① 矿用运输绞车主要结构的工作原理是什么
1)电动机:绞车工作的动力;
2)卷筒装置:内部设置了一级差动轮系和一级定轴轮系作为绞车的传动装置,外部用于缠
绕钢丝绳;
3)工作制动器:绞车工作时,通过手的操作能够在不停车的情况下对绞车卷筒进行制动;
4)安全制动器:绞车工作时,出现紧急情况或发生故障时,能够对绞车卷筒进行制动;
5)离合器:通过手的操作能够控制绞车的运转和停止;
6)深度指示器:能够指示出绞车所牵引矿车所在位置;
7)底座:其上能够固定电动机,卷筒装置,工作制动器,安全制动器,离合器,深度指示
装置等部件。
② JD-1型调度绞车的结构特征
本绞车传动采用两组内齿轮传动副和一组行星齿轮系。电动机轴直接伸入卷筒端部,由电机齿轮和小内齿轮组成一对内齿轮传动副;内齿轮的连轴齿轮与另一小内齿轮又组成第二个内齿轮传动副;以第二个内齿轮的连轴齿轮为太阳轮和行星架上的两个行星轮相啮合、两个行星轮又和大内齿轮相啮合构成行星轮系。机器运转时;当刹紧大内齿圈上的刹车带、而卷筒松刹时,行星齿轮一面绕着心轴自转、同时又绕着太阳轮公转,由于行星齿轮架和卷筒有两个键和六个螺栓相连接,因此带动卷筒旋转进行作业。
当刹紧卷筒上的刹车带、松开大内齿圈上的刹车带时;行星架停止转动、行星轮仅绕心轴自转并带动大内齿圈旋转。
如果卷筒和大内齿圈两个刹车同时松开,则两种运转都有可能出现;但是,严禁两个刹车带同时刹紧!同时刹紧将会发生设备事故。
本绞车可通过两个刹车装置交替刹紧、松开来调节牵引速度。
③ 绞车结构型式组成
jtp绞车结构型式:绞车的结构型式为卷筒缠绕式,由电动机、减速箱、主轴装置(包括卷筒和底座等)、盘形制动器、深度指示器、液压站、润滑站和电控系统等组成。
④ 绞车传动装置
是减速器的课程设计?
⑤ 卷扬机传动装置中的二级圆柱齿轮减速器
B1】1级蜗轮蜗杆减速机-图【B2】2级蜗轮蜗杆减速机设计-三维图【B3】变速器设计-图【B4】带机传动机构装置中的一级斜齿轮减速机设计(F=2.44,V=1.4,D=350)【B5】带式输送机传动装置减速器设计【B6】带式输送机传动装置设计【B7】带式输送机传动装置设计(F=2.3,V=1.1,D=300)-说明书【B8】带式输送机传动装置中的二级圆柱齿轮减速器设计(F=1.6,V=1.0,D=400)【B9】带式输送机传动装置中的二级圆柱齿轮减速器设计(F=6,D=320,V=0.4)【B10】带机传动装置中的一级圆柱齿轮减速器(1.7,1.4,220)-1图1论文【B11】带式输送机传送装置减速器设计(F=7,V=0.8,D=400)【B12】圆锥-直齿圆柱减速器设计(F=1.77,V=1.392,D= 235)【B13】带式输送机减速器设计(F=2.6,V=1.1,D=300)【B14】带式输送机减速器设计(F=6,D=280,V=0.35)【B15】带式输送机减速器设计(F=10,D=350,V=0.5)【B16】带式输送机设计【B17】带式输送机设计减速器设计(T=1300,D=300,V=0.65)【B18】带式运输机构传动装置设计(1.6 1.5 230)-说明书【B19】带式运输机构传动装置设计(F=2.4,V=1.4,D=300)【B20】带式运输机构减速机设计(F=2.2,V=1.0,D=350)【B21】单级蜗轮蜗杆减速器设计(F=6,V=0.5,D=350)【B22】单级斜齿圆柱齿轮传动设计+绞车传动设计-1图1说明书【B23】单级斜齿圆柱齿轮传动设计+链传动设计(F=2.5,V=2.4,D=350)【B24】单级斜齿圆柱齿轮传动设计+链轮传动设计(F=1.6, V=1.5, D=230)【B25】单级圆柱齿轮减速器设计(F=2.8,V=1.1,D=350)【B26】二级斜齿圆柱齿轮减速器设计(F=3.6 ,V=1.13 ,D=360)【B27】二级圆柱圆锥齿轮减速器设计-说明书【B28】二级圆柱齿轮减速器设计-图【B29】二级圆柱直齿齿轮减速器(F=4,V=2.0,D=450)【B30】二级圆锥齿轮减速箱设计(F=5,V=1.6,D=500)【B31】二级展开式圆柱圆锥齿轮减速器设计【B32】二级直齿圆柱齿轮减速器设计【B33】二级直齿圆锥齿轮减速器设计-图【B34】带机中的两级展开式圆柱直齿轮减速器设计(F=3.6,V=1.13,D=360)【B35】减速器CAD,CAM设计-图【B36】减速器设计(F=2.3 v=1.5 d=320)-图【B37】卷扬机传动装置设计(F=5,V=1.1 ,D=350)【B38】矿用固定式带式输送机的设计-说明书【B39】两级斜齿轮减速机设计(D=320,V=0.75,T=900)【B40】两级斜齿圆柱齿轮减速机设计(F=1.9,V=1.3,D=300)【B41】两级斜齿圆柱齿轮减速机设计【B42】带机传动装置中的同轴式二级圆柱齿轮减速器设计(T=850,D=350,V=0.7)【B43】两级圆柱齿轮减速器设计(F=10,D=320,V=0.5)【B44】两级直齿斜齿减速机设计-图【B45】一级锥齿轮减速机设计(F=2.4,V=1.2,D=300)【B46】一级斜齿轮减速机设计-(F=3.5,V=2.05,D=350)【B47】蜗杆减速器的设计(F=2.4,V=1.1,D=420)【B48】蜗轮蜗杆减速机设计-图【B49】蜗轮蜗杆减速器设计-图【B50】单级蜗轮蜗杆减速器设计-图【B51】一级圆锥齿轮减速器设计(F=2.9,V=1.5,D=400)【B52】行星齿轮减速器设计-图【B53】行星减速器设计-图(07版CAD)【B54】带式输送机传动装置设计(F=1.4,V=1.5,D=260)【B55】带式运输机构传动装置中的一级齿轮减速机设计(F=2.3,V=1.1,D=300)【B56】一级减速器设计(F=2.8,V=1.7,D=300)【B57】一级蜗轮蜗杆减速器设计(F=3,V=1.1,D=275)【B58】一级蜗杆减速机设计(F=2.2,V=0.9,D=350)【B59】一级圆锥齿轮减速器设计(F=2.2,V=0.9,D=300)【B60】一级斜齿轮减速设计(F=2.44,V=1.4,D=300)【B61】带式输送机传动装置中的一级斜齿轮传动设计(F=2.05,V=2.05,D=350)【B62】一级斜齿轮减速机设计(F=2.8,V=2.4,D=300)【B63】一级斜齿轮减速机设计(F=2.75,V=2.4,D=300)【B64】一级斜齿轮减速机设计(F=2.75,V=2.4,D=350)【B65】一级斜齿轮减速机设计(F=2.5,V=2.4,D=300)【B66】一级斜齿轮减速机设计(F=2.8,V=2.4,D=350)【B67】一级圆柱齿轮减速器设计(F=2,V=1.6,D=300)【B68】减速器设计-图【B69】卷扬机行星齿轮减速器的设计-图【B70】两级行星齿轮减速器设计-图【B71】履带式半煤岩掘进机主减速器及截割部设计【B72】蜗轮减速器设计-图【B73】自动洗衣机行星齿轮减速器的设计【B74】减速箱的CAD-CAM造型论文【B75】普通带式输送机设计-说明书
⑥ 调度绞车设计
调度绞车是矿山生产系统中最常用的机电设备,主要用于煤矿井下和其他矿山在倾角度小于30度的巷道中拖运矿车及其它辅助搬运工作,也可用于回采工作面和掘进工作面装载站上调度编组矿车。
在设计过程中根据绞车牵引力选择电动的型号以及钢丝绳的直径,选择后验证速度是否与设计要求速度一致,根据要求设计绞车是通过两级行星轮系及所采用的浮动机构完成绞车的减速和传动,其两级行星齿轮传动分别在滚筒的两侧,从而根据设计要求确定行星减速器的结构和各个传动部件的尺寸,根据滚筒的结构形式选择制动装置为带式制动,并对各个设计零部件进行校核等等。绞车通过操纵工作闸和制动闸来实现绞车卷筒的正转和停转,从而实现对重物的牵引和停止两种工作状态。设计中绞车内部各转动部分均采用滚动轴承,运转灵活。
JD-0.5型调度绞车采用行星齿轮传动,绞车具有结构紧凑、刚性好、效率高、安装移动方便、起动平稳、操作灵活、制动可靠、噪音低以及隔爆性能、设计合理、操作方便,用途广泛等特点。
关键词:调度绞车; 带式制动;行星轮系
ABSTRACT
Mine proction Dispatching winch system is the most commonly used in electrical and mechanical equipment, mainly for underground coal mine and other mines in the mping of less than 30 degrees angle of the roadway in the haulage mine car handling and other auxiliary work, can also be used for mining and tunneling Face Face loading station on the scheling grouping tramcar.
In the design process in accordance with electric winch traction choose the type and the diameter of wire rope, after the choice of whether or not verify the speed consistent with the design requirements of speed, according to winch was designed by two rounds of the planet and used by the body floating completion of the slowdown and drive winch , The two planetary gear transmission in the drum on both sides, in accordance with design requirements so as to determine the structure and planetary recer in various parts of the drive size, according to choose the form of the structure of drum brakes for the belt brake, and various design Parts and components for checking and so on. Winch through the manipulation of gates and brake drum gates to achieve the winch is to turn and stop, thus realizing the weight of traction and the suspension of the two working condition. Winch in the design of the internal rotation of the rolling bearings are used, flexible operation.
JD-0.5 to Dispatching winch used planetary gear transmission, the winch is compact, rigid and efficient, easy to install mobile, starting a smooth, flexible operation, the brake reliable, low noise and flameproof performance, design reasonable, easy to operate, such as extensive use Characteristics.
Keywords:Scheling winch; belt braking; round of the planet.
目 录
1 概述……………………………………………………………………………1
1.1调度绞车的简介…………………………………………………………1
1.2用途及适用范围…………………………………………………………2
1.3 本文所做的基本工作……………………………………………………2
2 调度绞车的总体设计…………………………………………………………3
2.1设计参数…………………………………………………………………3
2.2结构特征…………………………………………………………………3
2.3 选择电动机………………………………………………………………4
2.3.1电动机输出功率的计算………………………………………………4
2.3.2确定电动机的型号……………………………………………………4
3 滚筒及其部件的设计…………………………………………………………5
3.1钢丝绳的选择……………………………………………………………5
3.2滚筒的设计计算…………………………………………………………6
3.2.1 滚筒直径 ……………………………………………………………6
3.2.2 滚筒宽度 ……………………………………………………………7
3.2.3滚筒外径 ……………………………………………………………7
4 行星齿轮传动概论……………………………………………………………8
4.1行星齿轮传动的定义……………………………………………………8
4.2行星齿轮传动符号………………………………………………………9
4.3行星齿轮传动的特点……………………………………………………10
5 减速器设计…………………………………………………………………11
5.1总传动比及传动比分配…………………………………………………11
5.1.1总传动比………………………………………………………………11
5.1.2传动比分配……………………………………………………………12
5.2高速级计算………………………………………………………………13
5.2.1配齿计算………………………………………………………………13
5.2.2变位方式及变位系数的选择…………………………………………14
5.2.3 按接触强度初算A-C传动的中心距 和模数………………………15
5.2.4几何尺寸计算…………………………………………………………16
5.2.5 验算A-C传动的接触强度和弯曲强度………………………………19
5.2.6验算C-B传动大接触强度和弯曲强度………………………………25
5.3低速级计算………………………………………………………………26
5.3.1配齿计算………………………………………………………………26
5.3.2变位方式及变位系数的选择…………………………………………27
5.3.3 按接触强度初算A-C传动的中心距 和模数 ……………………27
5.3.4 几何尺寸计算………………………………………………………29
5.3.5验算A-C传动的接触强度和弯曲强度………………………………32
5.3.6验算C-B传动大接触强度和弯曲强度………………………………38
5.4传动装置运动参数的计算………………………………………………39
5.4.1各轴转速计算…………………………………………………………39
5.4.2各轴功率计算…………………………………………………………39
5.4.3各轴扭矩计算…………………………………………………………39
5.4.4各轴转速、功率、扭矩列表(见表5.1)…………………………40
6传动轴的设计计算……………………………………………………………40
6.1计算作用在齿轮上的力…………………………………………………40
6.2、初步估算轴的直径……………………………………………………41
6.3轴的结构设计……………………………………………………………41
6.3.1确定轴的结构方案……………………………………………………41
6.3.2确定各轴段直径和长度………………………………………………41
6.3.3确定轴承及齿轮作用力位置…………………………………………42
6.4绘制轴的弯矩图和扭矩图………………………………………………42
6.5轴的计算简图……………………………………………………………44
6.6按弯矩合成强度校核轴的强度…………………………………………44
7滚动轴承的选择与寿命计算…………………………………………………45
7.1基本概念及术语…………………………………………………………45
7.2轴承类型选择……………………………………………………………46
7.3按额定动载荷选择轴承…………………………………………………46
8键的选择与强度验算…………………………………………………………47
8.1电机轴与中心轮联接键的选择与验算…………………………………48
8.1.1键的选择………………………………………………………………48
8.1.2键的验算………………………………………………………………48
8.2 主轴(滚筒轴)与行星架联接键的选择与验算………………………49
8.2.1键的选择………………………………………………………………49
8.2.2 键的验算……………………………………………………………49
8.3 主轴与太阳轮联接键的选择与验算…………………………………49
8.3.1 键的选择……………………………………………………………49
8.3.2 键的验算……………………………………………………………49
8.4 行星架与滚筒联接键的选择与验算…………………………………50
8.4.1 键的选择……………………………………………………………50
8.4.2 键的验算……………………………………………………………50
9 制动器的设计计算…………………………………………………………51
9.1制动器的作用与要求……………………………………………………51
9.1.1 制动器的作用:………………………………………………………51
9.1.2 制动器的要求:………………………………………………………51
9.2 制动器的类型比较与选择……………………………………………51
9.2.1制动器的类型有:……………………………………………………51
9.2.2 制动器的选择………………………………………………………51
9.3 外抱带式制动器结构…………………………………………………52
9.4 外抱带式制动器的几何参数计算……………………………………52
10 结构设计……………………………………………………………………62
10.1 行星齿轮传动的均载机构……………………………………………62
10.1.1 均载机构的类型和特点……………………………………………62
10.1.2 行星轮间载荷分布不均匀性分析…………………………………63
10.1.3 行星轮间载荷分布均匀的措施……………………………………65
10.2 行星轮的结构及支承结构……………………………………………67
10.2.1 行星轮的结构………………………………………………………67
10.2.2 行星轮的支承结构…………………………………………………68
11 主要零件的技术要求………………………………………………………71
11.1 对齿轮的要求…………………………………………………………71
11.1.1 齿轮精度……………………………………………………………71
11.1.2 对行星轮制造方面的几点要求……………………………………71
11.1.3 齿轮材料和热处理要求……………………………………………71
12 绞车的安装及安装调试……………………………………………………72
12.1 绞车的安装……………………………………………………………72
12.2 绞车安装调试…………………………………………………………72
13 使用与操作…………………………………………………………………72
13.1 一般要求………………………………………………………………72
13.2 操作前注意事项………………………………………………………72
13.3 操作要求和操作方法…………………………………………………73
14 安全保护……………………………………………………………………74
15 维护与保养…………………………………………………………………74
16 可能发生的故障及消除方法………………………………………………76
17 绞车的润滑…………………………………………………………………76
小结……………………………………………………………………………78
参考文献………………………………………………………………………79
附录……………………………………………………………………………80
翻译部分
英文原文……………………………………………………………………82
中文译文……………………………………………………………………89
致谢……………………………………………………………………………93
⑦ 运输绞车的组成
运输绞车主要由隔爆电动机1、滚筒2、偏心轴3、小内齿圈4、抱闸5、刹车轮6、大内齿圈7、双联齿轮8、支承架9及底座10等组成。中煤绞车产品均采用行星齿轮传动,绞车具有结构紧凑、刚性好、效率高、安装移动方便、起动平稳、操作灵活、制动可靠、噪音低等特点。
⑧ 矿用防爆绞车主要结构特征有哪些
1)电动机复:绞车工作的动力;制
2)卷筒装置:内部设置了一级差动轮系和一级定轴轮系作为绞车的传动装置,外部用于缠
绕钢丝绳;
3)工作制动器:绞车工作时,通过手的操作能够在不停车的情况下对绞车卷筒进行制动;
4)安全制动器:绞车工作时,出现紧急情况或发生故障时,能够对绞车卷筒进行制动;
5)离合器:通过手的操作能够控制绞车的运转和停止;
6)深度指示器:能够指示出绞车所牵引矿车所在位置;
7)底座:其上能够固定电动机,卷筒装置,工作制动器,安全制动器,离合器,深度指示
装置等部件。
⑨ 什么是轮系,轮系在实际应用中有哪些特点
轮系是在实际机械中,往往要采用一系列相互啮合来满足工作要求的齿轮组成的传动系统。特点:
(1)大的传动比。一般一对齿轮的传动比不宜过大,例如要求实现传动比为100,若仅用一对齿轮,则大轮直径将为小轮直径的100倍,若采用三级的轮系,则大轮直径可大为减小。
(2)较大的轴间距。如两轴距离较大,采用一对齿轮传动,则两齿轮直径势必很大。若在中间加一个或几个齿轮,齿轮尺寸即可缩小。
(3)变速或变向,用变速机构改变轮系的传动比(见变速器)以实现变速;或设置中间轮以改变从动轴的转向。
(9)绞车传动装置轮系扩展阅读
在轮系的具体应用中,除了广泛使用单一的定轴轮系或者单一的周转轮系外,还经常采用由定轴轮系与周转轮系或者由若干个周转轮系组合在一起的轮系。该轮系既不能等同于定轴轮系,又不能简单地认为是周转轮系,对其分析研究时,关键是要找准轮系具体的组成部分。
当两轴间需要较大的传动比时,若仅用一对齿轮传动,则两轮直径相差很大,导致小齿轮尺寸过小,而大齿轮尺寸过大。因此,可以采用多级齿轮组成的定轴轮系来实现。如传动比更大,往往采用齿轮不多的周转轮系,以获得较大传动比。
实现远距离的两轴传动。当两轴间距离较远时,如果采用一对齿轮传动,则机构尺寸庞大。如改用定轴轮系传动,则可避免上述缺陷。
⑩ 绞车系统由什么组成
绞车系统主要包括:主滚筒总成、绞车架及护罩总成、角传动箱总成、转盘传动装置、主滚筒刹车系统、主刹车冷却循环系统、水刹车、水刹车水循环系统、绞车动力输入输出护罩、天车防碰装置等所组成