Ⅰ 黏度的测定
方法提要
所谓黏度即内摩擦系数。两个相对移动的液层之间的相互作用力 (称为内摩擦力) f,与该两液层间垂直于层面的速度梯度 和液层的面积 S 有如下关系:
岩石矿物分析第四分册资源与环境调查分析技术
式中: η 为内摩擦系数 (Pa·s) ,为比例常数,这就是通常所谓的动力黏度。
将上式移项,则得:
岩石矿物分析第四分册资源与环境调查分析技术
通常采用旋转式高温黏度计测定煤灰黏度,其基本工作原理是:在黏度计的高温炉中放一坩埚,将煤样放入坩埚中加热熔融。在熔体中插入一耐高温和耐腐蚀的圆柱体,用马达带动圆柱体或坩埚旋转(一般多采用静止坩埚的方式),使熔体和圆柱体间产生相对运动,以下述两种方式之一测定黏度:一种是由带动圆柱体做匀速转动的直流马达所消耗的电流来确定黏度;另一种由悬挂圆柱体的弹性金属丝产生的扭转角来确定黏度。
本法采用后一种方式。马达通过一弹性金属丝带动一圆柱体做匀速转动,圆柱体浸没在黏滞介质中,在介质黏滞力的作用下,弹性金属丝产生扭转,在金属丝的弹性形变范围内和转速恒定的条件下,扭转角φ正比于介质的黏滞力,亦即正比于液体的黏度:η=Kφ。
以已知黏度的标准物质标定黏度计,即求出K值,即可根据实际测定中的扭转角!求出待测熔体的黏度。在实际分析中,一般是作出校准曲线(η-φ关系曲线),然后根据煤样测定时的扭转角φ值,从曲线上查出相应的黏度。
方法适于测定煤灰的动力黏度,也可用来测定炉渣、玻璃等物质的动力黏度。
仪器装置
高温黏度计煤灰渣黏度计必须满足以下条件:①能测定牛顿流体和塑性流体的黏度;②能在600~1700℃范围内连续调节温度,并使任一指定温度长时间稳定在±2℃;③黏度测量范围为1~100Pa·s,分辨率0.1Pa·s;④有足够长的恒温带;⑤煤样周围的气氛性质(氧化-还原性)可以控制。钢丝扭矩式黏度计由供气系统、高温炉、测量系统和控制系统组成,黏度测量范围l~103Pa·s,最高工作温度为1700℃。
钢丝直径0.25~0.30mm。
测杆钼制品,直径4mm,长320mm,一端带直径10mm、长10mm的圆柱体。
坩埚刚玉制品,内径30mm,外径36mm,高50mm,耐火度1900℃以上。
试剂
氢气。
氮气。
标准黏度物质硅油:黏度约为1Pa·s、5Pa·s、10Pa·s、25Pa·s、50Pa·s和100Pa·s,用于常温下标定黏度计,其黏度用罕泊黏度计在(20±1)℃下测定。硼酐:用于高温下标定黏度计,其黏度已用硅油或其他常温标准黏度物质标定过的黏度计,在600~1200℃下测定。
试验准备
1)钨-铼热电偶的焊接和安装。钨-铼热电偶的热端应用电弧焊接;如无条件焊接,用砂纸擦净电偶丝后拧紧也可。钨-铼热电偶应装在耐火度在1900℃以上的双孔刚玉管内,然后将之从炉底插入炉膛,并使其热端位于炉膛高温恒温带下部并距其边缘约5mm处。电偶安装好后尽量避免挪动,以免损坏。高温下插入高温炉内的热电偶可能会出现漏电现象,这主要是由于高温时耐火材料电阻降低的缘故,如Al2O3含量65%~95%的耐火砖在室温下的电阻率为1.33×108Ω·cm,但1500℃时的电阻率为1.1×103Ω·cm。因此在安装电偶时,其热端应避免和坩埚底及炉膛壁接触,如仍发生漏电现象,可在钨-铼电偶热端再绕上一根负极材料如钼丝,并将之引出接地。钨-铼电偶的冷端应放在冰水中,以保持0℃,然后通过普通金属导线与电位差计相接。
2)高温恒温带的确定。从炉子下部插入一热电偶,其热端位于炉膛中央,作为基准电偶;然后从炉子上部插入另一热电偶,其热端与基准电偶热端紧邻但不接触。按照测定黏度的操作步骤以基准电偶为准。将炉温升到1700℃并恒温5~10min,读取上电偶指示温度。然后将上电偶上移或下移10mm,恒温5~10rnin,读取该点温度,再将上电偶上移或下移10mm,恒温5~10rnin,再读取温度。如是测定数个温度点,直至最高温度点与最低温度点的温差超过5℃为止,根据测定结果确定温差在5℃范围内的区域。然后逐渐降低温度,按上述方法再测定2~3个温度下的恒温区。最后以各温度下各点温度差都在5℃范围内的区域作为炉子高温恒温区,该区的长度应在40mm以上。或高温炉首次使用,加热元件更换和炉子使用较长时间后都应测定和重新测定高温恒温区。
3)熔体温度的标定。在实际测定中,熔体的温度与熔体容器外部电偶的指示温度有一定的差异,故应进行熔体温度的标定。
图73.32 测定熔体实际温度的装置
图73.32为熔体温度标定示意图。标定的具体步骤如下:在一刚玉坩埚中插入一根一端封闭的刚玉管,刚玉管四周放置已熔融过的熔渣碎块。将带刚玉管的坩埚放入高温炉,并固定在坩埚底部与电偶热端相距2~3mm处。在刚玉管中插入另一支电偶并使其热端触及管底。按照黏度测定步骤,将炉子逐渐加热到1700℃,灰渣全部熔融后恒温10min,测出上下电偶指示温度。然后以50℃的间隔降低温度,并测出该温度下的上下电偶指示温度,直至温度降到1200℃。以基准电偶指示温度为横坐标,上电偶指示温度为纵坐标作出标定曲线。温度600~1200℃范围内的熔体温度标定,可使用硼酐或玻璃作熔融介质。
4)黏度计标定。
a.常温标定法。用黏度约为1Pa·s、5Pa·s、10Pa·s、25Pa·s、50Pa·s和100Pa·s的硅油为测定介质,在20±1℃下,用钢丝扭矩式黏度计测定相应的扭转角。以硅油黏度值为纵坐标,扭转角为横坐标,绘制黏度-扭转角(或毫秒计读数)曲线。所用硅油应为经检定的黏度已知的标准物质,在无标准硅油情况下,可用罕泊黏度计(即落球式黏度计)测定所用硅油黏度。
b.高温标定法。用硼酐或玻璃为测定介质,在黏度为1~100Pa·s相应温度范围内,用钢丝扭矩式黏度计测定不同温度下的扭转角。以硼酐或玻璃黏度值为纵坐标,扭转角为横坐标,绘制黏度-扭转角(或毫秒计读数)曲线。所用硼酐或玻璃应为经检定的黏度和温度关系已知的标准物质,在无标准硼酐或标准玻璃的情况下,可用已经在常温下标定过的钢丝扭矩式黏度计测定硼酐或玻璃的黏度。硼酐黏度测定方法:取破碎成5~15mm的小块硼酐50g左右,按煤灰黏度测定步骤,从1200℃开始,每降温50℃测定一个黏度值,直至600℃。黏度计应定期标定,特别是在更换钢丝后应该标定。黏度计标定的试验条件,特别是电动机转速、钢丝材料、直径和长度、测杆材料尺寸及插入熔体的深度应与煤灰黏度测定时相同。
5)灰样的制备。将粒度小于0.2mm的空气干燥煤样在大灰皿中铺成薄层,将带样灰皿放入冷高温炉中,按灰分测定标准程序由室温加热到815℃,并在此温度下灼烧至完全灰化。每个煤灰样至少为150~200g。取灰样100~120g,用50g/L糊精溶液湿润成泥状,做成直径约10mm的小球,在室温下晾干或低温下烤干。
分析步骤
将一坩埚捆紧在用直径1.5~2mm的钼丝制作的、长度与坩埚底部至炉口距离相等、两端弯成90°的挂钩上,然后稳定地吊在炉膛中。坩埚应位于炉膛高温恒温带,其底部距钨钼电偶热端2~3mm处。
转动黏度计悬臂,使测杆对准高温炉炉口中央。开动黏度计,观察测杆是否同心旋转,如有明显摆动,应更换测杆或将其调直,并调节测量系统各接头,使电动机轴、钢丝和测杆在同一轴线上。慢慢降下黏度计悬臂至测杆刚好触及坩埚底部,记下高度标尺读数H1(mm),然后提起测杆。将测杆插入带水的坩埚中,开动黏度计,测定并记录零点读数。
往炉内以500mL/min的流量通入氢气;往冷却水套中通入冷水。接通高温炉电源,按以下升温速度升温:<1200℃,10~15℃/min;1200~1500℃,5~7℃/min;(>1500)~1700℃,3~5℃/min。温度升至1500~1700℃时,通入氮气,并调节氮气和氢气的流量,使氢气在混合气体中占20%(体积百分数),混合气体总流量为1000mL/min。然后将灰球逐个投入坩埚中熔融,直到熔体高度达到25~30mm(一般约需50~60g煤灰)为止。熔融过程中应防止熔体起泡溢出。全部灰球熔完后,保温10min以上,待熔体中气泡完全消失后,用一根直径1.5mm的钼丝插入熔体至坩埚底,然后立即抽出,于冷水中急冷,由钼丝上的熔体迹量出熔体高度D(mm)。
将测杆小心放入炉内坩埚中央,并调节它的高度使其插入熔体15mm,即黏度计高度标尺读数H2满足以下要求:H2=H1+D-15。
图73.33 煤灰黏度曲线图
开动黏度计进行降温测定,根据黏度变化情况每隔20~50℃测定一点。每点测定时应先恒温(Δt=±2℃)10~15min,待温度和毫秒计读数都稳定后开始测定,每5min读取一次温度和毫秒数,连续3次,取其平均值为该点温度和毫秒数。当黏度大于50Pa·s(或100Pa·s)时停止试验,并迅速将测杆提升至炉外,取下,浸入冷水中冷却。炉温降至1000℃以下时,断电、停止通氮气,温度降至400℃以下时停止通氢气。
根据各测定点的毫秒计读数(减去零点读数)从黏度计标定曲线上查出相应的黏度。以温度为横坐标,黏度为纵坐标,绘制温度-黏度曲线(图73.33)。
每个灰样进行两次重复测定,同一温度下的黏度相差不得大于平均值的20%。
注意事项
1)灰黏度和灰成分的关系。煤灰成分中,影响黏度的主要因素是二氧化硅、氧化铝、氧化铁和三价铁,以及氧化钙与氧化镁的含量。其中SiO2和Al2O3能提高灰的黏度;Fe2O3、CaO和MgO能降低灰的黏度;三价铁百分率增加时,灰黏度增加,临界黏度温度升高。当Fe2O3含量高、SiO2含量低时,增加SiO2含量反而会降低黏度。此外,Na2O也能降低黏度。
灰渣的流动性不仅取决于它的化学成分,也取决于它的矿物质组成。化学成分相同但矿物组成不同的灰渣,完全可能有不同的流动性。只有在真液范围内灰渣的黏度才完全取决于它的化学成分,而与各成分的来源(即矿物质组成)无关。因此,有关灰黏度和化学成分关系的研究,多数都局限于真液范围内。
用灰成分预测其流动性的方法,比较成熟和广泛应用的是当量二氧化硅百分率和碱酸比法。在真液状态下,当量二氧化硅百分率或碱酸比相同的灰渣,具有相同的流动性。该两参数的定义如下:
岩石矿物分析第四分册资源与环境调查分析技术
以上两公式中各化学式代表该成分在煤灰中的质量分数。
岩石矿物分析第四分册资源与环境调查分析技术
2)煤灰的临界黏度温度(TCV)和软化温度(TST)的关系某些煤灰渣从真液状态冷却时,其黏度沿着对数曲线下降,到一定温度后,黏度变化即偏离此曲线,该偏离点的温度就是临界黏度温度。它的出现是由于液渣在冷却过程中逐渐析出固体晶粒,使之由牛顿流动状态转变为塑性状态所至。
临界黏度温度(℃)和软化温度(℃)间有较好的下列线性关系:
岩石矿物分析第四分册资源与环境调查分析技术
Ⅱ 1.请简要设计一个系统,用以检测流体的黏度及内摩擦力,要求写出所有的步骤及要求
简要事迹系统的时候需要以检测了流体粘度以及内摩擦力,这种系统应该设置成一个封闭的,这样的话外部环境因素也影响就比较少。
Ⅲ 流体粘度的实验装置
外筒旋转式的旋转粘度计测量装置系统。其外圆筒与低速可调速电机相联。实验中根据需要以某个固
定的转速旋转,内圆筒则用扭丝悬挂并与扭矩测试机构相联接,通过表盘指针作用于内筒的扭矩。
Ⅳ 黏度测定法的黏度测定法
黏度的测定可用黏度计。黏度计有多种类型,本药典采用毛细管式和旋转式两类黏度计。毛细管黏度计因不能调节线速度,不便测定非牛顿流体的黏度,但对高聚物的稀薄溶液或低黏度液体的黏度测定影响不大;旋转式黏度计适用于非牛顿流体的黏度测定。
液体以1cm/s的速度流动时,在每1cm<2>平面上所需剪应力的大小, 称为动力黏度,以Pa·s为单位。在相同温度下,液体的动力黏度与其密度的比值,再乘10<6>,即得该液体的运动黏度,以mm<2>/s为单位。本药典采用在规定条件下测定供试品在平氏黏度计中的流出时间(s),与该黏度计用已知黏度的标准液测得的黏度计常数(mm<2>/s<2>)相乘,即得供试品的运动黏度。
溶剂的黏度η<[o]>常因高聚物的溶入而增大,溶液的黏度η与溶剂的黏度η<[o]>
的比值(η/η<[o]>)称为相对黏度(η<[r]>), 常用在乌氏黏度计中的流出时间的比值(T/T<[o]>)来表示;当高聚物溶液的浓度较稀时,其相对黏度的对数值与高聚物溶液浓度的比值,即为该高聚物的特性黏数[η]。根据高聚物的特性黏数可以计算其平均分子量。 (1)恒温水浴 可选用直径30cm以上、高40cm以上的玻璃缸或有机玻璃缸,附有电动搅拌器与电热装置,供测定运动黏度时应能恒温±0.1℃,供测定特性黏数时应能恒温±0.05℃。
(2)温度计 分度为0.1℃。
(3)秒表 分度为0.2秒。
(4)平氏黏度计(图1) 可根据需要分别选用毛细管内径为0.8mm±0.05mm、1.0mm±0.05mm、1.2mm±0.05mm、1.5mm±0.1mm或2.0mm±0.1mm的平氏黏度计。
(5)旋转式黏度计。
(6)乌氏黏度计(图2) 除另有规定外,毛细管E内径为0.5mm±0.05mm,长140mm±5mm;测定球A的容量为3.5ml±0.5ml(选用流出时间在120~180秒之间为宜)。
Ⅳ 如何设计一个系统用来检测流体的粘度和内摩擦力
在检测刘体的粘度和内摩擦力方面都是有非常多的,虽然好的系统方法和方式的这方面我们可以借鉴前人的一些优秀的做法
Ⅵ 液体粘度的测量
液体粘度主要有两种方法测量:毛细管法和转盘法,生石灰浆显然只能用转盘法就用传统的斯托默粘度计就可以.
需要提醒你的是
生石灰浆是非牛顿流体,具有剪切变稀的特点,粘度是测不准的.
Ⅶ 液体粘度如何测定
液体粘度测定:转子式粘度仪,擦用不同量程的转子测量粘度。
用粘度杯,粘度杯有很多种,如DIN杯,Ford杯,ISO杯,扎恩杯等,记录从液体开始流出到发现第一个断点的时长就是液体的粘度,也可以查留出时间和粘度转化表,把流出时间转换成粘度。一般油漆工业采用这种方法。
粘度定义
在单位液层面积上施加的这种力,称为切应力τ(N/m2),切应力与切变速率是表征体系流变性质的两个基本参数,牛顿以图4-1的模式来定义流体的粘度。两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度。
Ⅷ 流体粘度的验步骤
1.用卡尺精确测定旋转粘度计外圆筒内径D、内
圆筒外径Do和内筒高度H。
2.按图1-3所示正确安装实验装置,并向两圆筒
间充满被测的牛顿型流体。
3.接通电流,启动电机并调整至要求的转速n,保
持恒定不变,记录该转速。
4.观测扭矩表指针不再波动时,记录该扭矩值
M。
5.改变转速n,重复步骤3~5,测若干套数据。
6.切断电源,更换被测流体种类,重复步骤2~5,
做1~2个样品。
7.切断电源,仪器归位,结束实验。图1.3粘度测量装置
三、实验报告1-旋转式粘度计,2-低速可调速电机;
1.原始数据记录3-扭矩测量机构(表盘指针)
外圆筒内径D=㎜内圆筒外径Do=㎜内圆筒高度H=mm
2.数据处理
⑴计算速度梯度因为
所以⑵计算切应力
⑶按(1-7)式计算粘度测定数据处理表表1-2
(4)根据表1-2数据绘制曲线,并求。
跨线桥平齐装料氟化效率
Ⅸ 如何用毛细管法测定液体粘度
高聚物相对分子质量的测定(黏度法)有对如何用毛细管法测定液体粘度的具体描述.此外毛细管粘度测定法血液粘度测定.
一、实验目的
1.了解高聚物黏均相对分子质量的测定方法及原理;
2.掌握毛细管黏度计的使用方法,测定聚合物的黏均相对分子质量.
(技能要求:掌握封闭式毛细管粘度计的使用方法,实验数据的作图处理方法).
二、实验原理
黏度是液体流动时内摩擦力大小的反映.纯溶剂黏度反映了溶剂分子间的内摩擦力效应,聚合物溶液的黏度是体系中溶剂分子间、溶质分子间及他们相互间内摩擦效应之和.
增比黏度ηsp定义为:
ηsp=(ŋ- ŋ0)/ŋ0= ŋr-1
η为聚合物溶液的黏度;ŋ0为纯溶剂黏度;ŋr为相对黏度
比浓黏度ηsp/c和比浓对数黏度(ln ŋr)/c与高分子溶液浓度c的关系为:
ηsp/c=[η]+k1[η]2c
(ln ŋr) /c=[η]+k2[η]2c
其中:[η]为特征黏度;反映了无限稀溶液中溶液分子与高分子间的内摩擦效应,它决定与溶剂的性质和聚合物的形态及大小.
对同一聚合物,两直线方程外推所得截距[η]交于一点k1-k2=0.5;[η]值随聚合物的摩尔质量有规律变化.
特征黏度与聚合物摩尔质量的关系为:
[η]=k*Mηα
式中:Mη为黏均相对分子质量;k和α是温度,聚合物及溶剂性质有关的常数.
本实验采用毛细管法,当液体在重力作用下流经毛细管黏度计时,遵守公式:η/ρ=πhgr4t/8LV-mV/8πLt
式中:η为液体黏度;ρ为液体密度;L为毛细管长度;r为毛细管半径;t为体积V的液体流经毛细管的时间;h为流过毛细管液体的平均液柱高度;g为重力加速度;m为动能校正系数(当V/r〈〈1时,m=1)
对某一给定毛细管黏度计,式可改写为:
η/ρ=A*t-B/t
式中,当B〈1,t〉100s时,第二项可以忽略.通常测定在稀溶液中进行(c〈1g/ml),溶剂与溶液密度近似相等,则有:
ŋr= ŋ/ŋ0= t/t0
式中t和t0分别为溶液和纯溶剂的流出时间.实验中,测出不同浓度下聚合物对应的相应的相对黏度,可求出ηsp、ηsp/c、(ln ŋr) /c.以ηsp/c或(ln ŋr) /c对c作图用外推法可求[η].在已知k,α值条件下,可由[η]=K*Mηα计算聚合物黏均相对分子质量
三、实验仪器与试剂
1.仪器:
恒温槽;乌式黏度计;10mL吸量管2支;3号砂芯漏斗2支;100mL
容量瓶2个;秒表.
2.试剂:
正丁醇(AR);无水乙醇(AR).
0.500g/100mL聚乙烯醇水溶液:准确称取聚乙烯醇0.500g于烧杯中,加60mL蒸馏水,稍稍加热使其溶解,冷至室温,倾洗入100mL容量瓶中,滴加10滴正丁醇(消泡剂).在25oC恒温下,加水稀释至100mL.用砂芯漏斗(3号)过滤溶液.
乌式黏度计
四、实验步骤
1.准备工作:
打开仪器电源及制冷开关,将温度设定为250C,待温度恒定后在测量.
2.聚合物溶液粘度流出时间ti
(1)在粘度计中注入10mL聚合物溶液;
(2)测量时,将粘度计沿d管一侧放倒,使计内溶液由b球全
部进入a球,再慢慢顺时针抬起粘度计45度角度,使a球溶液顺利
流入定体积c球,并注满.此时可将粘度计竖直,多余溶液及液
表面气泡由f管流入b球,观察记录液面通过e1、e2刻度线时所用
的时间,即为要测得ti(平行测量2次,偏差〈 0.5秒);
(3)再向粘度计原溶液中依次加入5mL、10 mL水,测量其ti.
3.水粘度流入时间t0的测量
用二次水洗粘度计3次,再向粘度计中注入1 0 mL左右的二次水,同步骤1测其流出时间t0(平行测量2次,偏差〈 0.5秒).
4.粘度计最后清洗处理
测完后,倾净计内水,使管内尽量不要有残余水珠,将计内废液倒入回收瓶中,去开粘度计活塞,侧到放置于实验台上.
五、实验数据的记录与处理
t1
t2
t(平均)
C
ŋr
ηsp
ηsp/c
lnηr/c
纯聚乙烯醇
2’03”25
2’03”34
2’03”35
0.5
1.553
0.553
1.106
0.680
加5mL水
1’42”88
1’43”12
1’43”00
0.33
1.297
0.297
0.980
0.800
加10mL水
1’34”34
1’34”19
1’34”27
0.20
1.187
0.187
0.900
0.850
二次水10 mL
1’19”43
1’19”41
1’19”42
根据实验数据以ηsp/c对c作图,以(ln ŋr) /c对c作图:
如上,图知[η]=0.8767,再由[η]=K*Mηα可求出Mη
Mη=([η]/K)1/α=(0.8767/0.0002) 1/0.76=61931.0
分析:图中不是所有点均在直线上,原因是实验过程中两个人记录数据产生误差;作图时会产生误差.
六、实验注意事项:
(1)粘度计必须洁净,高聚物溶液中若有絮状物不能将它移入粘度计中.
(2)实验过程中恒温槽的温度要恒定,溶液每次稀释恒温后才能测
(3)粘度计要垂直放置.实验过程中不要振动粘度计.
(4)实验前应先将温度设定为250C,然后再进行实验操作.
(5)每次向球中倒液体时不能留有气泡.
七、思考题
1. 高聚物的特征黏度与纯溶剂的黏度为什么不相等?
答:纯溶剂黏度反映了溶剂分子间的内摩擦力效应,聚合物溶液的黏度则是体系中溶剂分子间、溶质分子间及他们相互间内摩擦效应之总和.
2. 用黏度法测定高聚物的相对分子质量时,高聚物留经毛细管的时间为什么要大于100s?
答:对于某一给定毛细管黏度计,在η/ρ=A∙t-B/t中,当B100s 时,第二项可忽略.
八、实验总结
本次实验我了解了高聚物黏均相对分子质量的测定方法及原理;掌握了毛细管黏度计的使用方法,测定聚合物的黏均相对分子质量的方法;学会了封闭式毛细管粘度计的使用方法,实验数据的作图处理方法.
,国内外用于血液粘度测定的方法主要分两大类,一类是毛细管粘度测定法,另一类是旋转式粘度测定法.
(1)毛细管粘度测量法:根据泊肃叶定律,液体流经毛细管时,将遵循下列公式:Q=πr4∆P/8ηLL,式中的流量Q也等于V/t,V为流经毛细管的容积,t为流动的时间,代人泊肃叶公式:Q=πr4∆P/8LV.将一定容量的液体流过一定长度的毛细管,则式中丌、r、AP、L、V均为已知数,因此通过测定液体流经毛细管的时间t即可计算出液体粘度η.一般情况下,液体在毛细管中流动是靠其自身重力驱动,其切变率不仅受管长与半径的影响,而且还与驱动压密切相关.驱动压随着液体的通过而不断减小,切变率也将随之不断的降低.血浆屑牛顿型流体,其粘度与切变率关系不大,因此,毛细管粘度测定方法只适用血浆粘度的测定.用此类方法设计的粘度计多为毛细玻璃管粘度计,其制造较容易,操作简单、售价低廉,精确度也较高,已为临床和实验室广泛使用,其主要缺点是不适用于全血粘度的测定.
(2)旋转式粘度测量方法:其测量粘度的原理是以一个能以不同转速主动旋转的物体,通过对被测液体的作用、带动与其有同轴心的另一个物体被动地旋转并产生一定大小的力阻,只要知道主动旋转物体的几何形状,旋转速度以及被动旋转物体所产生的力距大小,就可以计算出被测液体所受的切应力和产生的切变率,利用公式η=τ/γ,即可计算出被测液体的粘度(式中η为粘度、τ为切应力、γ为切变率).利用此原理制造的粘度计为旋转粘度计.目前常用的有锥板式粘度计和圆桶式粘度计.此类粘度计的主要结构为一旋转的圆桶或圆板和同轴心的内层圆桶或圆锥,两者之间狭窄的缝隙为被测液体样品,内层圆桶或圆锥靠金属扭丝K悬吊起来.此类粘度计的最大优点是可以通过改变旋转速度改变切变率,可以测量很广范围内切变率(0.04-4000S-1)下的液体粘度.此外,两旋转物体间缝隙很小,故很少的液体样品即可测量,并有很高的精确度,尤其适用于全血粘度的测量.
有关粘度的指标:粘度的国际单位为毫帕斯卡·秒(mPa·S).
(1) 表观粘度(apparent viscosity):指非牛顿流体在某一切变率下测得的实际粘度.
(2)相对粘度(relativeviscosity):是指两种粘度的比值,故为一无量纲的量.血液的相对
粘度是全血粘度与血浆粘度的比.
(3)还原粘度(reced viscosity):是全血粘度与红细胞比容的比值,其计算公式为:RV=ηb-1/Ht式中RV为还原粘度,η为全血粘度,Ht为红细胞比容.还原粘度实际是指红细胞为1%时的血液粘度,这样可排除比容因素对血液粘度的影响,便于分析其它因素对血液粘度的影响.
(4)比粘度:是指被测液体的粘度与标准参照液粘度的比值,通常以水或生理盐水作标准参照液,全血或血浆比粘度是全血或血浆粘度与水粘度的比值,比粘度也是一无量纲的量.
Ⅹ 怎么测液体黏度,除了用落球法
我是广州市艾安得仪器有限公司天津办事处的潘先生,我公司是AND粘度计的厂家,我给你一些答案,你可以参考一下。
粘度(Viscosity) 为流体在流动中所产生的内部摩擦阻力,其大小由物质种类、温度、浓度等因素决定。其单位是帕·秒(Pa·s)或毫帕·秒(mPa·s)。粘度作为物理特性的一种,其在诸多行业有着重要的意义,那么“为什么要做粘度的测量呢?”成千上万的做相关实验的研究人员告诉我们,它可以提供给我们数据,对于预测产品生产过程的工艺控制、输送性以及产品在使用时的操作性有着重要的指导价值。
将流动着的液体看作许多相互平行移动的液层, 各层速度不同,形成速度梯度(dv/dx),这是流动的基本特征.(见图4-1)这里贴不了图,你要看的话可以联系我。
由于速度梯度的存在,流动较慢的液层阻滞较快液层的流动,因此.液体产生运动阻力.为使液层维持一定的速度梯度运动,必须对液层施加一个与阻力相反的反向力.
在单位液层面积上施加的这种力,称为切应力τ(N/m2).
切变速率(D) D=d v /d x (S-1)
切应力与切变速率是表征体系流变性质的两个基本参数
牛顿以图4-1的模式来定义流体的粘度。两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:
τ= ηdv/dx =ηD(牛顿公式) 其中η与材料性质有关,我们称为“粘度”。
粘度定义:将两块面积为1m2的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1Pa.s。
牛顿流体:符合牛顿公式的流体。 粘度只与温度有关,与切变速率无关, τ与D为正比关系。
非牛顿流体:不符合牛顿公式 τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。
粘度三种测定方法
粘度测定有:动力粘度、运动粘度和条件粘度三种测定方法。
(1)动力粘度:ηt是二液体层相距1厘米,其面积各为1(平方厘米)相对移动速度为1厘米/秒时所产生的阻力,单位为克/里米·秒。1克/厘米·秒=1泊一般:工业上动力粘度单位用泊来表示。
(2)运动粘度:在温度t℃时,运动粘度用符号γ表示,在国际单位制中,运动粘度单位为斯,即每秒平方米(m2/s),实际测定中常用厘斯,(cst)表示厘斯的单位为每秒平方毫米(即 1cst=1mm2/s)。运动粘度广泛用于测定喷气燃料油、柴油、润滑油等液体石油产品深色石油产品、使用后的润滑油、原油等的粘度,运动粘度的测定采用逆流法。
(3)条件粘度:指采用不同的特定粘度计所测得的以条件单位表示的粘度,各国通常用的条件粘度有以下三种:
①恩氏粘度又叫思格勒(Engler)粘度。是一定量的试样,在规定温度(如:50℃、80℃、100℃)下,从恩氏粘度计流出200毫升试样所需的时间与蒸馏水在20℃流出相同体积所需要的时间(秒)之比。温度tº时,恩氏粘度用符号Et表示,恩氏粘度的单位为条件度。
②赛氏粘度,即赛波特(sagbolt)粘度。是一定量的试样,在规定温度(如100ºF、F210ºF或122ºF等)下从赛氏粘度计流出200毫升所需的秒数,以“秒”单位。赛氏粘度又分为赛氏通用粘度和赛氏重油粘度(或赛氏弗罗(Furol)粘度)两种。
③雷氏粘度即雷德乌德(Redwood)粘度。是一定量的试样,在规定温度下,从雷氏度计流出50毫升所需的秒数,以“秒”为单位。雷氏粘度又分为雷氏1号(Rt表示)和雷氏2号(用RAt表示)两种。
上述三种条件粘度测定法,在欧美各国常用,我国除采用恩氏粘度计测定深色润滑油及残渣油外,其余两种粘度计很少使用。三种条件粘度表示方法和单位各不相同,但它们之间的关系可通过图表进行换算。同时恩氏粘度与运动粘度也可换算,这样就方便灵活得多了。
如果还有问题TEL:022-28370107 潘先生