
高压EH油系统由供油装置、抗燃油再生装置及油管路部件组成。供油装置提供控制部分所需要的油及压力,其主要部件有:油箱、油泵、油压控制块、储能器、冷油器和再生装置。在抗燃油再生装置中的硅藻土接近失效或未调整的情况下,由于空气湿度大及昼夜差等缘故,水分将会通过呼吸器侵入油箱,使水分逐渐升高。另外,由于EH油的密度1.13g/cm3(20℃)大于水的密度,故进入油箱的水分难以排出,加速了油品的劣化,酸值也逐渐升高。因此,必须经常更换呼吸过滤器中的干燥剂硅胶(氧化铝)或选择更有效的防潮填充剂。

『柒』 eh油有什么作用

EH油系统按其功能分为三大部分,EH供油系统,执行机构部分,危急遮断部分。
1、EH供油系统
EH供油系统的功能是提供高压抗燃油,并由它驱动各执行机构,同时保持液压油的正常理化特性和运行特性。这种抗燃油是一种三芳基磷酸脂,它具有良好的抗燃性和液体的稳定性。
EH供油系统主要由EH油箱、EH油泵、出入口门、滤网、控制块、溢流阀、蓄能器、EH供回油管、冷油器以及一套自循环滤油系统和自循环冷却系统组成。
EH油从油箱经油泵入口门、入口滤网、EH油泵(高压变量柱塞泵)、EH油控制块(包括出口滤网、逆止阀、出口门、溢流阀)后,经高压蓄能器和高压供油母管HP送至各执行机构和危急遮断系统,系统执行机构的回油经有压回油母管DP、回油滤网、回油冷却器回到油箱;危急遮断系统的回油经无压回油母管DV1、DV2回油箱。机组正常运行时无压回油母管中的回油为AST危急遮断控制块内危急遮断油经两个节流孔后的排油,在两个节流孔之间安装有两个压力开关,用来监视、试验AST电磁阀工作、动作情况。
设备介绍
1) 油箱:容积为900升,油箱板上装有液位开关、磁性滤油器、空气滤清器、控制块,另外油箱底部外侧装有电加热器,间接对EH油加热。
2) EH油泵:出口压力整定在14.5±0.5Mpa,油泵启动后,油泵以全流量85 L/min向系统供油,同时也向高压蓄能器供油, 当系统压力达油泵整定压力时,高压油推动恒压泵上的控制阀,控制阀操作泵的变量机构,使泵的输出流量减少,当泵的输出流量和系统用油量相等时,泵的变量机构维持在某一位置,当系统需要增加或减少用油量时,油泵会自动改变输出流量,维持系统油压,当系统瞬间用油量很大时蓄能器将参与供油。正常运行时一台油泵足以满足系统所需油量,偶尔在系统调节时间较长(如甩负荷),或部分高压蓄能器损坏使系统油压降低的情况下,备用油泵可能投入。
3) EH油控制块:安装于油箱顶部其包括:油泵出口滤网、油泵出口逆止阀、油泵出口门、溢流阀
4) 溢流阀:是防止EH油系统油压过高而设置的,当油泵上的控制阀失灵,系统油压>17±0.2MPa时溢流阀动作,将油泄回油箱,确保持系统压力≯17±0.2MPa。
5) 油泵出口滤网:每台泵有两个并联出口滤网,滤芯为10微米。
6) 高压蓄能器:一个高压蓄能器安装在油箱旁,吸收泵出口的高频脉动分量,维持油压平稳,在机头左、右侧中压主汽门旁各有两个高压蓄能器与高压供油母管HP相连,提供系统正常或瞬时油压,蓄能器是通过一个蓄能器块与油系统相连,蓄能器块上有两个截止阀,用来将蓄能器与系统隔离,并将蓄能器中的高压油排到无压回油母管DV,最后回到油箱。
7) 低压蓄能器:在左、右侧高压主汽门旁各安装有两个低压蓄能器,与有压回油母管DP相连,用来它作为一个缓冲器在负荷快速卸去时,吸收回油系统的油压,消除排油压力波动。
蓄能器有一个合成橡胶软胆及钢外壳组成,橡胶软胆是用来将气室与油室分开,软胆中充有干燥氮气,外壳上装有与相连的充氮防护气阀。高压蓄能器中氮气压力为9.1Mpa,低压蓄能器中氮气压力为0.21Mpa。
8) EH油冷却水温控电磁阀:当油箱油温>55℃,该电磁阀打开,冷却水通过冷油器,当油箱油温<38℃,该电磁阀关闭。
9) 弹簧加载式逆止阀:安装在有压回油母管上,在有压回油滤网或冷油器堵塞以及回油压力过高时开启,使回油直接回油箱。
10) EH油再生装置:在油箱旁安装有一套EH油再生装置,用来储存吸附剂和使抗燃油得到再生,它由硅藻土滤器(使油保持中性、去除水份等)和纤维滤器(去除杂质)串联组成,在投入再生装置时,应先开启硅藻土滤器的旁路门对硅藻土滤器注油,然后开启硅藻土滤器入口门,关闭旁路门。当油温在43~54℃之间,而任何一个滤器压力高达0.21Mpa时,就需更换滤芯。
注意:遵守操作顺序否则可能造成硅藻土滤器滤芯损坏。
11) 自循环滤油系统:为了保证油系统的清洁度,设有独立的自循环滤油系统。滤油泵从油箱内吸油,经两个并列运行的滤网回油箱。滤油泵由就地端子箱上的控制按钮控制启、停。
12) 自循环冷却系统:在正常情况下,系统有压回油经回油冷却器冷却后,已完全可以满足油温要求,当油温偏高时,可以开启有压回油至备用冷油器入口门,采取两个冷油器并列运行,仍不能满足油温要求时,可以关闭有压回油至备用冷油器入口门,启动冷却循环泵,油箱内的油经冷却循环泵、备用冷油器回油箱,这一路称为EH油的自循环冷却系统;此时有压回油仍经回油冷却器冷却。冷却循环泵控制由就地端子箱上的控制按钮控制启、停、投自动。
注意:在冷却循环泵控制投自动情况下,有压回油至备用冷油器入口门应关闭,防止冷却循环泵启动影响有压回油母管的压力。

在现场安装中,从0m EH油站上来的油管从左到右(低加-高加)依次是无压回油母管DV1、无压回油母管DV2、有压回油母管DP、高压供油母管HP;在TV1旁的EH油管从上到下依次是有压回油母管DP、高压供油母管HP、AST危急遮断油母管、OPC油母管、无压回油母管DV1,在TV2旁的EH油管只是最下面一根为无压回油母管DV2,其余与TV1旁的一样。
2、 执行机构部分
各蒸汽阀门的位置是由各自的执行机构来控制的。执行机构由一个油动机所组成,其开启由抗燃油驱动,而关闭是靠弹簧力。油动机与一个控制块连接,在这个控制块上装有截止阀,快速卸载阀和单向阀,加上不同的附件,组成二种基本形式的执行机构--调节型和开关型。除再热主汽门为开关型,其作均为调节型。
调节型的执行机构安装有电液转换器(伺服阀)和两个线性位移变送器LVDT,可以将其相应的蒸汽阀门控制在任意中间位置上,成比例地进汽量以适应需要。
1) 高压调节阀
高压油动机安装在蒸汽室(调节阀)的边上,并且通过一对铰(链)链把油动机活塞杆与调节阀运行杆相连接,连杆绕支点转动,向上运动则打开阀门。
高压油经截止阀、10μm金属筛滤油器、伺服阀、进入高压油动机,该高压油由伺服阀控制。经计算机处理后的欲开大或者关小汽阀的电气信号由伺服阀放大器放大后,在电液转换器-伺服阀中将电气信号转换成液压信号,使伺服阀移动,并将液压信号放大后控制高压油的通道,使高压油进入油动机活塞下腔,油动机活塞向上移动,经杠杆带动汽阀使之开启,或者是使压力油自活塞下腔泄出,借弹簧力使活塞下移关闭汽阀。油动机活塞移动时,同时带动两个线性位移传感器(LVDT),将油动机活塞的机械位移转换成电气信号,作为负反馈信号与前面计算机处理送来的信号相加,由于两者极性相反,实际上是相减,只有在原输入信号与反馈信号相加,使输入伺服阀放大器的信号为零后,这时伺服阀的主阀回到中间位置,不再有高压油通向油动机活塞下腔或使压力油自油动机活塞下腔泄出,此时汽阀便停止移动,并保持在一个新的工作位置。
高压调节阀的快速卸载阀是由OPC油压来控制,起快速关闭调节阀的作用,此种关闭与电气系统无关。当OPC油压失去时,将使快速卸载阀动作时,它将的油动机活塞下腔工作油经有压回油母管排回油箱,有压回油母管同时与油动机活塞上腔相连,可将排油暂贮存在上腔,因而就不会引起回油管路过载。阀门组件上的大型弹簧提供快关所用的动力。
大机的所有油动机均采用单侧作用油动机,虽然油动机活塞两侧均进油,但活塞上腔是与有压回油母管相连,只起缓冲作用,而不起调节作用。小机调门油动机采用的是双侧油动机,活塞上、下腔分别与伺服阀的两个动力油口相接。
2) 再热调节阀
再热调节阀与高压调节阀的工作过程是相似的,它们主要区别在:
A. 再热调节阀的油缸为拉力油缸,其余阀门的油缸为推力油缸。中压油动机安装在中压调节阀操纵座上,中压油动机活塞杆通过联接装置与阀杆相连接,活塞杆向上运动时,打开阀门,而向下运动时则关闭阀门。中压调节阀操纵座中的下弹簧使阀门保持在关闭位置,而油动机则克服弹簧力使中压调阀处于任意一个所需的开度。
B. 再热调节阀的卸载阀(DUMP)与其余阀门的卸载阀的结构是不同的。
C. 卸载阀(DUMP)的复位油的来油是不经过伺服阀的。而对于高压调节阀、高压主汽阀卸载阀的复位油是经过伺服阀后的高压油。
D. 在卸载阀(DUMP)的OPC油逆止门前上装有一个二位三通试验电磁阀,它的三个油口分别是①经节流孔后的高压来油②OPC油管③有压回油管。试验电磁阀被用来摇控关闭再热调节阀,在正常运行期间,电磁阀断电,使高压油经过一个节流孔和该电磁阀直接通到卸载阀(DUMP)的上部腔室。当电磁阀通电时,电磁阀打开排油通路,且切断高压供油,关闭再热调节阀。在再热调节阀活动试验时,就是使试验电磁阀通电,关闭再热调节阀的。
3) 高压主汽门:
高压主汽阀与高压调节阀的主要区别在:
在高压主汽阀的卸载阀的危急遮断油路(逆止门前)与回油油路间装有一个试验快关电磁阀,在正常运行期间,电磁阀断电关闭的,当进行阀门活动试验时,电磁阀带电开启,将卸载阀的复位油泄掉,卸载阀动作,高压主汽阀关闭,另外在ETS产生跳闸指令时,该电磁阀将带电30秒,关闭高压主汽阀,起到AST电磁阀的后备保护作用。
开关型执行机构只能使阀门在全开或全关位置上工作,再热主汽阀的执行机构就属于开关型执行机构。
执行机构安装于再热主汽阀弹簧室上,它的活塞杆与再热主汽阀阀杆直接相连。因此,活塞向上运动开启阀门,向下运动关闭阀门。由高压供油管HP来的高压油流经隔离阀、节流孔进入油动机底部油缸,开启再热主汽阀,同时油动机底部油缸与遮断引导阀油动机的油缸相连,其随再热主汽阀开启而开启,关闭而关闭。
在再热主汽阀执行机构上配有一个快速卸载阀,快速卸载阀复位油腔与AST危急遮断油母管相连,一旦危急遮断系统动作造成危急遮断母管的降落,卸载阀就会开启,从而关闭再热主汽阀。
在再热主汽阀的卸载阀的危急遮断油路(逆止门前)与回油油路间装有一个二位二通试验电磁阀,在正常运行期间,电磁阀断电,当进行阀门活动试验时,电磁阀带电,将卸载阀的复位油泄掉,卸载阀动作,再热主汽阀关闭,另外在ETS产生跳闸指令时,该电磁阀将带电30秒,关闭再热主汽阀,起到AST电磁阀的后备保护作用。
元件介绍
1) 截止阀:用来切断油动机的供油。这样就可以对油动机进行不停机检修,如调换滤油器,电液转换器或卸载阀。
2) 单向阀:用在回油管路上,以防止在油动机检修期间由压力回油管来的油流回到油动机中。单向阀(另一个)安装在危急跳闸油路中,它可使油动机关闭时(无论是试验或是维修)不影响其它油动机活塞所处的位置,即不影响危急遮断母管油压。
3) 电液转换器(伺服阀):是一个力矩马达和两级液压放大及机械反馈系统所组成。第一级液压放大是双喷嘴和挡板系统;第二级放大是滑阀系统。高压油进入伺服阀分成两股油路,一路经过滤后进入滑阀两端容室,然后进入喷嘴与挡板间的控制间隙中流出;另一路高压油就作为移动油动机活塞的动力油由滑阀控制。其原理如下:
当有欲使执行机构动作的电气信号由伺服阀放大器输入时,则伺服阀力矩马达中的电磁线圈中就有电流通过,并在两旁的磁铁作用下,产生一旋转力矩使衔铁旋转,同时带动与之相连的挡板转动,此挡板伸到两个喷嘴中间。在正常稳定工况时,挡板两侧与喷嘴的距离相等,使两侧喷嘴的泄油面积相等,则喷嘴两侧的油压相等。当有电气信号输入,衔铁带动挡板转动时,则挡板移近一只喷嘴,使这只喷嘴的泄油面积变小,流量变小,喷嘴前的油压变高,而对侧的喷嘴与挡板的距离变大,泄油量增大,使喷嘴前的油压变低,这样就将原来的电气信号转变为力矩而产生机械位移信号,再转变为油压信号,并通过喷嘴挡板系统将信号放大。挡板两侧的喷嘴前油压与下部滑阀的两个腔室相通,因此,当两个喷嘴前油压不等时,则滑阀两端的油压也不相等,两端的油压差使滑阀移动并由滑阀上的凸肩控制的油口开启或关闭,以控制高压油通向油动机活塞下腔,克服弹簧力打开汽阀,或者将活塞下腔通向回油,使活塞下腔的油泄去,由弹簧力关小或关闭汽阀。为了增加调节系统的可靠性,在伺服阀中设置了反馈弹簧管,在反馈弹簧管调整时设有一定的机械偏零,这样,假如在运行中突然发生断电或失去电信号时,借机械力量最后使滑阀偏移一侧,使伺服阀关闭,汽阀亦关闭;反馈弹簧管还有一个重要的负反馈作用,它可以增加调节系统的稳定性,当电气信号输入使挡板移动后,在滑阀两端面有一压差,使滑阀移动,此时反馈弹簧管产生弹性变形,平衡掉一些滑阀压差力,防止在阀滑两端面压差力作用下,滑阀由中间位置被推向一端的极限位置,使油动机活塞移动过大,导致调节过程中产生振荡等情况。
由于大机的所有油动机均采用单侧作用油动机,所以大机油动机伺服阀只有三个油口,另一个去活塞的油口实际是堵死的。小机调门油动机伺服阀有四个油口。
4) 快速卸载阀:安装在油动机液压块上,它主要作用是当机组发生故障必须紧急停机或在危急脱扣装置动作或机组转速超过103%额定转速OPC电磁阀动作时,使危急遮断油或OPC油泄油失压后,可使油动机活塞下去腔的压力油经快速卸载阀快速释放,这时不论伺服阀放大器输出的信号大小,在阀门弹簧力作用下,均使阀门关闭。
在快速卸载阀中有一杯状滑阀,在滑阀下部的腔室与油动机活塞下腔的高压油路相通。滑阀上部右侧复位油腔室经逆止阀与危急遮断油路相通,而另一侧腔室是经一针形阀与油动机活塞上腔及回油通道相连。在正常运行时,滑阀上部的油压作用力加上弹簧力将大于滑阀下部高压油的作用力,将杯状滑阀压在底座上,使高压油与油缸回油相通的油门关闭,油动机油缸活塞下腔的高压油油压建立,将阀门开启。当危急遮断油泄掉时,复位油腔室油压失去,滑阀下部高压油将顶开滑阀,打开排油口,使油动机活塞下去腔的压力油经快速卸载阀快速释放,在阀门弹簧力作用下,将阀门关闭。
节流孔是产生快速卸载阀的复位油的,一旦该节流孔堵死,则会产生复位油降低或失压的现象,将会直接影响执行机构的正常运行。阻尼孔对杯状滑阀起稳定作用,以免在系统油压变化时产生不利的振荡。
正常运行时,应将针形阀手柄完全压死在阀座上,仅在现场手动卸荷时才拧开此针形阀。用卸载阀手动关闭调节阀时,首先关闭截止阀,以防止高压油大量泄掉,再缓慢开启针形阀手柄,慢慢降低快速卸载阀的复位油压力,观察阀门和油动机移动到关闭位置。当要打开阀门,首先将针形阀手柄完全压死在阀座上,然后缓慢打开截止阀。
5) 再热调节阀的卸载阀(DUMP):正常运行时高压供油HP通过截止阀、节流孔、试验电磁阀以及卸载阀DUMP上的节流孔进入复位腔(Y腔),这就是OPC安全油;此压力与经伺服阀供给油缸的高压油压力相近,但由于在Y腔室中,它的面积较大,因而可以克服弹簧力,以及阀下腔的高压油的作用力,使卸载阀DUMP关闭,将油缸中的高压油与回油通道切断,在油缸活塞下腔建立起油压。OPC油母管压力等于或高于送到Y腔室的压力,因而,当OPC油母管压力降低时,OPC油母管逆止阀打开,卸载阀的逆止阀也打开,Y腔室的压力下降,卸载阀打开,将油缸中的高压油与回油通道接通,关闭再热调节阀。
6) 线性位传移传感器(LVDT):是一种电气机械式传感器,它产生与其外壳位移成正比的电信号。它由三个等距离分布在圆筒形线圈组成,一个磁铁芯杆固定在油动机连杆上,此铁芯是轴向放置在线圈组件内,中央线圈是初级线圈,它是由交流电进行激励的,这样在外面的两个线圈上就感应出电动势。外面这两个线圈(次级)是反向串联在一起的,因而次级线圈的电压两个相位是相反的,所以,次级线圈的净输出是该两线圈所感应的电动势只之差。铁芯在中间位置,传感器输出为零;当铁芯与线圈有相对位移,例如。铁芯向上移动时,则上半部线圈所感应的电动势较下半部线圈所感应的电动势大,其输出电压代表上半部的极性。次级线圈输出电压是交流的,经过一解调器整流滤波后,便变为表示铁芯与线圈间相对位移的电气信号输出。零位可机械地调整到油动机行程的中间位置。
为了提高控制系统的可靠性,每个执行机构中安装了两个线性位移传感器(LVDT),在运算时取其中的一个高值。
3、危急遮断系统
为了防止汽轮机在运行中因部分设备工作失常可能导致的汽轮机发生重大事故,在机组上安装有危急遮断系统。
危急遮断系统主要由薄膜阀、AST电磁阀、空气引导阀、危急遮断试验装置、危急遮断器、危急遮断器滑阀以及用以远方复位的保安操纵装置。
位于前轴承箱右侧的薄膜阀,它提供了高压抗燃油系统的自动停机危急遮断系统和润滑油系统的机械超速和手动停机部分之间的接口,只要机械超速和手动停机母管中的保安油压消失,比如危急遮断器动作或手动搬动跳闸杠杆,导致保安油压泄掉,都会引起薄膜阀的开启,泄出高压抗燃油而停机。
位于薄膜阀旁的危急遮断控制块上有六个电磁阀,其中四个自动停机遮断电磁阀(20/AST),两个超速保护电磁阀(20/opc)。另外在前轴承箱上,危急遮断控制块的下方有一空气引导阀,用以控制各段抽汽逆止门和高排逆止门。
自动停机遮断电磁阀(20/AST)在正常运行时,它们是带电关闭的,从而关闭了自动停机危急遮断总管中抗燃油的泄油通道,使高、中压主汽阀、调阀的快速卸载阀复位油腔压力建立,快速卸载阀复位,堵塞高压油HP的泄油通路,使高、中压主汽阀、调阀执行机构活塞下腔的油压建立起来。当AST电磁阀失电打开时,则危急遮断总管泄油,快速卸载阀复位油腔压力失去,高压油HP的泄油通路打开,导致高、中压主汽阀、调阀在弹簧作用力下关闭而停机。
四个20/AST电磁阀串并联布置,这样就具有多重保护性,即每个通道(1、3,2、4)中至少必须有一只电磁阀打开,才可导致停机。20/AST电磁阀接受下列停机指令;轴承油压低,EH油压低,轴向位移,凝汽器真空低,超速等。
两个超速保护电磁阀(20/OPC),它们受DEH控制器的超速保护部分控制,布置成并联。正常运行时,电磁阀(20/OPC)不带电关闭,封闭了OPC总管油液的泄放通道,在AST电磁阀带电关闭前提下,使高、中压调节阀的快速卸载阀复位油腔压力建立,快速卸载阀复位,堵塞高压油HP的泄油通路,使高、中压调节阀油动机活塞下建立起油压。一旦OPC电磁阀打开,OPC母管油压泄放,这样卸载阀打开,使高中压调节阀立即关闭。由于在AST危急遮断油路和OPC油路之间装有单向阀,这样可以在OPC电磁阀开启时仍维持AST危急遮断油油压;在OPC母管油压泄放时,还将使空气引导阀打开“通大气”阀口,使压缩空气无法供到逆止门控制站,同时使各逆止门阀、控制站的压缩空气通过“通大气”阀口排掉,将各逆止门快速关闭。
元件介绍
1) 自动停机遮断电磁阀(20/AST):AST电磁阀的工作过程,AST电磁阀带电,电磁阀带动阀芯下移,关闭高压供油HP的泄油通路,X腔的压力升高,为高压供油压力,它克服弹簧1的拉力,推动活塞向右移动,将AST危急遮断油的泄油通道堵塞,AST危急遮断油油压建立。AST电磁阀失电时,电磁阀阀芯在弹簧2的拉力作用下上移,打开高压供油HP的泄油通路,X腔的压力降低,不足以克服弹簧1的拉力,活塞在弹簧拉力的作用下左移,将AST危急遮断油的泄油通道打开,AST危急遮断油失压。
2) 单向阀:在自动停机AST危急遮断油路和OPC油路之间的单向阀是用来维持AST油路中的油压,在OPC电磁阀动作后,单向阀将阻止AST危急遮断油通过OPC电磁阀泄掉,所以OPC动作后仍能使主汽门和再热主汽门保持全开。当转速降到规定转速时,OPC电磁阀关闭,高中压调门打开,从而由调阀来控制转速,使机组维持在额定转速。
3) 空气引导阀:由一个油缸和带弹簧的阀体组成。
当OPC母管油压建立后,油缸活塞推动阀体的提升头封住“通大气”阀口,同时打开压缩空气的出口通道,使压缩空气供到逆止门控制站。
一旦OPC油压失去,空气引导阀在弹簧力作用下关闭,提升头封住了压缩空气的出口通道,而打开了“通大气”阀口,使压缩空气无法供到逆止门控制站,同时使各逆止门阀、控制站的压缩空气通过“通大气”阀口排掉,将各逆止门快速关闭。

『捌』 eh油系统为什么要选用硅藻土过滤器和纤维素过滤器

硅藻土过滤器在过滤油物料作业上不仅可保持油的中性,还能去除水份等,可使抗燃油得到再生。

『玖』 什么是汽轮机EH油系统

汽轮来机EH油系统也就是汽轮机自控制对象的执行机构,包括控制阀门的油动机及其向油动机提供高压抗燃油的供油系统,除此之外还包括控制油动机紧急关闭的危急遮断控制块(电磁阀)和隔膜阀等部件。

EH系统的功能是接受DEH控制系统输出指令,控制汽轮机进汽阀门开度,改变进入汽轮机的蒸汽流量,满足汽轮机转速及负荷调节的要求。

(9)eh油再生装置的组成及作用扩展阅读:

通过危急遮断控制块(电磁阀)接受危急遮断系统输出指令,通过隔膜阀接受保安系统信号,控制油动机的紧急关闭。因此EH系统实际上是DEH控制系统及危急遮断系统或保安系统的执行机构。

某些特殊阀门要求在特殊情况下紧急打开或关闭,阀门执行机构能阻止危险进一步扩散同时将工厂损失减至最少。对一些高压大口径的阀门,所需的执行机构输出力矩非常大,这时所需执行机构必须提高机械效率并使用高输出的电机,这样平稳的操作大口径阀门。

『拾』 汽轮机EH油的工作原理与工作流程是怎么样一样运作的呢

汽轮机EH油是与主油箱分离运行的,EH油一般是用于调速控制系统的压力油。汽轮机EH油系统一般是由油泵、冷油器、滤油器、管道组成(大型机组还有再生装置、加热器、高压蓄能器等组成)

阅读全文

与eh油再生装置的组成及作用相关的资料

热点内容
法兰克加工中心机床怎么调 浏览:239
方向传动装置的作用及组成 浏览:677
起重设备交易市场哪个好 浏览:312
高精度的机床怎么做 浏览:848
x9机械键盘怎么调 浏览:298
阀门上面有个正方形图例是什么 浏览:848
生产加工五金制品的人叫什么 浏览:884
机械优先加什么 浏览:722
电动工具是看转速还是看瓦 浏览:477
制冷机品牌中有个顿字的叫什么 浏览:48
制冷量1KW等于多少冷冻水量 浏览:759
自来水水表阀门坏了怎么办 浏览:353
焦耳实验装置原理 浏览:931
超声波加湿器怎么安装视频 浏览:764
洗牙器仪器是什么原理 浏览:542
氧气阀门制造标准 浏览:230
怎么登qq不要设备 浏览:730
高浓度硫化氢用什么阀门 浏览:285
脚踏缝纫机轴承坏了什么症状 浏览:902
昂克赛拉右前平面换轴承多少钱 浏览:739