导航:首页 > 装置知识 > β射线式粉尘测量仪源—探测器优化与采样装置概念设计

β射线式粉尘测量仪源—探测器优化与采样装置概念设计

发布时间:2022-06-18 06:46:40

❶ 强子对撞机的对撞实验

综述
据国外媒体报道,利用大型强子对撞机(LHC)进行的6项实验都将均在国际合作的模式下完成,这些实验将世界各地的研究机构的科学家聚集在一起,共同见证激动人心的一刻。每一项实验都截然不同,这是由其使用的粒子探测器的独特性所决定的。
两项大规模实验——ATLAS(超环面仪器实验的英文缩写,以下简称ATLAS)和CMS(紧凑渺子线圈实验的英文缩写,以下简称CMS) ——均建立在多用途探测器基础之上,用于分析在加速器中撞击时产生的数量庞大的粒子。两项实验的研究规模和研究层面均达到前所未有的程度。使用两个单独设计的探测器是交叉确认任何新发现的关键所在。
两项中型实验——ALICE(大型离子对撞机实验的英文缩写,以下简称ALICE)和 LHCb(LHC底夸克实验的英文缩写,以下简称LHCb)——利用特殊的探测器,分析与特殊现象有关的撞击。
另外两项实验——TOTEM(全截面弹性散射侦测器实验的英文缩写,以下简称TOTEM)和LHCf(LHC前行粒子实验的英文缩写,以下简称LHCf)——的规模就要小得多。它们的焦点集中在“前行粒子”(质子或者重离子)身上。在粒子束发生碰撞时,这些粒子只是擦肩而过,而不是正面相撞。
ATLAS、CMS、ALICE和LHCb探测器安装在4个地下巨洞,分布在大型强子对撞机周围。TOTEM实验用到的探测器位于CMS探测器附近,LHCf实验用到的探测器则位于ATLAS探测器附近。
ALICE
为了进行ALICE实验,大型强子对撞机将让铅离子进行对撞,在实验室条件下重建“大爆炸”之后的宇宙初期形态。获得的数据将允许物理学家研究夸克-胶子等离子体的性质和状态,这种物质据信在“大爆炸”发生后只存在很短时间。
核子,核子周围环绕着电子。质子和中子都是被称之为“胶子”的其它粒子束缚夸克形成的。这种不可思议的强大束缚意味着,独立的夸克是永远也不会被发现的。
大型强子对撞机内上演撞击时产生的高温是太阳内部温度的10万倍。物理学家希望看到的是,质子和中子会在这种高温条件下“熔化”,并释放被胶子束缚的夸克。这么做将创造夸克-胶子等离子体,它们可能只存在于“大爆炸”之后,当时的宇宙仍处在极度高温之下。科学家计划在夸克-胶子等离子体膨胀和冷却过程中对其进行研究,观察它如何形成最终构成当前宇宙物质的粒子。
共有来自28个国家的94个研究机构的1000多名科学家参与ALICE实验。
ALICE探测器相关资料
尺寸:长26米,高16米,宽16米
重量:1万公吨
位置:法国小镇圣吉利斯-珀利(St Genis-Pouilly)。
ATLAS
ATLAS是大型强子对撞机两个通用探测器中的一个。此项实验涉及到物理学的很多领域,包括寻找希伯斯玻色子、额外维度以及构成暗物质的粒子。与CMS的实验目的一样,ATLAS也将记录与撞击时产生的粒子有关的类似数据,即它们的路径、能量以及特性等等。虽然实验目的相同,但ATLAS和CMS探测器的磁铁系统却采用了完全不同的技术和设计。
ATLAS探测器巨大的圆环形磁铁系统是它的主要特征。这一系统由8个25米长的超导磁铁线圈组成。磁铁线圈分布在贯穿探测器中心的粒子束管周围,形成一个“圆筒”。实验过程中,磁场将被包含在线圈分离出的中央柱形空间内。
共有来自37个国家的159个研究机构的1700多名科学家参与ATLAS实验。
ATLAS探测器相关资料
尺寸:长46米,高25米,宽25米,是迄今为止制造的个头最大的粒子探测器。
重量:7000公吨
位置:瑞士梅林(Meyrin)
CMS
CMS实验利用一个通用探测器,对物理学的很多领域进行研究,包括寻找希伯斯玻色子、额外维度以及构成暗物质的粒子。虽然实验目的与ATLAS相同,但这个探测器的磁铁系统却采用了完全不同的技术和设计。
CMS探测器是在一个巨型螺管式磁铁基础上建成的。它采用圆柱形超导电缆线圈,可产生4特斯拉的磁场,相当于地球磁场的10万倍。这个巨大磁场受一个“铁轭”限制——探测器1.25万公吨的重量大部分来自“铁轭”。与大型强子对撞机的其它巨型探测器有所不同的是,CMS探测器并不是在地下建造,而是选在地上,后分成15个部分被运至地下,最后完成组装,这也算得上它的一大特色。
共有来自37个国家的155个研究机构的2000多名科学家参与CMS实验。
CMS探测器相关资料
尺寸:长21米,宽15米,高15米
重量:1.25万公吨
位置:法国塞希(Cessy)。
LHC底夸克
LHCb实验将有助于我们理解人类为何生活在一个几乎完全由物质而非反物质构成的宇宙。它通过研究一种称为“美夸克”(beauty quark)的粒子,专门对物质和反物质之间的微妙差异展开调查。LHCb实验不是将整个撞击点同密封探测器围起来,而是使用一系列子探测器去主要探测前行粒子(forward particle)。
第一个子探测器将安装到撞击点附近,而接下来的几个将会一个挨一个安装,它们的长度都超过20米。大型强子对撞机将创造出大量不同类型的夸克,然后它们将快速蜕变为其他类型。为捕捉到“美夸克”,LHCb项目小组已开发出先进的可移动跟踪探测器,并安装在围绕于大型强子对撞机周围的光束路径附近。LHCb项目小组由来自13个国家48所研究机构的650位科学家组成。
LHC底夸克探测器相关资料
尺寸:长21米,高10米,宽13米
重量:5600吨
设计:具有平面探测器的前向接受谱仪
地点:法国费尔奈-伏尔泰
全截面弹性散射
全截面弹性散射探测器实验研究前行粒子,以重点分析普通实验难以获得的物理学原理。在一系列研究中,它将测量质子大小,还将准确监控大型强子对撞机的光度。想要做到这一点,全截面弹性散射探测器就必须要捕捉到距大型强子对撞机光束非常近的距离产生的粒子。它由一组安放在称为“罗马罐”(Roman pot)的特制真空室的探测器组成。
“罗马罐”同大型强子对撞机的光束管道相连。8个“罗马罐”将被一对一对地置于CMS实验撞击点附近的四个地点。尽管从科学意义上讲这两次实验是独立的,但TOTEM实验将是CMS探测器和其他大型强子对撞机实验所获结果的有力补充。来自8个国家10所研究机构的50位科学家将参与TOTEM实验。
全截面弹性散射探测器相关资料
尺寸:长440米,高5米,宽5米
重量:20吨
设计:“罗马罐”,GEM探测器和阴极条感应室
地点:法国塞斯(位于CMS附近)
LHCf
LHCf实验将用于研究大型强子对撞机内部产生的前行粒子,作为在实验室环境下模拟宇宙射线的来源。宇宙射线是自然产生于外太空的带电粒子,不断轰击地球大气层。它们在高层大气与核子相撞,产生一连串到达地面的粒子。研究大型强子对撞机内部撞击如何引起类似的粒子串有助于科学家解释和校准大规模宇宙射线实验,这种实验会覆盖数千公里的范围。来自4个国家10所研究机构的22位科学家将参与LHCf实验。
LHCf 探测器相关资料
尺寸:两个探测器,每个长30厘米,高80厘米,宽13厘米
重量:每个重40公斤
地点:瑞士梅林(位于ATLAS附近) LHC计划,由34个国家超过两千位物理学家所属的大学与实验室所共同出资合作兴建的。
LHC包含了一个圆周为27公里的圆形隧道,因当地地形的缘故位于地下50至150米之间。这是先前大型电子正子加速器(LEP)所使用隧道的再利用,隧道本身直径三米,位于同一平面上,并贯穿瑞士与法国边境,主要的部分大半位于法国。虽然隧道本身位于地底下,尚有许多地面设施如冷却压缩机,通风设备,控制电机设备,还有冷冻槽等建构于其上。
加速器通道中,主要是放置两个质子束管。加速管由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的偏向磁铁及聚焦磁铁。
两个对撞加速管中的质子,各具有的能量为 7 TeV (兆兆电子伏特,),总撞击能量达 14 TeV之谱。每个质子环绕整个储存环的时间为 89 微秒 (microsecond)。因为同步加速器的特性,加速管中的粒子是以粒子团(bunch)的形式,而非连续的粒子流。整个储存环将会有2800个粒子团,最短碰撞周期为 25 纳秒(nanosecond)。在加速器开始运作的初期,将会以轨道中放入较少的粒子团的方式运作,碰撞周期为 75 纳秒,再逐步提升到设计目标。
在粒子入射到主加速环之前,会先经过一系列加速设施,逐级提升能量。其中,由两个直线加速器所构成的质子同步加速器 (PS)将产生50 MeV的能量,接着质子同步推进器 (PSB)提升能量到1.4GeV。而质子同步加速环可达到26 GeV的能量。低能量入射环(LEIR)为一离子储存与冷却的装置。反物质减速器 (AD)可以将3.57 GeV的反质子,减速到2 GeV。最后超级质子同步加速器(SPS)可提升质子的能量到450 GeV。
60余名中国科学家(其中近四十人为台湾科学家)参与强子对撞机实验。在LHC加速环的四个碰撞点,分别设有五个侦测器在碰撞点的地穴中。其中超环面仪器 (ATLAS)与紧凑渺子线圈(CMS)是通用型的粒子侦测器。其他三个(LHC底夸克侦测器(LHCb),大型离子对撞器(ALICE)以及全截面弹性散射侦测器(TOTEM)则是较小型的特殊目标侦测器。LHC也可以用来加速对撞重离子,例如 铅(Pb)离子可加速到1150 TeV。由于LHC有着对工程技术上极端的挑战,安全上的确保是极其重要的。当LHC开始运作时,磁铁中的总能量高达100亿焦耳(GJ),而粒子束中的总能量也高达725百万焦耳(MJ)。只需要10?7总粒子能量便可以使超导磁铁脱离超导态,而丢弃全部的加速粒子可相当于一个小型的爆炸。
加速器通道中,主要是放置两个质子束管。加速管由超导磁铁所包覆,以液态氦来冷却。管中的质子是以相反的方向,环绕着整个环型加速器运行。除此之外,在四个实验碰撞点附近,另有安装其他的偏向磁铁及聚焦磁铁。
地球上最大的“粒子粉碎机”一路走来可谓多灾多难,现在又遇到了麻烦。两位美国公民对欧洲大型强子对撞机计划(LHC)提出了公诉,要求推迟这一“粒子粉碎机”开动的时间。他们声称,LHC可能产生危险的粒子或者微型黑洞,从而毁灭整个地球。
建造在瑞士欧洲粒子物理中心(CERN)的LHC眼看就要完工了,科学家希望它能在今年7月中旬开始运行。然而,3月21日,居住在夏威夷的Luis Sancho和Walter Wagner针对CERN和美国一些科研机构,向美国联邦地方法院提出了诉讼,要求在安全性得到证实之前,不启动LHC对撞计划。他们点名的美国科研机构包括能源部、国家自然科学基金会和芝加哥附近的费米实验室。
美国能源部和费米实验室不会对此发表评论,它们坚持认为这是一项应由司法部处理的法律案件。而CERN的一位发言人James Gillies则表示,这项诉讼要求是“彻底的胡说”。“LHC将在今年启动,并创造出各种关于宇宙的激动人心的新物理学认识。”他补充道,“从现在开始一年之后,世界还在那里。”
LHC将把质子加速到具有巨大的能量并进行对撞“粉碎”,从而模拟大爆炸后不足十亿分之一秒的情况。物理学家希望借此来解开长期以来的重大和基本难题,比如粒子为何存在质量(即验证希格斯玻色子)、空间是否隐藏着额外的维度等等 欧洲大型强子对撞机在能量升级后进行了对撞实验,科学家使用了最高能量进行对撞,目前强子对撞机已经达到能够模拟宇宙诞生的状态(曾经有人一度担心这个巨大的机器会制造出黑洞吞噬地球)。这些数据被对撞机四个探测器收集,并记录这一奇迹的诞生。在最新的一次对撞实验中,科学家使用1045万亿电子伏特的能量作用于铅离子,这是以往能量的两倍,实验等效温度达到数万亿度。达到宇宙大爆炸时期的模拟温度,重现137亿年前的宇宙诞生。
大型强子对撞机的科学家认为这是对撞机能量升级后的一次突破,在今年的对撞实验中,我们进入了探索宇宙早期物质的阶段。当宇宙大爆炸发生后,宇宙中的温度极高、密度极大,此时的宇宙就像沉浸在一种粒子汤中。这时宇宙粒子主要由夸克和胶子组成,之后逐渐形成了质子和中子。研究宇宙早期状态有助于我们解决宇宙演化的基本问题,欧洲核子研究中心总干事Rolf Heur指出,我们渴望最高能量对撞产生的极端环境,模拟宇宙大爆炸诞生。
宇宙大爆炸之后的1秒钟内,粒子环境变化非常快,夸克-胶子等离子体的存在时间仅为百万分之一秒,正式这一瞬间的变化,为宇宙质子和中子的形成奠定了基础。科学家下一步会继续增强铅离子的对撞能量,观察宇宙大爆炸后会出现何种变化,这些变化对生命的诞生有何积极的意义。这无疑是一个激动人心的时刻,我们有能力对早期的宇宙进行研究。
大型强子对撞机在两年前进入能量升级,这是目前世界上最强大的粒子加速器,升级后能量提升了近两倍,科学家正在向新物理学方向前进,我们有望发现隐藏的维度和暗物质奥秘。目前宇宙学仍然存在许多未解之谜,其中时空维度、暗物质、暗能量都是未知的。这台强子对撞机将为我们带来更多惊喜。 欧洲对撞机实现迷你宇宙大爆炸
创10万亿度高温2010年11月09日 09:42 新浪科技 消息,据《独立报》报道,科学家借助欧洲大型强子对撞机(LHC)成功完成了创造迷你版“宇宙大爆炸”的实验,产生了一个温度为太阳核心温度100万倍的火球。参与这个项目的英国科学家热烈庆祝了这个具有里程碑意义的实验。大型强子对撞机创造了一个迷你版本的“宇宙大爆炸”。参与大型强子对撞机项目ALICE铅离子对撞实验的英国科学家都在庆祝对撞实验取得成功,这将开启粒子物理学研究的新世纪。“迷你大爆炸”是通过令铅离子高速撞击产生的,撞击产生的温度是太阳核心温度的100万倍,重现了大爆炸后宇宙的瞬间状况。
ALICE离子对撞实验项目英国小组成员、伯明翰大学物理学家戴维·埃文斯博士说:“我们对这一成就激动万分。对撞实验产生了迷你版本的宇宙大爆炸以及在实验中取得的有史以来的最高温度和密度。这个过程发生在一个安全、可控的环境内,生成了炽热和稠密的亚原子火球,温度超过10万亿度,即太阳核心温度的100万倍。在这一温度下,连构成原子核的质子和中子也被融化了,产生称为‘夸克与胶子等离子体’的炽热而稠密的夸克与胶子汤。”
强大的磁体令铅离子以接近于光速的速度在地下数百英里的隧道内高速运转。铅离子以相反的两个方面飞行,最后聚焦变成一个狭长的光束,被迫在ALICE探测器内撞击。科学家希望,通过夸克与胶子等离子体,可以让他们对强作用力有更多的了解。强作用力是自然界存在的四种基本作用力之一。
埃文斯说:“强作用力不仅使原子核牢牢地绑定在一起,而且还对它们98%的质量负责。我现在期待着研究大爆炸发生后瞬间构成宇宙的一小部分物质。”ALICE探测器是大型强子对撞机的组成部分。大型强子对撞机是世界上最大、能量最高的粒子加速器,旨在探究宇宙起源,它建在法国与瑞士边境地下一条16.7 英里(约合27公里)长的环形隧道内,由欧洲核子研究中心(Cern)负责管理。

❷ 学习解读GBT50493-2019石油化工可燃气体和有毒气体检测报警设计标准

GBT 50493-2019修编主要内容(全文免费下载):

1、标准名称由“设计规范”改为“设计标准”;

2、有毒气体范围由《高毒物品目录》中所列毒气扩大到常见剧毒气体;

3、增加了可燃气体和有毒气体检测报警系统(简称GDS)的设计相容性、独立性和可靠性要求;

4、增加了可燃气体和有毒气体检测报警系统(简称GDS)应与火灾及消防监控系统分开设置的要求;

5、增加了开路式(激光、红外)探测器、噪声探测器等内容,进一步完善了探测器的布点和布置要求;

6、增加了常见气体探测器选用指南、GDS配置图等5个规范性标准附录;

7、对标准的部分章节和条款内容进行了修改和完善,取消了强制性条文。

◆原:名称GB50493-2009《石油化工可燃气体和有毒气体检测报警设计规范》

◆现:名称GB/T 50493-2019《石油化工可燃和有毒气体检测报警设计标准》

◆条文说明:

根据国标最新标准,作为规范类文件,必须全部是强制性条文,作为推荐型标准,是没有强制性条文的。

◆原:GB50493-2009 3.0.6:可燃气体检(探)测器应采用国家指定机构或其授权检验单位的计量器具制造认证、防爆性能认证和消防认证的产品。

◆现:GB/T50493-2019 3.0.5:可燃气体探测器必须取得国家指定机构或其授权检验单位的计量器具型式批准证书、防爆合格证和消防产品型式检测报告;参与消防联动的报警控制单元应采用取得国家消防电子产品质量监督检验中心型式检测报告的专用可燃气体报警控制器;国家法规有要求的有毒气体探测器必须取得国家指定机构或其授权检验单位的计量器具型式批准证书。安装在爆炸危险场所的有毒气体探测器还应取得国家指定机构或其授权检验单位的防爆合格证。

◆条文说明:

2017年12月26日全国人大已批准新计量法于2017年12月28日执行。修改主要内容:取消制造、修理计量行政许可(即取消计量制造认证),严格执行计量器具型式批准许可。

可燃气体探测器目前已不需要取得CCCF认证,但销售时应取得消防产品型式试验检测报告(必须有)和消防产品认证证书(企业自愿取证)。

◆原:GB50493-2009 3.0.9:可燃气体、有毒气体检测报警系统宜独立设置。

◆现:GB/T50493-2019 3.0.8:可燃气体和有毒气体检测报警系统应独立于其他系统单独设置。

◆条文说明:

可燃气体和有毒气体检测报警系统不能生产过程控制系统合并设计,是为了保证工艺装置生产过程控制系统出现故障或停用时,可燃气体和有毒气体检测报警系统仍能正常工作。

2014年国家安监总局安监总管三[2014]116号文中也明确要求:可燃气体和有毒气体检测报警系统应独立设置。因此,本标准修订时,参照 GB50116和安监总管三[2014]116号文有关要求,对GDS的设置要求进行了重新修订。

◆原:GB50493-2009 3.0.11:工艺装置和储运设施现场固定安装的可燃气体及有毒气体检测报警系统,宜采用不间断单元(UPS)供电。加油站、加气站、分散或独立的有毒及易燃易爆品的经营设施,其可燃气体及有毒气体检测报警系统可采用普通电源供电。

◆现:GB/T50493-2019 3.0.9:可燃气体和有毒气体检测报警系统的气体探测器、报警控制单元、现场警报器等的供电负荷,应按一级用电负荷中特别重要的负荷考虑,宜采用UPS电源装置供电。

◆条文说明:

分散或独立的有毒及易燃易爆品的设施,如加油站、加气站等,一般采用盘装或壁挂式,电源功率较小,故规定检测报警系统也可采用普通电源供电。

◆原:GB50493-2009 3.0.4:报警信号应发送至现场报警器和有人值守的控制室或现场操作室的指示报警设备,并且进行声光报警。

◆现:GB/T50493-2019 3.0.3:可燃气体和有毒气体检测报警信号应送至有人值守的现场控制室、中心控制室等进行显示报警;可燃气体二级报警信号、可燃气体和有毒气体检测报警系统报警控制单元的故障信号应送至消防控制室。

◆条文说明:

消防控制室也需要对可燃气体二级报警信号、可燃气体和有毒气体检测报警系统报警控制单元的故障信号进行监控。

◆原:GB50493-2009 3.0.8:可燃气体或有毒气体场所的检(探)测器,应采用固定式。

◆现:GB/T50493-2019 3.0.6:需要设置可燃气体、有毒气体探测器的场所,宜采用固定式探测器;需要临时检测可燃气体、有毒气体的场所,宜配备移动式气体探测器。

◆条文说明:

对于一些不具备设置固定式可燃气体或有毒气体探测器的场所,通常可以安装移动式可燃气体或有毒气体探测器,以确保生产和维护的安全需要。如:环境湿度过高;环境温度过低;或在正常情况下视为非爆炸或无毒区,生产检修时可能为爆炸或有毒危险区等,受检测产品的性能所限,通常可以安装移动式可燃气体或有毒气体探测器,以确保生产和维护的安全需要。

◆原:GB50493-2009 2.0.2:有毒气体:指劳动者在职业活动中通过机体接触可引起急性或慢性有害健康的气体。本规范中有毒气体的范围是《高毒物品目录》(卫法监发[2003]142号)中所列的有毒蒸气或有毒气体。常见的有:二氧化氮、硫化氢、苯、氰化氢、氨、氯气、一氧化碳、丙烯腈、氯乙烯、光气(碳酰氯)等。

◆现:GB/T50493-2019 2.0.2:有毒气体指劳动者在职业活动中,通过皮肤接触或呼吸可导致死亡或永久性伤害的毒性气体或毒性蒸气。

◆条文说明:

只要通过皮肤接触或呼吸可导致死亡或永久性伤害的气体,都称为有毒气体。都需要遵循本规范。

◆原:GB50493-2009 3.0.5:装置区域内现场报警器的布置应该根据装置区的面积、设备及建筑物的布置、释放源的理化性质和现场空气流动特点等综合确定。现场报警器可选用音响器或报警灯。

◆现:GB/T50493-2019 3.0.4 :控制室操作区应设置可燃气体和有毒气体声、光报警;现场区域警报器宜根据装置占地的面积、设备及建构筑物的布置、释放源的理化性质和现场空气流动特点进行设置,现场区域警报器应有声、光报警功能。

◆条文说明:

当现场可燃和(或)有毒气体探测器的数量少于10个,现场环境噪声低于85dBA,且探测器自带一体化声、光报警器时,在不影响现场报警效果情况下,可不需设置现场区域报警器。

当现场环境噪声超过85dBA,探测器自带的一体化声、光报警器难以达到报警效果时,为了警示现场工作人员,在生产现场主要出入口及高噪声区等部位,需设置现场区域警报器。

◆原:GB50493-2009 3.0.10:便携式可燃气体和(或)有毒气体探测器的配备,应根据生产装置的场地条件、工业介质的易燃易爆特性及毒性和操作人员的数量等综合确定。

◆现:GB/T50493-2019 3.0.7:进入爆炸性气体环境和(或)有毒气体环境的现场工作人员,应配备便携式可燃气体和(或)有毒气体探测器。进入的环境同时存在爆炸性气体和有毒气体时,便携式可燃气体和有毒气体探测器可采用多传感器类型。

◆原:GB50493-2009:气体密度大于0.97kg/m³(标准状态下)的即认为比空气重;气体密度小于0.97kg/m³(标准状态下)的即认为比空气轻。

◆现:GB/T50493-2019 4.1.2:判别泄漏气体介质是否比空气重,应以泄漏气体介质的分子量与环境空气的分子量的比值为基准:比值≥1.2,泄漏介质重于空气;1.0 ≤比值<1.2,泄漏介质略重于空气;0.8<比值<1.0,泄漏介质略轻于空气;比值≤0.8,泄漏介质轻于空气。

◆条文说明:

由于温度和海拔对气体的密度影响较大,为了方便判断泄漏的介质泄漏到大气中时,泄漏气体介质是否比空气重,本标准用泄漏介质的气体分子量与当地空气的分子量的相对比值作为判据。

◆原:GB50493-2009 4.4.2:设在爆炸危险区域2区范围内的在线分析仪表间,应设可燃气体(检)探测器。

◆现:GB/T50493-2019 4.4.2:设在爆炸危险区域2区范围内的在线分析仪表间,应设可燃气体和(或)有毒气体探测器,并同时设置氧气探测器。

◆原:GB50493-2009 6.1.1:相对气体密度大于0.97kg/m³(标准状态下)的即认为比空气重;相对空气密度小于(标准状态下)的即认为比空气轻。检测比空气重的可燃气体和/或有毒气体时,推荐的检(探)测器安装高度应高出地坪(或楼板面)0.3m~0.6m。过低易造成因雨水淋、溅,对检(探)测器的损害;过高则超出了空气重的气体易于积聚的高度。

◆现:GB/T50493-2019 6.1.2:检测比空气重的可燃气体或有毒气体时,探测器的安装高度宜距地坪(或楼地板)0.3m-0.6m;检测比空气轻的可燃气体或有毒气体时,探测器的安装高度宜在释放源上方2m内。检测比空气略重的可燃气体或有毒气体时,探测器的安装高度宜在释放源下方0.5m-1m;检测比空气略轻的可燃气体或有毒气体时,探测器的安装高度宜高出释放源0.5m~1m(新增)。

◆条文说明:

检测比空气轻的可燃气体或有毒气体时,探测器的安装高度宜在释放源上方2m内,09版规范为:高出释放源0.5~2m。

6.1.3 环境氧气探测器的安装高度宜距地坪或楼地板1.5m~2.0m。(新增)

6.1.4 线型可燃气体探测器宜安装于大空间开放环境,其检测区域长度不宜大于100m(新增)。

◆原:GB50493-2009 3.0.5:当现场斤需要布置数量有限的可燃或有毒气体(检)探测器时,在不影响现场报警效果的条件下,现场报警器可与可燃及有毒气体探测器探头合体设置。当现场需要布置数量众多的可燃或有毒气体(检)探测器时,此时现场报警器应与可燃及有毒气体(检)探测器分离设置,并根据现场情况,提出声光警示要求,分区设置。

为了提示现场工作人员,现场报警器常选用升级为105dBA的音响器,在高噪音区[噪声超过85dBA]以及生产现场主要出入口处,通常还设立旋光报警灯。

◆现:GB/T50493-2019 5.3.2:区域警报器的报警信号声级应高于110dBA(09版标准为105dBA),但距警报器1m处总声压值不得高于120dBA。

◆条文说明:

现场报警器选用,由原来105dBA的音响器修订为110dBA。

◆原:GB50493-2009 3.0.2:可燃气体和有毒气体检测的一级报警为常规气体泄漏警示报警,提示操作人员到现场巡检。当可燃气体和有毒气体浓度达到二级报警值时,提示操作人员应采用紧急处理措施。当需要采取联动保护时,二级报警的输出接点信号可供使用。现场发生可燃气体和有毒气体泄漏事故时,为了保护现场工作人员的身体健康,以便操作人员及时处理,对同时发出的有毒气体和可燃气体的检测报警信号的处理,应遵循二级报警优先于一级报警;属同一报警级别时,有毒气体的报警级别优先的原则。

◆现:3.0.2 可燃气体和有毒气体的检测报警应采用两级报警。同级别的有毒气体 和可燃气体同时报警时,有毒气体的报警级别应优先。

◆条文说明:

①一级报警为气体泄漏警示,提示操作人员及时到现场巡检处理;

②二级报警为气体泄漏紧急报警,提示操作人员采取紧急处理措施;

③当气体泄漏需联动保护时,应采用二级报警接点信号作为联动保护条件;

④现场探测器自带的警报器接受探测器输出的一、二级报警信号,现场区域警报器接受GDS系统输出的第二级报警信号。

◆现:GB/T 50493-2019 3.0.1:在生产或使用可燃气体及有毒气体的生产设施及储运设施的区域内,泄漏气体中可燃气体浓度可能达到报警设定值时,应设置可燃气体探测器;泄漏气体中有毒气体浓度可能达到报警设定值时,应设置有毒气体探测器;既属于可燃气体又属于有毒气体的单组分气体介质,只设有毒气体探测器;可燃气体与有毒气体同时存在的多组分混合气体,泄漏时可燃气体浓度和有毒气体浓度有可能同时达到报警设定值,应分别设置可燃气体及有毒气体探测器。

◆条文说明:

对于含多种有毒气体组分的混合气体,或不同工况条件下泄漏气体的 组成差异大时,当各毒性气体组分的气体浓度都有可能达到各组分的有毒 气体浓度报警设定值时,为确保生产安全,需要分别设置有毒气体探测器。

◆原:GB50493-2009 4.1.2:下列可能泄露可燃气体、有毒气体的主要释放源应布置检测点:

1、气体压缩机和液体泵的密封处;

2、液体采样口和气体采样口;

3、液体排液(水)口和放空口;

4、设备和管道的法兰和阀门组;

◆现:GB/T50493-2019 4.1.3:可燃气体和(或)有毒气体释放源周围应布置检测点:

1、气体压缩机和液体泵的动密封;

2、液体采样口和气体采样口;

3、液体/气体排液(水)口和放空口;

4、经常拆卸的法兰和经常操作的阀门组。

◆条文说明:

根据《爆炸危险环境电力装置设计规范》GB50058规定,释放源应按物质的释放频繁程度和持续时间长短分为连续释放源、第一级释放源和第 二级释放源。第一级释放源:在正常运转时周期或偶然释放;第二级释放源:在正常情况下不会释放,即使释放也仅是偶尔短时释放。

可燃气体和有毒气体探测器检测的主要对象是属于第二级释放源的设备或场所。

◆现:GBT 50493-2019 4.3.1 液化烃、甲B、乙A类液体等产生可燃气体的液体储罐的防火堤内,应设探测器。可燃气体探测器距其所覆盖范围内的任一释放源的的水平距离不宜大于10m,有毒气体探测器距其所覆盖范围内的任一释放源的的水平距离不宜大于4m。

◆注:AQ3036-2010《危险化学品重大危险源罐区现场安全监控装备设置规定》7.2.1.1要求:可燃气体或易燃液体储罐场所,在防火堤内每隔20~30m设置一台可燃气体报警仪,且监测报警仪与储罐的排水口、连接处、阀门等易释放物料处的距离不宜大于15m。

◆现:GBT 50493-2019 3.0.10 确定有毒气体的职业接触限值时,应按最高容许浓度、时间加权平均容许浓度、短时间接触容许浓度的优先次序选用。

◆条文说明:有毒气体的三种职业接触限值(OEL)数值由低到高依次为:最高容 许浓度MAC、时间加权平均容许浓度PC-TWA(每天8小时,每周5天)、短时间接触容许浓度PC-STEL(15分钟)。

根据目前国内、外有毒气体探测器的制造水平,如果采用MAC市场上 无探测器可选,在确保操作人员健康安全前提下,同时有多个职业接触限 值的有毒气体,应按MAC、PC-TWA、PC-STEL优先顺序选用;没有提供OEL值的有毒气体,可按直接致死浓度IDLH选用。

◆现:GBT 50493-2019 5.4.3可燃气体探测器参与消防联动时,探测器信号应先送至取得国家消防电子产品质量监督检验中心型式检测报告的专用可燃气体报警控制器,报警信号应由专用可燃气体报警控制器输出至消防控制室的火灾报警控制器。可燃气体报警信号与火灾报警信号在火灾报警控制系统中应有明显区别。

根据GB50493、GB50116及安监总管三[2014]116号文有关规定及要求,可燃气体和有毒气体检测报警系统(GDS)应按下列原则进行设计:

1、GDS系统应由可燃气体或有毒气体探测器、现场区域警报器和室内报警控制单元等组成。现场有毒气体探测器宜带一体化声光报警器,可燃气体探测器可带一体化声光报警器。

2、报警控制单元应采用独立设置的以微处理器为基础的电子产品(包括独立设置的PLC、专用气体报警控制器、DCS控制器等) 。

3、报警控制单元发出二级报警信号时,应触发安装在现场相应报警分区的区域警报器。

4、可燃气体二级报警信号和报警控制单元的故障信号,应送至消防控制室进行图形显示和报警。可以设置一台独立的显示器。

5、可燃气体探测器参与消防联动时,探测器信号应先送至取得国家消防电子产品质量监督检验中心型式检测报告的专用可燃气体报警控制器,消防联动信号由报警控制器输出至消防控制室的火灾报警控制器,火灾报警控制器实施消防联动功能。可燃气体探测器信号不能直接接入火灾报警控制器的输入回路。

6、可燃气体或有毒气体检测信号作为安全仪表系统(SIS)的输入时,探测器应独立设置,探测器配置应根据SIL回路定级结果确定,并满足《石油化工安全仪表系统设计规范》GB/T 50770有关规定。

◆说明:

探测器信号用于警示报警时,GDS报警控制单元采用独立设置的以微处理器为基础的电子产品即可,既不需要取得SIL认证,也不需要取得消防产品型式检测报告;探测器信号用于消防联动时,GDS报警控制单元应采用取得国家消防电子产品质量监督检验中心型式检测报告的专用可燃气体报警控制器;探测器信号用于安全联锁时,根据《石油化工安全仪表系统设计规范》GB/T 50770有关规定,SIL1及以下安全等级的联锁信号可接入GDS,SIL2及以上安全等级的联锁信号应接入SIS。

❸ 有关α 、 β 、γ源的知识,还有在核子仪方面的相关使用原理,还请再详细说一下,谢谢

α 放射源是所有能够发生α 衰变的原子核(即从核内放出氦离子,自身的原子序数向前移二,质量数减四)
例如:U-238就是α 放射源,因为U-238 => Th-234 + α
β 放射源是所有能够发生β 衰变的原子核(由于中子变成质子,亏损部分变为电子逃逸)
例如:Th-234就是β 放射源,因为Th-234 => Pa-234 + β
γ 放射源是所有能够发生γ 衰变的原子核(由于某种原因,放出的一种波长很短电磁波,本人知识有限,还在研究)
例如:Tl-208 => Po-212 + γ(为什么会质量增加呢?)
Fr-223 => Th-227 + γ
Pb-211 => At-215 + γ(为什么会质量增加4呢?)核子密度仪或者核子仪是核子密度/湿度检测仪的简称,是利用同位素放射原理实时检测土工建筑材料的密度和湿度的电子仪器。核子密度通常安装有一个密封的 10毫居里的铯137伽玛源和一个密封的50毫居里的镅241/铍中子源,仪器中还安装有密度和湿度两种射线探测器,分别与伽玛源和中子源共同对被测材料的密度和湿度进行测量。 工业上一些水泥厂、选煤厂等使用的厚度计、料位计、密度计及核子秤等也使用同类的放射性同位素,但这类仪器所使用的放射源的活度一般为十到五百个居里,是土木工程上使用的核子仪的一千倍到五万倍,两者完全不在一个数量级上。两类仪器虽然名称相似,而且采用近似的检测原理,但它们的使用方式、防护方法和应用目的完全不同。
编辑本段核子密度仪的基本检测功能和检测方法
核子仪用于施工现场快速地检测建筑材料的湿密度(总密度)和含水量(湿度)。完成一次检测通常只需要1分钟或更短时间。不同品牌和厂家的仪器功能各不相同。有的仪器只检测密度或只检测湿度,多数品牌的仪器可以同时检测密度和湿度。 注2:核子仪通过检测被测材料中含有的所有元素的原子量总和来计算被检测材料的总密度(湿密度),所以仪器的密度检测不受被检测材料的颗粒大小、级配、均匀度,以及物理状态、化学成分等方面的影响。除非被测材料的化学组成与常规材料有很显著的不同,通常情况下核子仪密度检测结果不需要进行校正。 核子仪测量湿度时,测量的是被测材料中所有的氢原子,在大多数土壤和骨料中,氢原子存在于自由水中。但是蛇纹石、黏土、有机体和石灰处理的土壤含有结合水,这些材料中的结合水对仪器检测材料的含水率有轻微影响。这个问题可以通过非常简便的在仪器中输入水分偏置量的方法进行校正。 对于各种土壤和没有凝固的水泥混凝土等材料,通常采用透射法。这个方法是在被检测材料中用钢钎钻一个垂直的检测孔,然后将仪器的探测杆伸入到被检测材料中,在各个深度上检测材料的密度和湿度。对于石头、混凝土等不能造孔的材料,通常采用反射法。这个方法是将仪器放置于被检测材料的表面,根据被检测材料的厚度和种类采用适应的检测档位,直接检测材料的密度、压实度等指标。 除了以上两种基本检测方法,有的核子仪具备更多和更强大的检测功能,比如MC-3C和MC-4C核子仪的反射法有BS和AC两个档位,分别用于不同的检测材料和检测要求,可以对任意厚度的面层材料等进行精准检测。
编辑本段核子仪可以检测的建筑材料和适用的检测领域
通常核子仪都可以用于检测各种类型的土壤、石头、土石混合物等土工材料。有些仪器可以检测水泥混凝土,但很多仪器不能检测沥青混合料和层厚比较小的混凝土材料。 注3:通常核子仪检测土工材料时,被测材料必须有一定的厚度和足够大的体积,否则没有足够多的射线计数用于计算密度或湿度。沥青混合料通常在铺筑时每层的厚度都不会超过7-8厘米。仪器在检测时射线会穿透这个层厚而同时检测了其它材料,这样仪器的检测结果就不仅仅是我们希望检测的薄层材料的密度,而是不同层厚的材料的共同的密度。除非仪器设计人员专门为这种检测目的进行程序上和检测技术上的改造而设置薄层检测功能,否则仪器就不能用于检测薄层的沥青混合料和其它混凝土材料。 核子仪可以用于公路的地基、基层和面层、铁路路基、水库堤坝、机场跑道以及港口、发电厂、高等级赛车跑道、高层建筑等土木工程的现场施工的质量控制、监理检测、工程验收。核子仪可以用于各种土木工程的养护检测及各种研究和开发。用于实验室和工程试验区段可以快速、准确获取各项施工参考数据。 注4:由于核子仪检测的准确、快速、安全和低成本,目前在压实度检测方面没有任何其他方法可以取代核子仪。尤其在使用沥青混凝土和水泥混凝土的工程项目上,没有核子仪的应用,要保证工程的质量和施工效率是不可能做到的。所以在世界范围内,核子仪被及其广泛地应用于几乎所有的大型和重要的土木工程项目。
编辑本段核子密度仪的发展历史
第二次世界大战以后,许多国家由于战后重建和经济发展的需要,都陆续进行大规模的基础设施建设。世界各地的许多研究组织,研究利用核技术测定建筑材料的密度、含水量以及其它指标,以保证工程项目的质量和建设速度。 在1968年以前,只有一种标准方法用于现场测定土壤和集料的密度—灌沙法。这种设备的操作人员必须在地面挖一个洞,在洞中填满沙子,计算出密度,然后取一个试样到实验室测定含水量。这个方法对于每次检测都要花费半个小时的时间,操作人员需要避免许多出现差错的原因,并且这种检测方法是破坏性的--因为留下了一个必需修复的洞。含水量的检测结果要在第二天试样烘干了以后才会得到。1968年以前,也只有一种标准方法用于现场测定沥青路面密度。在路面中用钻孔法得到一个芯样。把取芯试样带回实验室,用天平称取重量,并测量出它的体积。然后计算出密度,也就是重量除以体积。 到了1968年,美国坎贝尔(CPN)公司率选将便携式密度/湿度检测仪进行了商业化生产,并将仪器销售给美国各州的公路部门和私营的检测公司。核子仪对放射源进行了充分的防护,使核子密度检测技术与其它检测技术一样安全。到了1972年,核子仪在硬件设计和软件应用方面有了显著的改进。便携式核子仪可以对于土壤和沥青混凝土路面进行高精度的快速检测,并且核子仪可以消除由于土壤类型或化学成分不同导致的检测偏差。新的仪器设计,完全使用了高效能的现代电子技术,这使仪器变得轻便、可靠并易于操作。80年代以后,核子仪安装了可以进行现场编程微处理器,可以直接从显示器读取测量结果,从而更大地减少了操作人员的现场检测的工作量。 在过去的三十多年时间里,核子仪用于土工材料的密度和湿度检测已在世界范围内得到认可,并成为业界的标准检测方法。
编辑本段核子密度仪的分类
浅层核子仪
—浅层核子仪又称为表层核子仪。当我们提到核子仪时,通常是指测量深度为30厘米的浅层核子密度/湿度检测仪,如MC-3C型和MC-4C型核子仪。在公路、铁路及水利大坝等土木工程的施工中应用最为广泛和市场上最常见的就是这种浅层核子仪。本文介绍的核子仪主要是指这种浅层核子仪。
分层核子仪
(双杆核子仪)—分层核子仪又称为中层核子仪,测量深度为60-90厘米, 如MC-S-24和MC-S-36型核子仪。分层核子仪有两根检测杆,所以有的地方称作双杆核子仪,其放射源和检测器分别放置于两根不同的探杆的端部, 沿水平层面逐层检测被压实材料, 一般应用于压实层较厚的情况, 特别适用于碾压混凝土(RCC)工程项目的压实检测。
深层核子仪
—深层核子仪的测量深度为数米至数百米深,如501DR核子密度仪和503DR中子水分仪。深层核子仪一般用于深层填埋材料的密度和含水率检测, 还有定点长期监测公路、铁路路基、堤坝、护坡等的密度和含水率的变化以及用于检测水中的含沙量和含泥量。
沥青含量核子仪
—核子沥青含量检测仪用于无污染、快速检测沥青混合料中的沥青含量,代表性的型号有AC-2R沥青含量测试仪。
其它核子仪
—除了以上各种仪器以外,被称作核子仪的还有用于土壤水分检测的中子水分检测仪和用于化工管道绝热层中隐藏水分检测的核子管道水分检测仪等,比如MCM-2管道检测仪。
编辑本段核子密度/湿度检测仪的工作原理
1. 总密度(湿密度)检测原理
一个密封的10毫居里铯-137伽玛源向土壤等被测材料放射伽玛射线,穿透被检测材料的射线会被仪器中的密度检测管检测到。如果材料的密度较低,材料吸收的伽玛射线较少,那么在一定时间内较多的伽玛射线就会穿过材料,检测管的计数将较高:反之,如果材料的密度较高,高密度的材料吸收了更多的伽玛射线,那么在同样时间内就会有较少的伽玛射线穿过材料,检测管的计数将较低。 伽玛射线在被测材料中的穿透、反射和被吸收等行为只与被测材料中的组成成分的所有原子的原子核的质量相关。核子仪测量的总密度实际是单位体积的土工材料总的原子量。只有当被测材料的总的原子量发生变化时,核子仪的检测结果才相应地发生变化。
2.水分(湿度)检测原理
一个密封的50毫居里镅241/铍中子源向土壤等被测材料放射高能中子射线,高能中子与氢原子碰撞后,迅速失去能量而变成低能中子,而其它任何种类的原子都不能象氢原子那样显著减少高能中子的能量。被测材料中的湿度越高,水分含量就越高,氢原子就越多,当中子射线穿过时,将产生更多的低能中子;同样的原因,当被测材料较干时,产生的低能中子数目就较少。仪器中的湿度检测管只检测低能中子。低能中子计数越高,表示被测材料的湿度越高;反之,低能中子计数越低,表示湿度越低。核子仪测量的是地表到地表以下10公分的材料的平均含水率。 核子仪在进行密度和水分测量时,分别使用不同的放射源,不同的射线接受器,不同的数据计算系统,所以密度和水分两个检测系统相互独立,其检测数据也互不影响。
编辑本段核子仪的标准计数和检定(标定)
标准计数—放射源衰减、周围环境变化和本底辐射都会影响仪器的检测数据。每天或检测环境发生变化后,将仪器放置标准计数块上进行计数,获得新的计数参比结果,可以清除以上因素对检测结果的影响。标准计数使用的工具是标准计数块。标准计数块为一小型的长方体塑料块,简称标准块。其密度和含有的氢元素都是稳定不变的。标准块厚度为5.1厘米或7.6厘米,面积相当于核子仪底座的面积。每台仪器都有自己对应的标准块。 核子密度仪的检定—核子仪之所以能够准确检测材料的密度和湿度是因为核子仪在制造时经过了检定。检定的具体方法是将仪器依次对一组密度高低不同的标准材料块(检定块)进行检测,建立射线数量和标准密度值之间的对应关系。在坐标图上,将不同的射线计数与标准密度之间的对应的点连接起来就会得到一条检定曲线,即在仪器的射线计数率与材料测试结果(密度和湿度)之间建立了适当的对应关系。检定数据可以以图、表和等效系数等方式表示出来或贮存在仪器里面,以用于将计数率换算成材料的密度值。 每一台核子仪在出厂时,都应该已经检定过了。现存仪器经过可能影响仪器结构的维修后,必须进行检定。所以最多每隔一年就应该使用标准密度和湿度材料对仪器的检定进行验证或重新建立检定关系。如果验证发现核子仪的检测结果与标准材料的密度或湿度之间的差异已经不符合检测要求,需要重新建立新的检定关系。
编辑本段核子仪的安全性
由于核子仪采用了放射原理测量密度和湿度,很多人因为不了解放射源的活度大小和人体允许接受的剂量多少和正确理解,只要一听说是放射源,就产生恐惧感,不敢使用仪器。其实我们无论身处何地,环境中都有本底辐射,我们在日常生活中无时无刻都不可能避免辐射。 手提式核子秘密/湿度土壤检测仪的商业应用已经超过35年之久,目前大约有数万台核子仪在全世界范围内应用于土木工程、地质学、农业和环境检测中。 核子仪的拥有者和使用者要遵守政府主管部门制定的法律和规定。这可能包括需要获得许可证以及操作员要学习如何正确使用仪器。核子仪操作人员可以使用个人剂量检测装置监测受到的剂量,最常用的是剂量胶片。没有任何核子仪操作人员受到的放射线剂量超过国际辐射防护委员会的5雷姆/年的职业界限。实际上,操作员受到的只是这个界限的很小的一部分,少于我们从自然界获得本底辐射的年平均值。从未有案例表明由于使用核子密度仪而受到长期或短期辐射伤害。与我们经常忽视的吸烟、饮酒等日常行为给我们带来的危害相比,核子仪对身体的影响是微乎其微的。从来没有发生过密封放射源由于物理损坏或火灾等原因产生泄漏,即使每年都有一些核子仪在野外施工中被意外严重毁坏,从没有发生过对操作人员和普通公众发生污染的事故。 通过专门的设计,核子仪的表面剂量率低于操作人员或是公众需进行特别防护的水平,运输车辆或检测的位置不需要进行公告。不需要配备任何附加的防护衣服和装置。 每个国家都会有主管的政府部门对放射性产品进行严格的检测,已确认其安全性。中国环保部门和商检部门对每台正规进口到中国的仪器都要进行严格检测,通过检测的仪器必然符合安全规定和要求,用户可以放心使用。只要购置的是政府主管部门批准和认可的核子仪并且是将仪器用于正常的检测,绝不可能对操作人员造成任何危害。
编辑本段核子仪检测法与其它密度湿度检测方法
核子仪检测方法适应于检测任何粒径、级配、组成成分和组成结构的土壤、石头等材料。美国ASTM 国际标准D2922-04《用核子法现场检测土和土石混合物密度的标准检测方法(浅层)》规定:本试验方法可快速、无损地现场测定土壤和岩石的密度。适用于施工质量控制、土壤和岩石等工程的验收试验,并可用于研究和开发。试验的无损特性允许在同一个试验点进行多次重复检测。 ASTM D2922、D2950《用核子法现场检测沥青混凝土的密度的标准方法》和C1040《用核子法现场检测混凝土密度的标准方法》等标准认为目前并没有任何其它检测土壤、岩石、沥青混合料、混凝土等材料的密度检测方法具有足够高的准确度可以与核子法进行对比。如果被检测材料的化学成分与常规材料有非常显著的不同,可以采用这种材料按照规定制备一个用于现场校准的材料块,按照严格的步骤进行检测、称重并计算后用于对核子仪的实际检测结果进行调整。 ASTM 标准D3017《用核子法现场测定土壤和岩石含水量(浅层) 》规定:核子仪适用于在现场采用快速、非破坏性技术测量土壤和岩石中的含水量。可应用于建设、研究开发过程中对压实的土壤及岩石进行质量控制和验收检验。本方法的非破坏性的特性允许对单个检测点上进行多次重复测量,并对其结果进行统计分析。如果被检测材料含有的结合水或有机质比常规的土壤多,需要与烘干法等进行对比试验。 所以通常情况下,检定合格的核子仪可以准确检测材料的密度和湿度,并不需要与其它检测方法进行对比。由于对一些不确定因素的疑虑和历史等各个方面的原因,我国的一些行业标准要求使用核子仪时,无论是密度检测还是湿度检测,都要求使用传统的密度、湿度检测方法对核子仪的检测进行对比试验。 但是对试样获取方法、对比试验的具体程序等方面没有具体的要求和指导。所以不同的领域,不同的技术人员按照自己对对比试验的理解进行的对比试验往往各不相同,其中很多情况都是不正确的。测量密度和湿度的传统方法有很多,各自适用于不同的检测材料,所以对于不同的检测材料,必须选择适当的方法与核子仪进行对比。比如对细粒土、粗粒土、土石混合物、沥青混合料、水泥混合料以及岩石等不同的材料必须根据情况选择适当的正确的方法与核子仪进行对比。进行对比试验时,核子仪法和传统方法检测的试样必须一致。如果被检测材料的试样不同,即使用同一种方法让不同的操作人员进行对比试验,两个人的检测结果可能相差很远。
编辑本段核子密度仪优势
将核子密度仪与灌沙法或其它破坏性检测方法相比较,其优势是显而易见的,主要包括:
无损检测
A.核子仪检测土壤,只需要检测表面平滑,钻一个直径为20毫米的检测孔。这样小的孔不需要修补。对于灌沙法的检测,需要挖一个直径为150毫米的洞, 这样大的洞必需回填修补。 B.对于沥青路面,只需要路面平整,核子仪就可以用反射法进行检测。但取芯法,一定会给路面留下一个必须修补的孔洞。
准确性
A.核子仪对位于放射源与探测器之间的材料总重量进行响应,检测不受被检测材料中的化学的、矿物的或质地成分的影响。检测非常正确性,无论材料是否均匀,或颗粒是粗是细。 B.被检测的土壤土壤体积很大,检测结果的代表性更好。对于检测深度为8英寸(20CM)透射密度检测,试样体积大约为25立方英尺。而灌沙法检测,试样体积大约为10立方英尺。 C.核子仪在标准的、固定的、数值不变的土壤和岩石校准块或可以溯源到真实土壤的其它标准的密度、湿度材料块上进行校准。检测规程推荐每隔一到二年进行一次校准。操作员可以每天用标准计数块进行标准计数,以检测仪器的校准状况和检测功能。
检测的速度
一次仪器检测的全部过程耗时不到5分钟,相对于灌沙法或取芯法大约30分钟完成一次检测,核子仪允许进行更多的检测并对项目的质量进行统计分析。 简单和安全的操作 A.操作员几乎不可能有潜在的错误。仪器进行检测只需要最低限度的指令。仪器自动计算和显示检测结果并给出单位。不同于灌沙法检测,高湿度和施工设备的震动不会影响在附近的核子仪的准确性。 B.不同于灌沙法操作员,核子仪操作员所有时间可以站立,如果有危险接近,他能安全地观察正在移动的施工设备,如果有危险,可以迅速离开。
“实时”检测
核子仪在压路机通过后几分钟就可以显示检测结果。可以立即对是否需要增加碾压进行指导,可以帮助及时调整施工方法以保证获得所需要结果。

❹ 探测制导复习资料

一、 绪论
1. 高新技术弹药
所谓高新技术弹药,指的是在弹药上采用末端敏感技术、末端制导技术、弹道修正技术等,此类弹药都具有一定的目标探测功能。
2. 三打、三防
所谓“三打”,是指打武装直升机、打巡航导弹、打隐形机。
“三防”指的是防侦察、防电子干扰和防精确打击。
3. 智能雷弹原理
它由声传感器探测1000m左右直升机螺旋桨产生的噪声,一旦分析出这种信号,雷弹锁定其频率,当信号或噪声增加到一定水平时,第二个探测系统(红外或地震动开始)工作,它能探测到直升机的接近距离或敏感到直升机螺旋桨下降气流产生的大气压力变化,一旦到达预定的距离或压力变化时,雷弹可被弹射到一定高度爆炸,毁伤直升机。
4. 灵巧化的精确制导武器有两项关键的核心技术
一项是高分辨率、高灵敏度的毫米波或红外探测敏感技术,另一项是只能化信息处理与识别技术。
二、 目标特性
1. 坦克的主要特性与特征表现在三个方面
红外辐射特性、声传播特性和行驶过程中产生的地面振动特性。
2. 红外大气窗口
在0.72~14µm波长范围之内共有8个大气窗口。
3. 喷气式飞机有4种红外辐射源
作为发动机燃烧室的热金属空腔、排出的热燃气、飞机壳体表面的自身辐射和飞机表面反射的环境辐射(包括阳光、大气与地球的辐射)。
4. 蒙皮辐射在8~14µm占重要比例的原因
一是蒙皮(以其温度为80K为例)辐射的峰值波长约为10µm,正好处在8~14µm波段范围内;二是此波段的宽度较宽;三是飞机蒙皮的面积非常大,它的辐射面积比喷口面积大许多倍。
5. 武装直升机的优点是机动性和防护能力都较强,起降场地要求低,战场运用能力强
6. 声探测技术利用目标发出或反射的声波,对其进行测量,从对其进行识别定位和跟踪
7. 声音的曲线传播:由于空气中不同高度的温度相差较大,所以不同高度声音传播的速度不同,这样使得高空中声音在传播到传声器的过程中会发生连续折射现象,其曲率半径折射角度与大气中声速的增加有关,如果声速随高度增加而增加,则声波向下折射,反之向上折射,这就是声音的曲线传播现象。
8. 传声器阵列可分为线阵,面阵,立体阵,N个传声器组成的阵列可以得到N-1个独立时延
9. 广义相关法是在互相关函数法的频域上加以个广义权函数
10. 声压、声强和声强级
① 声音为纵波,其传播引起空气的疏密变化,从而引起气压的变化。该压力与大气压的差值即为声压P。
② 声强I是垂直于传播方向的单位面积上声波所传递的能量随时间的平均变化率,也就是单位面积上输送的平均功率。
③ 声波的声强级β=20㏒P/P0
11. 声传播速度及温度、湿度的影响
声音在传播过程中,声速与媒介温度有关。
12. 空气中声波的衰减
传感器接收到的声能E成指数衰减。
13. 多普勒效应
当声源或者听到,或两者相对于空气运动时,听者听到的音调(即频率),同声源与听者都处于静止时所听到的音调一般不同的。
14. 实现对目标的定向
一般采用导向筒、合成方向图和利用几何关系三种方式。
15. 传声器阵列
传声器阵列可分为线阵、面阵和立体阵。
16. 三元线阵
三元线阵传感器阵列不仅可以定向,也可以定距。
定距公式:
cosφ=(d2-d1)/2L r=Lsin2φ/(d2-d1)
17. 后置处理的最典型方法是卡尔曼滤波
18. 卡尔曼滤波器是理想的最小平方递归估计器
三、 地震动探测技术
1. 地震波分类
体波和面波。
2. 地震动信号检测系统的组成
地震动传感器→信号前置放大处理电路→自动增益放大→12位A/D转换器→计算机存储器
3. 磁电式速度传感器结构与工作原理
磁电式传感器是一种能把非电量(如机械能)的变化转换成感应电动势的传感器。
4. 传感器的灵敏度K
K=e/V=ωdBdL0
四、 激光探测技术
1. 激光的特点
方向性强、单色性好、相干性好、亮度高。
2. 激光近炸引信的特殊要求
① 近程、超近程探测。
② 只要求单点“定距”,而不要求大空间范围的“测距”。
③ 体积小、功耗低。
④ 高过载环境。
⑤ 弹目之间存在高速运动。
3. 脉冲鉴相定距体制
① 原理:
激光脉冲电源激励脉冲半导体激光器发射光脉冲,经光学系统准直,照射到目标表面,一部分反射光由接近光学系统接收后,聚焦到探测器光敏面上,输出电脉冲信号,经放大、整形等处理后送到脉冲鉴相器。另外,在激光脉冲电源激励半导体激光器的同时,激励信号经延迟器适当的延迟后,送到脉冲鉴相器,作为基准脉冲与回波脉冲进行前沿相位比较,两脉冲前沿重合,即表示目标在预定距离上时,给出起爆信号。
② 特点:
精度高、前沿相位信息损失小、结构简单灵活、抗干扰性好和更低的虚警率。
4. 伪随机编码定距体制
5. 发射及接收光学系统的主要作用
① 发射光学系统通过对激光器光束的调整,使最终发射的光束具有特定的视场,以利于完成系统的功能。
② 利用比光电敏感元件感光面积大的光学接收系统把大部分来自目标的发射光收集并会聚到光学探测器上,大大的提高引信的灵敏度。
6. 激光脉冲的波形质量对激光引信的影响表现在如下几个方面
① 大脉宽信号在能量利用上比小脉宽信号低得多
② 激光脉冲的波形质量,特别是脉冲前沿的上升时间,对脉冲激光引信的定距精度起着决定性的作用。
③ 确定合适的脉冲重复频率,对降低系统功耗及激光定距技术在引信中的实用化有重要的意义。
④ 激光引信抗后向散射干扰特性与激光脉冲宽度有关,且脉宽越小,抗后向散射干扰性能力越强。
7. 鉴相器由什么方法构成
① 74S74型D触发器
② 超高速比较器
五、 电容探测技术
1. 了解电容探测技术的本质
电容探测技术利用被探测目标出现引起电容器电容量的变化,通过检测电容值或其变化率而实现对目标的探测,属于非接触测量范围
2. 电容探测技术的优缺点
电容探测的优点是结构简单,能实现非接触测量、定距精度高、抗干扰能力强缺点是可探测距离近和存在非线性误差
3. 电容传感中电容量的表达式及其含义
C=ε0εrS∕d=εS∕d
4. 电容探测原理
设计探测器的电极与探测电路,探测被测对象的出现引起电容的变化,使电路的特性发生变化,从而实现对被测对象的探测
5. 双电极模式电容探测公式推导
6. 三电极式电容探测原理
三电极电容探测器自身有三个电极,当有目标出现时,三个电极间构成的一个电容网络。随着弹丸与目标不断接近,电容网络参数将发生变化,通过对网络参数的检测即可实现对目标近程探测
7. 电容探测的处理电路
电容探测处理电路就是将电容量的变化ΔС提取出来,转变成电压或电流信号
8. 电容探测在近炸引信中的应用及工作原理
电容近炸引信利用探测器通过探测电极在极周围空间建立起一个准静电场,当引信接近目标时,该电场便产生扰动,电荷重新分布,使引信电极间等效电容量产生变化——电压变化量以信号形成提取出来实现对目标的探测
六、 毫米波探测技术
1. 明确毫米波的特点及在探测方面的应用原理
1毫米波频带极宽2毫米波德波束窄,方向性好,有极高的分辨率
3多普勒频率高,测量精度高4噪声小
2. 了解大气队毫米波传播的影响
大气对毫米波传播的影响包括大气对毫米波的吸收、散射、折射等,其中吸收往往是由于分子中电子的跃迁而形成的,大气中各种微粒可使电磁波发生散射或折射
3. 了解毫米波的辐射方程组成要素
4. 毫米波温度模式及各项因素对温度模型的影响
5. 毫米波探测金属目标的原理
自然界中各种物质的辐射特性都不相同,在相同的物理温度下,高导电材料比低导电材料的辐射温度低,对于理想导电的光滑表面,其反射率接近1,它与入射角和极化都无关,无云天空时可以认为辐射率小,反射率高,利用这些差异识别
6. 了解毫米波辐射计的距离方程及多因素的影响关系
R=[ηaAΔT∕ΩAΔTmin ]
探测距离直接与天线直径的工作频率有关。天线直径增大。作用距离增加
探测距离与中频放大器频带宽度的四次方根成正比
探测距离与接收机噪声数的平方根成反比
探测距离与输出带宽内的信噪比四次方根成反比
7. 掌握毫米波辐射计的类型及工作原理
最典型的辐射计有全功率辐射计和迪克比较辐射计
毫米波辐射计利用地面目标与背景之间毫米波辐射的差异来探测及识别目标,毫米波实质上时一台高灵敏度接收机,用于接受目标与背景的毫米波辐射能量
8. 理解典型的毫米波探测系统
毫米波雷达:¤←混频器→中频放大器→视频检波器→视频放大器→信号处理器
↑ ↑ ↓
发射机←本机振荡器 发火控制信号
毫米波辐射计:¤→中频放大器→滤波器→检波器
↑ ↓
本振器 视频放大器

发火控制信号 ← 信号处理器
七、探测技术
1. 红外辐射的产生原理及电磁波谱中的分布
物质的运动是产生红外线的根源,
2. 掌握红外辐射与可见光的异同
红外线对人的眼睛不敏感,所以必须用对红外线敏感的红外探测器才能接受到
红外线的光量子能量比可见光的小
红外线的热效应比可见光要强得多
红外线更易被物质所吸收,但对于薄雾来说,长波红外线更容易通过
3. 掌握红外辐射的波段分布
近红外 波长范围 0.75~3 NIR
中红外 3~6 MIR 远红外 6~15 FIR 极远红外 15~1000 XIR
4. 红外探测技术的研究意义
红外探测以红外物理学为基础,研究和分析红外辐射的产生,传输及探测过程中的特征和规律,从而对产生红外辐射的目标的探测、识别提供理论基础和实验依据
5. 理解辐射度学、辐射能、辐射能通量、辐射能强度、辐亮度、辐照度的概念
通常把以电磁波形式发射、传输或接收的能量称为辐射能
辐射能通量是单位时间内通过某一面积得辐射能
点辐射源在某方向上单位立体角内所发射的辐射能通量称为辐射强度
扩展源在某方向上单位投影面积A向单位立体角θ发射的辐射能通量
被照物体表面单位面积上接收到得辐射能通量
6. 了解红外辐射基本定律 理解基尔霍夫定律
基尔霍夫定律 普朗克公式 维恩位移定律 斯忒藩——波尔兹曼定律
在热平衡条件下,所有物体在给定温度下,对某一波长来说,物体的发射本领和吸收本领的比值与物体自身的性质无关,它对于一切物体都是恒量。
7. 红外探测原理
热探测器工作原理:红外辐射照射探测器灵敏面,使其温度升高,导致某些物理性质发生变化,对它们进行测量,便可确定入射辐射功率的大小
光子探测器:当吸收红外辐射后,引起探测器灵敏面物质的电子态发生变化,产生光子效应,测定这些效应,便可确定入射辐射的功率
8. 掌握红外探测器的功效和作用
9. 红外探测器的组成、分类
一个完整的红外探测器包括红外敏感元件、红外辐射入射窗口、外壳、电极引出线以及按需要而加的光阑、冷屏、场镜、光锥、浸没透镜和滤光片等,在低温工作时还包括杜瓦瓶,有的还包括前置放大器。按探测器工作机理区分,可将红外探测器分为热探测器和光子探测器两类
10. 热探测器和光子探测器的异同及其优缺点
热探测器主要优点是响应波段宽,可以再室温下工作,使用方便。热探测器一般不需制冷,易与使用、维护、可靠性好;光谱响应与波长无关,为无选择性探测器制备工艺简单,成本低。缺点响应时间长,灵敏度低
光子探测器灵敏度高、响应速度快、响应频率高缺点低温下工作,探测波段窄
11. 热探测器和光子探测器的性能比较
12. 红外探测器的性能影响因素
1响应率2噪声电压3噪声等效功率4探测率5光谱响应6响应时间7频率响应
13. 决定红外探测性的特性
辐射源的温度、调制频率和放大器的带宽
14. 红外探测器的使用和选择原则
1给据目标辐射光谱范围来选取探测器的响应波段2根据系统温度分辨率的要求来确定探测器的探测率和响应率3根据系统扫描速率的要求来确定探测器响应时间4根据系统空间分辨率的要求和光学系统焦距来确定探测器的接受面积
15. 理解典型的红外探测系统的工作原理
16. 热探测器的工作原理
八、目标识别技术
1. 目标识别的流程框图及工作过程
传感器阵列→信号采集→特征提取以及特征选择→分类识别→输出结果
前两是目标探测 后两是目标识别
2. 目标识别的基本概念,如模式、模式识别
目标识别就是人类实现对各种事物或现象的分析、描述、判断的过程
应对分类识别对象进行科学的抽象,建立它的数学模型,用以描述和代替识别对象,我们称这种对象的描述为模式
模式识别是指根据研究对象的特征或属性,利用以计算机为中心的机器系统运用一定的分析算法认定它的类别,系统应使分类识别的结果尽可能的符合真实情况
3. 模式识别系统的框图及原理说明(如车牌识别)
待识别的对象→数据采集和预处理→特征提取和选择→分类识别→识别结果
将车牌样本的二维图像输入计算机通过测量采样和量化用矩阵或矢量表示二维图形,去除噪声,强化有用信息,并对测量仪器或其他因素造成的原始数据进行变换,得到最能反映分类本质的特征,进行正确率测试。不断地修正错误,改进不足,使车牌识别正确率达到设计要求
4. 特征提取和选择的基本任务
特征提取和选择的基本任务是如何从众多特征中找出那些最有效的特征
5. 为什么要对目标进行特征提取和选择
特征提取和选择的好坏极大的影响到分类器的设计和性能,因此对它应给与足够的重视
6. 特征的分类
物理的 结构的 数学的
7. 特征提取和选择的过程与步骤
1特征形成。根据被识别对象产生一组基本特征,这种基本特征是可以用仪表或传感器测量出来的
2特征提取。样本处于以个高维空间,我们可以通过映射或变换的方法用低维空间来表示样本
3特征选择。从一组特征中挑选出一些最有效的特征从而达到降低特征空间维数的目的
8. 特征提取与选择的基本途径
1当时机用于分类识别的特征数目d给定后,直接从已经获得的n个原始特征中选出d个特征x1,x2…xd使可分性判据J的值满足J(x1,x2…xd)=max[J(xi1,xi2..xid)]是n个原始特征中的任意d个特征。这是直接法,主要分支有BAB法、SFS法GSFS法SBS法GSBS法
2在使判据J取最大条件下,对n个原始特征进行变换降维,即对原n维特征空间进行坐标变换,再取子空间
9. 模式识别包括哪些类型
1统计模式识别2句法结构模式识别3神经网络模式识别4模糊模式识别5数据融合识别技术
10. 理解最小错误Bayes决策及应用
为了降低分类的错误率,从概率论角度出发,应用贝叶斯公式提出基于最小错误率贝叶斯估计
11. Bayes决策的步骤及优缺点
步骤1先进行预后验分析,决定是否值得去搜索该方面资料
2搜索资料,科学实验,调研,统计分析,获取实验概率
3用贝叶斯公式计算后检验概率
4确定决策规划进行判决
优点1采用科学分析方法降低了主观影响
2对调查结果统计分析,采用量化手段,更加客观
3将主观性和客观调查结合
4先验知识可以不断更新,可以是一个不断学习的自适应决策系统
12. 什么是数据融合技术
把来自许多传感器和信息源的数据和信息加以联合,相关,组合以获得精确的位置估计和身份估计以及战场情况和威胁,及其重要程度进行定时的评价 层次划分:决策及融合,特征级融合,数据级融合
13. 数据融合识别框图及说明
目→传感器1→特→身份识别→关→身份融合基于特征
→传感器2→征→身份识别→ 的推理基于认别的模型物理模型→融合识别
提 ↓
标→传感器3→取→身份识别↗联 ← 目标文档:已知目标的数据库
14. 数据融合的层次及说明
数据融合包括:决策级融合 特征级融合 数据级融合
1决策级融合:在决策级融合方法中,每个传感器都完成变换以获得独立的身份估计,然后再对来自每个传感器的属性分类进行融合
2特征级融合:每个传感器观测一个目标并完成特征提取以获得来自每个传感器的特征向量,然后融合这些特征向量并基于联合的特征向量产生身份估计
3数据级融合:对来自同等量级的传感器的原始数据直接进行融合,然后基于融合的传感器数据进行体征提取和身份估计

具体题目
1. 电容传感器的本质
通过检测电容值或其变化率而实现对目标的探测。
2. 电容探测处理电路的不同及分类
根据探测处理电路的不同,一般有双电极式和三电极式探测方式。
3. 电磁波是介于微波与光波之间的频段
4. 电容式传感器的类型
变间隙式、变面积式、变介质式。
5. 大气对毫米辐射计的影响因素
在晴朗大气下,大气对毫米波传播的影响包括大气对毫米波的吸收、散射、折射等。
6. 红外辐射的本质
红外辐射的物理本质是热辐射。
7. 红外技术基本理论的基础
红外技术的理论基础是描述热辐射现象的普朗克定律。
8. 红外探测器的分类
按探测器工作机理区分,可将红外探测器分为热探测器和光子探测器两大类。
9. 光子探测器的类型
光子探测器按照工作原理,一般可分为外光电探测器和内光电探测器两种。
10. 目标识别技术的核心
目标识别就是人类实现对各种事物或现象的分析、描述、判断的过程
11. 信号的特征提取和选择的基本任务

12. 数据融合的层次与分类
①决策级融合
②特征级融合
③数据级融合
13. 辐射强度
辐射强度用来描述点辐射源发射的辐射能通量的空间分布特性。它被定义为:点辐射源在某方向上单位立体角内所发射的辐射能通量。
14. 热效应
物体吸收辐射使其温度发生变化从而引起物体的物理、机械等性能相应变化的现象称为热效应。
15. 黑体辐射
黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射
16.模式识别的基本概念
所谓模式识别是指根据研究对象的特征或属性,利用以计算机为中心的机器系统运用一定的分析算法认定它的类别,系统应使分类识别的结果尽可能地符合真实情况。
17.数据融合技术
将来自许多传感器(同质或异质)和信息源的数据和信息加以整合、相关、组合,以获得准确的位置估计,身份估计,以及对战场情况和威胁及其重要程度进行适时评价。
18.电容探测原理
其原理是设计探测器的电极与探测电路,探测被测对象的出现引起电容的变化,使电路的特性发生变化,从而实现对被测对象的探测。
19.双电极电容探测的容量变化公
总电容C=C12+C10C20/(C10+C20)
当目标距探测器较远时,可以为C10、C12≈0,C=C12
当目标进入探测器敏感区时,C10、C20逐渐增大
令ΔC= C10C20/(C10+C20),则C=C12+ΔC
将ΔC的增量或增速检测出来,即可实现对目标的定距。
20.利用辐射差异识别金属目标
自然界各物质辐射特性各不相同。一般来说,相对介电常数高的物质,发射率比较小,反射率较高。在相同的物理湿度下,高导电材料比低导电材料的辐射温度低。利用这些差异可识别不同的目标。
21.毫米辐射计的工作原理
毫米波辐射计利用地面目标与背景之间的毫米波辐射的差异来探测及识别目标,当辐射计波束在地面背景与目标之间扫描时,由于目标与背景之间的毫米波辐射温度不同,辐射计输出一个钟形脉冲,利用此脉冲的高度、宽度等特征量,可识别地面目标的存在。
22.红外线与可见光的异同
①红外线对人的眼睛不敏感;
②红外线的光量子能量比可见光小;
③红外线的热效应比可见光要强得多;
④红外线更易被物质所吸收,但对于薄雾来说,长波红外线更容易通过。
23.红外探测器的主要任务
将红外辐射能转换成电能。
24.热探测器的工作原理
利用入射红外辐射引起敏感元件的温度变化,进而使其有关物理参数或性能发生相应的变化。
25.光子探测器的工作原理
利用某些半导体材料在红外辐射的照射下,产生光子效应,使材料的电学性质发生变化。
26.以车牌识别为例,说明模式识别框图及各部分原理
待识别的对象→数据采集和预处理→特征提取和选择→分类识别→识别结果
车牌为待识别对象,摄像头对车牌进行数据采集,通过预处理,除去噪声,复原有效信息。为了高效地分类识别,我们把在维数较高的测量空间中表示的模式变为低维数特征空间中表示模式。
27.目标特征提取和选择过程步骤
①当实际用于分类识别的特征数目d给定后,直接从已经获得的n个原始特征中选出d个特征x1,x2,….,xd,使可分类据J的值满足下式
J(x1,x2,….,xd)=max[J(x1,x2,….,xd)]
式中,xi1,xi2,….,xid是n个原始特征中的任意d个特征,此即为直接寻找n维特征空间中的d维子空间。这类方法称为直接法。
②在使判据J取最大条件下,对n个原始特征进行变换降维,即对原n维特征空间进行左边变换,再取子空间。这类方法称为变换法。
28.应用Bayes最小错误估计进行决策判决
①先进行预后验分析,决定是否值得去搜集该方面资料
②搜集资料,科学实验,调研统计分析,获取实验概率
③用贝叶斯公式计算后验概率
④确定决策规划进行判别

❺ 海相层系油气勘探测井系列的优化

3.4.2.1 现代测井技术发展主要特点

从20世纪90年代开始,在全球性科技发展浪潮推动下,测井技术进入一个高速发展期,主要标志是新一代成像测井投入商业性应用并日趋成熟。这一发展进程,大大提高了测井技术解决地质问题与工程问题的能力,进一步提高了在油气藏勘探和开发中的作用。现将其主要发展特点归结如下:

(1)形成四大测井技术系统:裸眼井测井、套管井测井、随钻测井和井间测井系统

1)裸眼井测井技术——新一代裸眼井测井技术是以阵列化、频谱、能谱化测量和二维及三维成像显示为主要特征,以全井眼微电阻率成像测井、核磁共振成像测井、阵列感应/阵列侧向成像测井为核心,包括偶极横波成像测井、综合岩性孔隙度测井、元素俘获测井、模块化动态地层测试器等井下仪器所组成的新型测井技术。最近推出的具有三维测量功能的扫描成像测井仪系列——电阻率、声波、核磁三种扫描测井仪,标志着成像测井技术又有新的发展。新一代裸眼井测井系统的主要特点是:

A.在技术上,成像测井实现了“地面采集成像化与多任务化,下井仪器阵列化与频谱、能谱化,数据传输遥测化,处理解释工作站化”。这样使得长期以来,作为表征地层地质特性的常规测井曲线,由原来把地层近似视为均质的平均化测量,发展为以“井”为对象的二维或三维空间测量,并对测量结果以具有三维模拟性质的二维可视图像进行显示,能对地层非均质性作出响应。

B.成像测井具有观测密度和方位覆盖率大的特点,有效信息大量增加,使得测井信息的反演更易接近目标。所提供的图像往往是地质现象的直观显示,大大缩短了测井信息与地质特性之间的距离,提高了分析地层非均质性能力、解释地质特征能力,以及人们有效理解、运用这些信息和数据的能力。

C.方位成像测井。微电阻率扫描、井眼超声波成像以及方位电阻率成像等测井的应用,突破了测井数据处理两个传统的基本假设,能够在地层为非成层和不具有旋转轴对称的状态下,获得可信的反演结果,从而能够较好应对地层非均质性和水平井钻探的挑战。

D.成为研究地层的非均质性和各向异性,应对复杂地层油气评价的有效手段,在裂缝性、砾岩体、低渗透、火成岩油藏与低电阻率油气层测井评价和油气藏发现,以及精细分析油藏地质特性、地质构造和沉积相等方面都有了突破性进展。

2)套管井测井技术。套管井电阻率测井、储层饱和度(脉冲中子)测井、元素俘获测井、过套管动态地层测试器以及新型综合岩性孔隙度测井和组合式生产测井仪(如CPLT、Flagship仪等),是组成新一代套管井测井的主要技术。众所周知,进行生产测井和油井采收状况动态监测,解决油井钻采中的工程问题,如固井质量评价、油井套管技术状况分析等,是套管井测井传统应用领域。新一代套管井测井技术的运用,特别是套管井电阻率测井研制成功,配套的新型传感器利用,促使套管井测井进入了“地层评价”这一新的应用领域,它的技术功能和作用有了明显提升。这样就能够在下套管的新井中,进一步取全资料;对于无法录取裸眼井测井资料的意外事故井,可以通过套管井测井进行地层评价;可以对老井重新评价识别漏掉的油气层和储量;可以定期开展时间推移测井,更有效地监测油气藏流体界面和饱和度动态变化等。

在生产测井这一领域,技术也有明显进步。常规生产测井传感器只能用在近垂直井中测量简单的两相流动、反映垂直或近垂直井中有限范围的流动方式。新型传感器,如“泡”流动成像仪、水流成像仪以及利用GHOST进行三相持率(持气、持油、持水率)测量等,则能克服上述缺点,不仅能提高精度、解决多相流问题,而且可用于大斜度井和水平井。

3)随钻测井技术。随钻测井的早期是通过测量井斜、方位,为钻井提供几何导向,属于随钻测井的雏形,为随钻测量(MWD)阶段。20世纪80年代中期,随钻自然伽马和电阻率仪器的问世,随钻测井(LWD)主要用于简单的地质导向。随着随钻电阻率仪和孔隙度仪的发展,逐步提高随钻地层评价和地质导向的效果,即通过监测水平井与上、下界面的距离,控制水平井在油层中的钻进方向。随钻测井虽然分辨率没有电缆测井高,但能够获得钻进过程中地层的原始信息,因此能在泥浆侵入地层和井眼变得不规则之前,更确切反映地层特性。新一代传感器,如钻头电阻率成像仪、方位密度中子仪等的运用,标志着随钻测井技术进入一个新的发展阶段,主要有以下特点:

A.探头更趋近于钻头处或以钻头作为电极,增强探测和实时导向功能。

B.成像化。可进行井下倾角实时处理,进一步提高分析地层特性能力。

C.实现方位测量。可对地层参数进行方位测量和显示,以提高地质导向准确性。如方位密度中子仪,可对井眼中不同区间密度、中子测量进行平均,提供井眼上、下独立测量值。

D.配套化。具有测量多种电阻率、密度、中子、声波、自然伽马等配套功能,在困难地理条件下(如深海、沙漠腹地、沼泽),用以替代普通电缆测井。

4)井间测井技术——井间测井技术应用是当代测井技术的重大突破,其重要意义就在于实现“井间”地层与油藏特性的直接测量,进一步解决在油藏研究中,“井孔”与“井间”信息不平衡问题,从而提高油藏研究和横向预测的有效性,并将从根本上改变测井技术横向探测能力不足的固有弱点。从而把发现油气藏与描述油气藏特性能力,提高到一个新的高度。目前开发的井间测井技术主要是井间电磁成像系统(井间电阻率成像测井)和井间地震测井,因此人们普遍认为,这些技术一旦达到实用阶段,将会引起油藏研究革命性变化。因为这就意味着测井技术的两个基本系列——电阻率与孔隙度系列,可直接运用于井间的测量。井间电磁成像系统是将发射器和接收器分别置于两口井中,接收由发射器发射并经地层传播的电磁波。反演后获得有关井间地层电阻率的分布信息,从而实现井间电阻率直接测量。和井间地震相比,井间电磁测量结果对井间地层特性和流体性质的变化更为敏感。所提供的井间电阻率成像,可用于研究井间油藏构造、砂体展布和裂缝发育方向;能够比较清楚地描述井间的油、气、水层分布,指示水驱及热采波及前沿和方向,分析井间剩余油分布,从而可提高油田滚动勘探和开发调整中钻探高效井成功率;优化油田开发方案和提高采收率。

井间电磁成像测井目前已在美国、加拿大以及中东地区等投入现场应用,所提供的“油藏”规模下的井间电阻率,在追踪注水、注蒸汽(稠油热采)应用中均见到较好效果。1998年11月至2004年4月,胜利油田与EMI公司合作,分别在胜利油区孤岛、埕东油田的8对井中,成功地进行了16个井次系统现场试验。测量是在对于井间电磁技术很有难度的条件下进行的,一是地层为典型的低电阻率剖面,地层背景电阻率仅为1.5~2Ω·m;二是进行穿透一层和二层金属套管系统试验。取得在典型低电阻率剖面中、井间距分别达433.6m(裸眼井—裸眼井)和300m(裸眼井—金属套管井)、260m(金属套管井—金属套管井)重复性好、精度高的完整测量数据。反演得到的井间电阻率成像图,在分析井间油、水、气分布、砂体展布方面也见到较好地质效果。

(2)测井信息的采集逐步实现高集成度的阵列化、成像化、频谱化和网络化

应对各向异性、多元储集空间、裂缝、薄互层等复杂油气藏的勘探和开发,是推动成像测井发展和应用的动力。成像测井问世以后,逐步发展了一批具有阵列化、成像化、频谱化测量特点的井下仪器系列,实现如下的成像方式:

A.井壁成像(方位成像):利用旋转型探头进行扫描,获得井壁图像。

B.径向成像:利用多个探头组合(阵列及交叉阵列)的大信息量采集,获得有较强垂向分辨能力、不同探测深度的径向成像图,以了解储层在径向上的地质特性及各向异性,如分析储层沿径向方向的饱和度剖面。

C.井周分区成像:利用聚焦方法,探测井周不同扇体、不同径向距离的地层特性。

D.井间成像:将发射器和接收器分别置于相邻的井中,反演后获得有关井间地质特性的分布信息。

E.谱分析成像:利用能谱、频谱、波谱等直观成像显示,描述地层特性。

今后的发展趋势是进一步提升阵列化、成像化、频谱化仪器的集成度及其探测性能,并向网络化方向发展。

(3)从传统的一维测量向三维测量发展,开辟三维岩石物理学的研究时代

成像测井是对油气藏表征和数值模拟技术发展的有力推动。油藏表征与油藏数值模拟技术,实质上是用随机技术来描述“确定性”油藏的概率性分析,包括建立一维“井”模型—二维“层”模型—三维“体”模型,其精度主要取决于对地层非均质性的分析和对“不确定性”因素的预测。应该指出,制作油藏一维“井”模型,从本质上讲是三维问题。由于传统测井理论是建立在均匀无限空间、各向同性介质基础之上,只有在均质地层中才能服从地层是“呈层状并与井轴呈对称性分布”的基本假设,因而普通电缆测井则把这一问题的解决仅局限于一维和二维。随着油气勘探、开发对象日趋复杂,非均质储层已成为当前及今后的重要勘探目标,也进一步挑战了测井理论关于“地层呈层状并与井轴呈对称性分布”的基本假设。而成像测井系统的应用,特别新一代三维扫描测井仪系列的应用,不仅能重现井眼及其周围地层的三维特点,而且意味着“三维岩石物理”研究的起步。新一代成像测井精细分析油藏地质特性的能力,铸就它成为三维油藏表征与数值模拟的主体技术。

然而应该指出,现阶段投入应用的成像测井主体技术,还不完全是真正意义的三维空间测量,但三维空间测量必然是今后发展趋势,目前正在推出的电阻率、核磁共振、声波扫描测井系列以及井间测井技术,就是这一发展趋势的体现。因此可以预料,随着三维空间测量测井技术的实现,将预示着三维岩石物理学研究时代的到来,并进一步推动测井理论、方法的更新与发展。

(4)裸眼、套管与井间测井系统的有机组合,实现油气藏的“四维”动态监测

随着套管井电阻率测井的突破,以及储层饱和度测井、元素俘获测井、过套管动态地层测试器、组合式生产测井仪等新一代套管井测井技术的进一步优化,促使套管井测井技术由动态监测和解决油井钻采中工程问题的传统应用领域,进入了“地层评价”这一新的应用领域,技术功能和作用有了明显提升。这一发展趋势将会进一步强化,特别是随着井间测井技术趋于成熟,将大大提高测井技术的空间探测能力,并与裸眼井测井技术形成三方面的有机组合,逐步实现油气藏动态地质特性、油气井采收状况和工程状态的“四维”动态监测:

A.油气藏静态—动态分析,包括二次和三次采油的油气藏描述和数值模拟。

B.水淹状况和饱和度的“四维”监测。

C.采收率的标定和动态监测。

D.油气井生产“四维”动态监测。

E.固井质量静态—动态监测。

F.油气井套管工程状态“四维”动态监测等。

(5)测井地质和工程应用覆盖油气田勘探、开发的全过程

事实上,现代测井技术的应用已经覆盖油田勘探与开发的全过程,成为当今油气资源评价和油藏管理的关键技术手段,以及钻井和采油工程设计、施工、质量评价的高效益技术手段。这一趋势又将随着今后测井技术的发展而进一步扩展和提升。主要有:

A.油气资源评价:油气层评价、产能预测和储量计算。

B.地质研究:构造分析、沉积学研究、裂缝及其分布格局、地应力分析和横向预测。

C.油藏工程:油气藏静态与动态描述、不同开发阶段的油气藏数值模拟、水淹状况和剩余饱和度分析、采收率标定和动态分析以及油气藏管理过程的优化。

D.钻井工程:水平井与大斜度井的地质导向、确定和建立上覆地层压力,孔隙压力、坍塌压力、破裂压力梯度剖面、进行岩石的可钻性和井眼稳定性分析、为钻井与钻井液的优化设计提供科学依据、井身质量监控、固井质量评价。

E.采油工程:岩石力学强度分析、优化油气井防砂与压裂设计、建立温度与压力剖面及其监测、油气井注入剖面与生产(产液、产气)剖面的动态监测、油气井套管工程状态动态监测、油气井管理过程的优化。

总之这一发展进程,正在改变人们对测井技术及其传统作用的固有概念,从内涵和外延大大丰富了对其现今作用的认识,并重新形成对其未来作用具有开拓性的设想。知识迅猛增长与快速更新是信息时代的基本特征,其结果将会造成领域专家知识的不足。因此随着测井技术的迅猛发展,石油工业上游领域的专家,特别是测井专家自身,都面临着一个再学习的问题,都有一个重新认识测井现今与未来作用的任务。而这一发展趋势,将推动90年代完成数控阶段的我国测井技术,向成像测井阶段发展。

3.4.2.2 新一代成像测井技术及其作用

(1)微电阻率扫描成像测井

地层微电阻率扫描成像测井是一种重要的井壁成像方法,它利用多极板上的多排纽扣电极向井壁地层发射电流,由于电极接触的岩石成分、结构及所含流体的不同,由此引起电流的变化,并反映了井壁各处岩石电阻率的变化,据此形成电阻率的井壁二维成像。斯仑贝谢公司的FMI是目前电成像系列中最先进的一种,该仪器有4个主极板和4个辅助极板(翼板),每一个极板和翼板有两排电极,每排有12个电极共计192个电极,在井眼中,井壁覆盖率达到80%,纵向分辨率为0.2 in(5mm),探测深度为1~2in。

地层微电阻率扫描成像测井主要应用于:

A.地质构造解释:确定地层产状、识别断层、不整合、牵引、褶皱等。

B.沉积学解释:识别层理类型、砾石颗粒大小、结构、判断古水流方向、识别滑塌变形、进行沉积单元划分、判断砂体加厚方向等。

C.裂缝识别和地层孔隙结构分析:识别高角度裂缝、低角度裂缝、钻井诱导缝、节理、缝合线、溶蚀缝、溶蚀孔洞、气孔等,确定裂缝产状及发育方向,划分裂缝段,可对裂缝参数进行定量评价,分析原生和次生孔隙的匹配程度。

D.地应力方向确定:根据井眼崩落和诱导缝的方向,确定现今主应力方向。

E.薄层解释:准确划分砂泥岩薄互层及有效厚度。

(2)核磁共振测井

核磁共振测井的商业性应用,是20世纪90年代测井学科的一个重大技术成就。原子核的磁性与外加磁场的相互作用,是核磁共振技术的物理基础。现代核磁其振测井则是以氢核作为目标核,通过调节核磁测井仪的工作频率,探测地层中氢核的核磁共振特性。目前主要是探测氢核的横向弛豫和扩散弛豫过程,通过测量揭示岩石的孔隙流体性质及其流动特性,定量提供地层孔隙度的组合和渗透率、孔隙尺寸分布等储层参数,以及有关孔隙流体性质的信息。其测井响应既取决于氢元素在地层孔隙中的赋存状态和丰度,又与地层的孔隙结构和流体性质有关,但一般不受岩石骨架矿物成分的影响。

核磁共振测井主要应用于:

A.提供准确的孔隙度和渗透率等岩石物理参数。包括地层总孔隙度、有效孔隙度、自由流体、毛管束缚水孔隙度和渗透率等岩石物理参数。

B.分析储层的孔隙结构。T2分布的形态指示了储层孔隙结构分布、分析孔隙尺寸大小和复杂储集空间的类型等。

C.有效划分储层。核磁共振测井提供的有效孔隙度、束缚流体孔隙度、自由流体孔隙度,以及T2分布可以直观显示储层与非储层。

D.识别流体性质。利用双TW双TE测量方式和标准T2谱形态分布,有助于识别岩性和复杂储层的流体性质。

E.估算原油黏度和扩散系数。利用双TE测井资料的扩散分析方法,估算原油黏度和扩散系数。

(3)偶极横波成像测井

偶极横波成像测井技术是为了解决单极声波测井在软地层中无法测量横波这一难题,同时也为了进一步提高测量精度而提出的。它是把新一代偶极技术与最新发展的单极技术结合在一起,提供了当今测量地层纵波、横波和斯通利波的最好方法。只要在适当发射频率下,无论大井眼井段还是非常慢速的地层中都能得到较好的测量结果,另外探测深度也相应有所增加。

偶极横波成像测井主要应用于:

A.岩性识别。主要是利用纵横波速度比、泊松比等参数,确定地层的岩性。

B.识别气层和气-水界面。根据偶极阵列声波资料得出的纵横波速度比及其他岩石力学参数,可比较有效识别气层与气-水界面。

C.判断裂缝发育井段、类型,分析裂缝储层的渗流特性。利用纵、横、斯通利波的幅度衰减直观地判断裂缝发育带,分析裂缝有效性。

D.地层各向异性分析。在裂缝性地层或构造应力不平衡的非裂缝性地层中,根据快横波和慢横波的检测,可以分析地层的各向异性大小、方向及其影响因素,并确定现今最大水平主应力的方向、大小。

E.岩石力学参数计算,进行井眼稳定性分析和压裂高度预测等。

(4)阵列感应/阵列侧向成像测井

20世纪90年代以来,国外各大公司吸收了几种新型感应/侧向测井仪的优点,研制出具有更优探测性能的阵列感应/阵列侧向成像测井仪。它们都具有高分辨率、探测深度和分辨率相匹配的特点;具有软件聚焦的功能;具有5~6个独立、探测深度依次递增的阵列组合,其中感应成像测井仪可提供垂直分辨率分别为1ft、2ft、4ft,探测深度分别为10in、20in、30in、60in、90in和120in的视电阻率数据。阵列侧向成像测井可以得到6条探测深度不同的视电阻率曲线,形成径向电阻率成像,大大提高了测井分析储层径向特性和求解地层真电阻率的能力。一般来说,阵列感应主要适用于低电阻率剖面,阵列侧向则适用于高电阻率剖面。

阵列感应/阵列侧向成像测井主要应用于:

A.划分渗透层。根据泥浆滤液侵入地层的驱替状况,划分渗透性地层和分析储层可采程度。

B.评价储层流体性质,确定受污染状况。

C.描述地层电阻率及侵入剖面径向变化。通过反演得到原状地层、侵入带电阻率、冲洗带与过渡带半径,描述地层电阻率径向变化和提供饱和度径向成像图。

D.薄层评价。准确地测量出薄层电阻率,有效识别层内的非均质性,有利于薄油气层的识别。

(5)模块化动态地层测试器

模块化动态地层测试器是新一代的电缆地层测试装置,改进的探测器采用模块化结构,以应对不同应用需求。特别是石英压力传感器,可快速、准确响应地层压力和温度的变化;泵排模块的应用,可采集原状地层的PVT流体样品;并能直接测量地层径向和垂向渗透率等,从而大大增强仪器直接测压、取样和分析储层特性的功能。

模块化动态地层测试器主要应用于:

A.测量地层压力剖面,计算地层压力梯度、压力系数、流体密度等参数。

B.估算地层径向和垂向渗透率。

C.快速评价油气层,确定或预测气-油-水界面。

D.预测储层产能。根据压力测试和取样样品分析数据,估计油层生产能力。

E.地质与工程应用。在多井评价中可以研究油藏特征、井间连通性;在地质研究工作中用于沉积相分析和进一步认识构造;在开发区块进行油层动用情况和潜力分析;在钻井工程方面可以结合声波、密度测井资料合理确定安全的泥浆比重等。

(6)地层元素俘获能谱测井

元素俘获能谱测井(ECS)是用中子激发直接探测地层俘获伽马射线,从俘获伽马射线能谱中获得有关硅、钙、铁、硫、钛、钆等地层元素含量的信息,从而进一步计算出地层中各种矿物的类型和含量。主要应用于:

A.岩性识别和储层评价。确定矿物和岩性,可准确计算岩石含量和特殊矿物。提供不受井眼影响的准确的泥质含量,为更准确计算孔隙度提供条件。

B.沉积相研究。准确识别石膏和钙质,为沉积相的判断提供指相矿物。清楚显示沉积旋回变化,为划分地层提供依据。

C.烃源岩研究。精确测出钙的含量,减少把薄互层钙质或膏质胶结层误判为烃源岩的可能性。准确提供无有机质影响的干岩石骨架体积,为利用综合体积法计算烃源岩提供重要参数。

总之,随着现代测井技术特别是成像测井技术的应用,塔河、东部及南方海相碳酸盐岩复杂油气藏的勘探实践以及海相层系前瞻性研究工作的开展,多方面提升了对碳酸盐岩油气藏的认识和评价能力,具体表现在:纵向上可识别碳酸盐岩储集的主要类型;准确提供剖面的孔隙度数值;可对裂缝进行定性和定量描述;利用核磁共振测井标定孔隙的大小分布;分析裂缝与溶蚀孔洞分布关系;特别是在碳酸盐岩气藏的流体识别有了比较大的进展。

3.4.2.3 海相层系测井系列的优选

(1)优选测井系列的基本原则

分析了以碳酸盐岩为主体的海相储层地质特性、评价难度以及现代测井技术发展特点与作用,就能形成对测井系列选择与优化的更明确思路。

1)有针对性地分析常规测井系列。电阻率与孔隙度系列,在海相储层评价中的适应性,明确其功能和作用。核心是进一步明确各种常规测井技术在储层有效性评价和流体性质识别的能力和存在的局限性,为优化常规测井系列提供直接依据。

2)加强新一代成像测井技术的应用。加大现代测井技术应用力度,主要是加强成像测井及其关键技术的应用如微电阻率扫描、偶极横波、核磁共振成像测井等,有针对性在新区、新领域的探井、复杂油气藏的探井和开发井、油气藏研究和动态监测的关键井和观察井,取全取准配套测井资料,为单井精细解释和油气藏研究提供坚实的资料基础。

3)生产测井的早期介入。在勘探阶段应选择一定的探井或评价井,进行生产测井,搞清油气藏流体的产出剖面,并验证储层划分标准,提高复杂油气藏测井评价的可信度,为计算储量提供重要依据。

4)形成探井油气层快速评价的测井系列,提高海相探井的解释成功率。核心是解决海相复杂储层流体性质识别这一关键难题,主要是有针对性增加一些具有直观、快速显示储层流体性质的测井仪器方法,如模块化动态地层测试器、旋转式井壁取心器与现场核磁共振分析仪相结合等,形成完整的疑难探井快速评价测井系列。即以常规和成像测井、岩心和录井资料,对储层有效性和油气水作出判识,优选目标层位,以模块化动态地层测试器进行验证,快速评价油气层和油气藏类型,达到缩短发现油气藏的周期,提高勘探效率和效益。

5)在综合分析的基础上,针对储层特点,提出优化、配套和规范的测井系列。

(2)优选测井系列的技术目标

1)提高单井解释可信度,充分利用现有的测井与其他“井筒”技术,搞清每一口探井主要地质特性,核心是正确识别和划分气、油、水层,尽量做到使每一口探井的完井决策不留遗憾。

2)通过一口或几口探井和评价井的精细解释,基本搞清油气藏基本特性,实现对储层和油气藏的整体评价。

(3)碳酸盐岩海相层系的测井系列

在探井和评价井中,形成以三电阻率、三孔隙度和自然伽马(或能谱)等常规测井为基础,微电阻率成像、核磁共振、多极子阵列声波、地层元素俘获能谱测井和阵列侧向测井为核心的完整测井系列。

❻ 粉尘检测仪都有哪些原理

目前,我国空气污染逐步由传统的总悬浮颗粒物(TSP)及可吸入颗粒物(PM10)、SO2污染转向以细颗粒物(PM2.5)和污染气体(O3、SO2、NOX)等形成的复合型大气污染。特别是2011年末以来,多次大范围雾霾时间引起了国内外广泛关注,导致PM2.5的概念迅速被广泛接受,人们对粒径为PM2.5、PM10浮尘的监测越来越受重视,这些细颗粒物是漂浮在空气中的微粒,并成为当前我国大多数城市的首要污染物。根据粉尘浓度检测设备的不同原理,可分为以下几种:
1、称重法
通过抽气泵取一定量的含尘空气,经过已称量的滤膜,将粉尘阻留在滤膜上,通过天平称量滤膜重量,根据采样后滤膜的粉尘增量,计算出作业场所中的粉尘浓度。
2、光电测尘仪
利用光吸收原理而设计,通过抽气泵抽取一定体积的含尘空气,将粉尘阻留在滤膜上,通过发射光源(红外线或白炽灯)产生的光束透过滤膜照到硅光电池上,硅光电池接收照度的变化引起输出电流强度的变化,两者呈线性关系,从而换算出粉尘浓度。
3、光散射测尘仪(分为可见光光散射测尘仪及激光光散射测尘仪)
利用光束照射到含尘气流上,使光束产生散射光,粉尘浓度越高,生产的散射光强度越大,由此测出粉尘浓度。
4、β射线测尘仪
利用尘粒吸收β射线的原理研制。测尘仪内的放射源(如14碳)产生的β射线通过粉尘粒子,根据粉尘粒子吸收β射线的量与粉尘质量成正比关系计算粉尘浓度。
5、压电天平测尘仪
石英压电晶体有一定的振荡频率,当石英晶体表面沉积有一定的粉尘粒子时,就会改变其振荡频率,根据频率的变化得出相对粉尘浓度。
常用的滤纸(膜)称重法是最为经典的方法,但由于该方法要求对样品进行预处理,操作复杂、价格昂贵、繁琐费时、采样仪器笨重,噪声大以及不能及时得到现场测定结果等缺点,导致该类方法只适合对大气细颗粒物元素成分的例行检测或调查性监测,不适用于公共场所空气中可吸入颗粒物浓度的监测,无法满足智能化预警的需求。
β射线法测尘仪不受粉尘粒子大小及颜色的影响,缺点是存在放射性物质,用户操作麻烦,而且价格也颇高。压电天平测尘仪也是一种快速测尘仪,但是它的测量范围有限,一般为0-10mg/m³,测定后石英晶体的清洗较复杂。
光散射法测定公共场所空气中可吸入颗粒物浓度,具有快速、灵敏、稳定性好、体积小、重量清、无噪声、操作简便、安全可靠等优点。一方面该方法具有较高灵敏度而需要的样品量少,并可省去或者简化样品处理步骤,因此采样时间和分析时间均可大大缩短。另一方面,该方法无需样品储存,从而避免或减少了分析方法中的各种可能的误差因素。
光散射法分为可见光光散射法和激光光散射法,因可见光受粉尘粒子大小和颜色影响较大,所以出现了以激光为光源的新一代粉尘仪——激光光散射粉尘仪。
激光粉尘仪选择篇:
在选择市面上琳琅满目各种品牌的设备时,很多消费者由于不了解相关标准花专业设备的价格买到的却是没有任何资质,产品质量得不到保障的设备。粉尘仪是列入国家重点管理的计量器具之一,所以产品必须经过中华人民共和国计量器具型式检验和批准(CPA证书)并且必须取得中华人民共和国制造计量器具生产许可,即(CMA证书)。获取这些资质的厂家,其生产能力、生产过程的产品质量是经技术监督部门现场考核通过并在技术监督部门备案和受技术监察部门严格监控的,所以选择起来也更有保障。当然还可以委托第三方省级计量院来检定产品获取检定证书。最后,推荐一款我用过的设备有CMC、CPA资质的还能在计量院过检的有LD-5H/L。回答只是个人观点,如有不正确或遗漏的地方请指正。

❼ α、β射线的样品活度测量概述

一流尉1994年第3期国外环境科学技术总76期环境样品中低水平放射性活度的7射线谱测量引言奇设五要王月娥)(在环境样品中,非常低本底的高纯锗探测器是直接测定低水平放射性活度的适用设备.用于探测器系统的材料和屏蔽,其本底辐射必须减至最小.为保证散射射线均可进入探冽器的容器.用来装载试样的马林杯,安放在探测器顶端,要精确地保证二者问几何位置的重复性.用相同体积,密度与化学组份的马林标标准源()对探测器校准后,就可以测量样品的放射性活度,我们的校准工作尽量做到符合标准一450马林杯容积450毫升,便宜,容易买到.在地下水与地表水相连的潮湿地带的植物的取样,可作为放射性核索在环境中可能分布的生物指示荆,采集样品干燥处理后就可很好满足7射线测量.探测系统的描述探测系统如图1所示,主要由固体探测器,致冷器及良好的屏蔽组成.选用同轴高纯锗()探测器,灵敏体积为100立方厘米,效率20,相当于7.6×7.6厘米(),正常情况下,332()处分辨率为1.9(最大峰值一半处的能量全宽度).全部机械与电子部件的选择均参照德国海登堡麦克斯韦尔一普朗克研究所低水平实验室的地下低本底辐射,所用材料等效于15米的水层(等,1989),全部致冷器部件,探测器支架及端帽均采用高电导率的无氧铜.56厂:害耋警,,——=一~/,一,,,,/.….~:,三一.≥,一0弘一::』--:-4二二爱^^一一一一5=一!一一一一一董三:,图1高纯锗谱仪示意图两吨低放射性活度铅屏蔽,--450马林杯装样后从上部放入由于采用了特殊的致冷结构,探测器与致冷器其它部件和房屋建材的天然辐射射线之同不存在直接的无屏蔽的路径.围绕探冽器的铅屏蔽由两部分组成.10厘米厚的外层是1500公斤台锑2的铅砖和铅板(1),由德国1精心冶炼制成(,1966),-铅原料台少量.(,1988;—,1978),最终产品总的比活度为7贝可公斤.内层5厘米厚为550公斤老铅(2),来自法国的古代存物,铅砖与铅块由法国的生产,其铅锭由法国实验室提供.冶炼后的最终产品,确保表面粒子通量为1.1×10/米?秒(,1985),总的比活度降至贝可/公斤为减少屏蔽间隙,外部铅屏蔽砖与板的交接处决不直对内部铅屏蔽,如图1所三一而刁本底成份探测系统工作于海拔5米处,在测量室,无特殊建筑结构,平均介子通常约为160/平方米?秒(等,1984),实验室内平均剂量当量率约60毫微希沃特/'时.图2中本底谱()和()测量时间为0天,分别为带屏蔽和不带屏蔽.对谱()和()70~3000能量区间的积分计数率分别为(48.4土0.01)/秒和(.492土.1)/秒,本底减少了约100倍.谱()上大部分7射线峰已标明,来自铀系,钍系和,"峰可能是实验室附近储有在源或当地有"污染.105'口.;'1100遗图2100立方厘米本征探测器的本底谱,所处位置剂量当量率约6毫微希沃特/小时.()无屏蔽.()5厘米低活度铅屏蔽.两个宽峰来自宇宙射线中于左和上的非弹性散射.由于采用了有效的铅屏蔽及精心选用各种材料,谱图()中所有铀系和钍系的射线峰均消失,甚至连"的谱峰都低于探渊器的阈值.本底的主要成份是连续区上一个湮没峰和两个596与693的宽峰,它们的比例分别约为95,2和0.5,这是字宙射线中介子与探赠器周嗣的材料和探测器本身相互作用的结果,(,1986)在某些特殊情况下.两个位于596与693的宽峰是字宙射线中的中子与'和"非弹性相互怍用的结果(等,1984).一个测量了24天的本底谱,出现一些很弱的峰,其主要成份列于表1,大部分是宇宙射线与探测组件材料相互作目的结果,这些材料是几公斤的铜,晶体的铅屏蔽,2000公斤铅以及用作铅屏蔽井框的约100公斤的铁,803.3与569.6的射线来自快中子激发的,的较低的能级(等.990),其它谱线来自两个天然放射系(铀,钍)的子系以及非常弱的"污染,后者在对系统进行清洗后即消失表测量24天出现的与射线本底能量()放射性校素来源计敛辜《1秽).53.5字宙射鳗000058(2)66.6宇宙射竣0.00078(2)72.8/75.0./.1字宙射竣0.00350《)85/87,宇宙射线0.00176(3)138.8宇宙射绩0.0055《2)159.7宇宙射线0.00016(1)198.8.字宙射线0,0004(2)277.42钍秉0.00021(1)295,2,铀蒹0.0006(1)351.92,铀蒹0.020(1)5110湮没字宙射线0.01075(7)569.6批字宙射线00(1)596(,')宇宙射线000180(3)609.32"铀系0.0005(1)6617"污染0.00009(1)669,93宇宙射线0,00014(1)693(.')宇宙射线0,00240(3)803,30'享宙射线0000$2(1)838.未识别.2(1)899,0来识别0,0021(1)692.0字宙射线0.002(1)2614,72牡差札00008(1)5~3000全谱0,510(1)括号内数为小数点最后一位前统计不确定性.有两峰来识别效率刻度在6~2000能量范国对探测系统进行了效率刻度,采用标准溶液,是美国生产的,在实57验室分别按标准697/1981和经鉴定的溶液制样.溶液中有密度为(1.14土0.01)克/立方厘米的塑料梧,,,,,",器.,蛐和均匀分布于其中,测量时的活度范围从的1.2贝可/克到的33.5贝可/克.实验室制备了四个装有的马林杯,体积为(450士2)立方厘米,由英国国立物理实验室()提供低水平环境放射性活度标准.1毫升密封氨瓶内台有",曲,耵,",卸,"0,,,.和,它们是在4摩尔盐酸中的氯化物.作为液体材料,制备了4摩尔或1摩尔的盐酸溶液,按照报告.58第五章的推荐(,1985),溶液中载流子浓度与组份按标准.混合体的密度分别为(1.6土0.1)和(1..0土0.01)克/立方厘米,测量时刻的放射性活度从"的0.2贝可/克到"的4.2贝可/克.同时备有一空的一45马林杯.用以检测不同

❽ 粉尘仪和粉尘检测仪的工作原理是什么样的谁给解释解释

粉尘仪的传感器室中,主要元器件为激光二极管、透镜组和光电检测器。检测时,首先由激光二内极管发出的激光,通容过透镜组形成一个薄层面光源。薄层光照射在流经传感器室的待测气溶胶时,会产生散射,通过光电探测器来检测光的散射光强。光电探测器受光照之后产生电信号,正比于气溶胶的质量浓度。然后乘以电压校准系数,这个系数通过测定特定浓度的气溶胶来得到。通常,用来做标定的测试气溶胶是亚利桑那试验粉尘(或ISO 12103-1,A1试验粉尘)。

❾ 粉尘检测仪是怎么工作的原理是什么

粉尘检测仪简称粉尘仪,也叫粉尘测量仪或粉尘测试仪,主要用于检测环境空气中的粉尘浓度,粉尘仪的种类分为:激光粉尘仪,在线式连续监测粉尘仪、便携式粉尘仪等,粉尘仪广泛应用于疾病预防控制中心、矿山、冶金、电厂、化工制造、卫生监督、环境保护、环境在线监测等等。粉尘检测仪,工作原理主要有光散射法、β射线、交流静电感应原理;适用于各种研究机构,气象,公共卫生,劳动卫生,大气污染研究等。快速检测仪器主要有5种方法:光散射法、β射线法和微重量天平法、静电感应法、压电天平法。

深圳市碧如蓝环境技术有限公司是由专注智慧环保领域多年的技术团队创建的高科技公司,公司手持式粉尘检测仪采用的光散射原理以半导体激光为测量光源,对空气中粉尘进行高灵敏非接触测量。由单片微处理器管理和控制测试全过程,采用高分辨率大屏幕高亮度液晶显示器,全中文显示。用于工矿企业粉尘(TSP, PM10;PM2.5)浓度的检测及超标报警,具有粉尘浓度测试报警和尘埃粒子计数功能,是疾病预防控制中心,劳动卫生监督,环境监测, 工矿企业等部门实时快速测量的新一代智能化测量仪器。

❿ 粉尘检测仪有哪些分类

按照国家环 保部要求,具备爆炸条件下的作业场所,像一些金属生产加工、粮食生产加工、饲料生产加工、农副产品类、林产品类、合成材料类、煤粉及其他场所等需要用到防爆式粉尘仪,这一类又分为便携式防爆粉尘仪 跟固定式防爆 粉尘浓度报警器;还有一些管道/烟道环境检 测的,可分为固定式粉尘浓度传感器跟便携式粉尘浓度检测仪

现在市面上有各式各样的粉尘浓度检测仪,我们在购买的时候一定要筛选是否是自己需要的。粉尘检测仪的工作原理主要是光吸收、光散射、β射线和交流静电感应原理。目前,对粉尘监测方法主要有过滤称重法,x射线衍射法,散射光法,压电天平法,β射线粉尘测量法和光透法等等。重量法作为粉尘测量的最常见的方法,需配备万分之一至十万分之一的电子天平。

粉尘检测仪可以分为:在线式粉尘检测仪和便携式粉尘检测仪;从测量原理上分为:称重法粉尘检测仪、激光粉尘检测仪、静电粉尘检测仪等。在线式粉尘检测仪根据现场使用位置可分为:管道粉尘检测仪、空间粉尘检测仪;便携式粉尘检测仪根据产品系列主要有CW-76S粉尘检测仪等,下面介绍下粉尘浓度检测仪的功能指标:

数据精准:激光原理检测,工业级光电感应;分辨率高:≥0.3um颗粒粒径,0.001mg/m³;

检测PM2.5、PM10、TSP;

性能稳定:可适应不同大气环境粉尘物质成分,独立参数系数调节;

数据传输:485(Modbus标准协议)或RS232、UART输出;提供开关量输出,可接户外声光报警设备等;

智能监测:实时监测传感器各项指标,当异常状态时可及时反馈用户;

激光粉尘仪是以激光为光源具有的袖珍式粉尘仪 ,符合卫生部行业标准的快速测尘仪,已有千台以上在全国各地使用。该仪器适用于公共场所 可吸入颗粒物(PM )浓度的快速测定、工矿企业生产 现场等劳动卫生方面 粉尘浓度的检测,以及环境保护领域可吸入尘浓度的监测, 还可用于空气净化器净化效率的评价。引进日本全套生产制造及检测标定技术及设备。

CW-76S工地扬尘传感器(粉尘检测仪)是深圳赛纳威自主研发的集空气动力学、数字信号处理、光电一体化的高科技产品,主要应用于检测大气中的粉尘质量浓度(PM值),适用于建筑工地、城市网格化监测、移动监测等领域和场合,是大气质量检测系统的核心模块

阅读全文

与β射线式粉尘测量仪源—探测器优化与采样装置概念设计相关的资料

热点内容
生产汽车尿素设备哪个品牌好啊 浏览:956
魅工具箱像素 浏览:425
户外跑步器材里程是什么单位 浏览:386
如何成为合格的机械设计师 浏览:630
燃电大米加工设备哪个牌子好 浏览:320
河北隆尧做什么机械多 浏览:370
轴承如何提取货源 浏览:985
阀门井中的管道需加装套管吗 浏览:724
法兰克加工中心机床怎么调 浏览:239
方向传动装置的作用及组成 浏览:677
起重设备交易市场哪个好 浏览:312
高精度的机床怎么做 浏览:848
x9机械键盘怎么调 浏览:298
阀门上面有个正方形图例是什么 浏览:848
生产加工五金制品的人叫什么 浏览:884
机械优先加什么 浏览:722
电动工具是看转速还是看瓦 浏览:477
制冷机品牌中有个顿字的叫什么 浏览:48
制冷量1KW等于多少冷冻水量 浏览:759
自来水水表阀门坏了怎么办 浏览:353