❶ 处理常减压的重油,选择用催化裂化工艺还是焦化焦化
如果重油的残炭值非常高,有乙烯装置进行配套,且焦子有销路的话,上焦化合理些。但现在原油价格这么高,别人都在想尽办法把煤变成油,你却把油变成焦,不合适!催化装置的经济效益要高些,并且生产方案多变,适应性强。
❷ 催化裂化再生器的催化裂化再生器
再生器的主要作用是烧去结焦催化剂上的焦炭以恢复催化剂的活性,需的热量。对再生器的主要要求有:
①生催化剂的含炭量较低,一般要求低于0.2%(质量分数)有时要求低达0.05%0.10%(质量分数)。
②有较高的烧焦强度,当以再生器内的有效藏最为基准时,烧焦强度一般为100-250 kg/(t*h)。
③催化剂减活及磨损的条件比较缓和。
④易于操作,能耗及投资较少。
⑤能满足环境保护要求。
为了实现以上目标,工业上有各种型式的再生器,大体可分为三种类型:单段再生、两段再生、快速流化床再生。表1列出了各种组合方式的再生型式以及它们的主要指标。图1是单段再生的再生器简图,以下以此图为例说明再生器的基本工艺结构。 再生器的壳体是钢制的大型筒体,国外最大的直径达16.8m(装置处理能力8.5Mt/a)。壳体内的上部为稀相区,下部为密相区。密相区的有效藏量由烧焦负荷及烧焦强度确定,根据密相区的有效藏量和固体密度可决定密相风的容积。所谓有效藏量是指处于烧焦环境中的藏量。密相区的直径由空塔气用较高的气速可以有较高的烧焦强度,从而使藏量减少,但床层密度下降而使床层体积增大,因此,气速的选择有一合理的范围。密相区的直径和容积确定后,即可确定其高度。密相区的床层高度一般为5-7m。为了避免过多地带出催化剂及增大催化剂的损耗,稀相区的气速不能太高,对堆积密度较小的催化剂一般采用0.6-0.7m/S,对堆积密度较入的催化剂则可采用0. 8 - 0.9 m/s。从密相区向上到一级旋风分离器入口之间的稀相空间高度应大于TDH。即使如此,稀相空间仍有一定的催化剂浓度,为了减少催化剂的损耗,再生器内装有两级串联的旋风分离器,其回收固体颗粒的效率应在99.99%以上。旋风分离器的直径不能过大,以免降低分离效率,因此,在烧焦负荷大的再生器内装有几组旋风分离器,它们的升气管连接到一个集气室将烟气导出再生器。
为了使烧焦空气(工厂里多称为主风)进入床层时能沿整个床截面分布均匀,在再生器下部装有空气分布器,其主要结构形式有分布板式(碟形)和分布管式(平面树枝形和环形)两类。碟形分布板上开有许多小孔,孔直径为16-25mm,孔数为10-20/㎡。分布板可使空气得到良好的分布,但是大直径的分布板长期在高温下操作易变形而使空气分布状况变差。目前工业上使用较多的是管式分布器,这种分布器在树枝形分布管或环形分布管上设有向下倾斜45°的喷嘴,空气由喷嘴向下喷出,再返回上面的床层。
待生催化剂进入再生器和再生催化剂出再生器的方式及相关的结构形式随再生器的结构、再生器与反应器的相对位置等因素而多种多样,同时还应从反应工程的角度考虑如何能有较高的烧焦效率。一般来说,待生催化剂从再生器床层的中上部进入,并且以设有分配器为佳;再生催化剂从床层的中下部引出,通常是通过淹流管引出。
在以馏分油为原料的催化裂化装置中,一般是处于热平衡操作。但在重油催化裂化装置中,由于焦炭产率高,再生器内产生的热量过剩,必须另外取走一部分热量才能维持两器的热平衡。工业上曾经采用在再生器内安装取热盘管或管束的办法来取走过剩的热量,称为内取热方式。由于操作灵活性差及取热管易损坏,近年来,内取热方式已被外取热方式逐渐所替代。外取热方式是在再生器壳体外部设一催化剂冷却器(称外取热器),从再生器密相床层引出部分热催化剂,经外取热器冷却,温度降低约100-200℃,然后返回再生器。这种取热方式可以采用调节引出的催化剂的流率的方法改变冷却负荷,其操作弹性可在0-100%之间变动,这就使再生温度成为一个独立调节变动,从而可以适合不同条件下的反应—再生系统热平衡的需要。 目前上业应用的外取热器主要有两种类型,即下行式外取热器和上行式外取热器,它们的结构分别见图2和图3。下行式外取热器的操作方式是从再生器来的催化剂自上而下通过取热器,流化空气以0.3-0.5m/s的表观流速自下而上穿过取热器使催化剂保持流化状态。在取热器内也形成了密相床层和稀相区,夹带了少量催化剂的气体从卜部的排气管返回再生器的稀相区。取热器内装有管束,通入软化水以产生水蒸气,从而带走热量。催化剂循环量由出口管线上的滑阀调节,取热器内密相床层料面高度则由热催化剂进口管线上的滑阀调节。
上行式外取热器的操作方式是热催化剂进入取热器的底部,输送空气以1.0-1.5m/s的表观流速携带催化剂自下而上经过取热器,然后经顶部出门管线返回再生器的密相床层的中上部。在取热器内的气固流动属于快速床范畴,其催化剂密度一般为100-200kg/m。催化剂的循环量由热催化剂入口管线上的滑阀调节。
❸ 催化裂化装置吸收稳定系统的原理是什么
催化裂化生产过程的主要产品是气体、汽油和柴油,其中气体产品包括干气和液化石油气,干气作为本装置燃料气烧掉,液化石油气是宝贵的石油化工原料和民用燃料。所谓吸收稳定,目的在于将来自分馏部分的催化富气中C2以下组分与C3以上组分分离以便分别利用,同时将混入汽油中的少量气体烃分出,以降低汽油的蒸气压,保证符合商品规格。
吸收-稳定系统包括吸收塔、解吸塔、再吸收塔、稳定塔以及相应的冷换设备。
由分馏系统油气分离器出来的富气经气体压缩机升压后,冷却并分出凝缩油,压缩富气进入吸收塔底部,粗汽油和稳定汽油作为吸收剂由塔顶进入,吸收了C3、C4(及部分C2)的富吸收油由塔底抽出送至解吸塔顶部。吸收塔设有一个中段回流以维持塔内较低的温度,吸收塔顶出来的贫气中尚夹带少量汽油,经再吸收塔用轻柴油回收其中的汽油组分后成为干气送燃料气管网。吸收了汽油的轻柴油由再吸收塔底抽出返回分馏塔。解吸塔的作用是通过加热将富吸收油中C2组分解吸出来,由塔顶引出进入中间平衡罐,塔底为脱乙烷汽油被送至稳定塔。稳定塔的目的是将汽油中C4以下的轻烃脱除,在塔顶得到液化石油气〈简称液化气〉,塔底得到合格的汽油——稳定汽油。
吸收解吸系统有两种流程,上面介绍的是吸收塔和解吸塔分开的所谓双塔流程;还有一种单塔流程,即一个塔同时完成吸收和解吸的任务。双塔流程优于单塔流程,它能同时满足高吸收率和高解吸率的要求。
❹ 怎么从重油里变出汽油来
目前,在石油产品中,作为汽车燃料的汽油和柴油的数量要占到一多半,而一般原油中含有的汽油、柴油这样的轻质馏分只有1/4左右,光是从数量上看就有很大差距,同时在质量上也达不到要求。
因而,人们便想方设法要把约占原油3/4的较重成分变成轻质燃料,以满足交通事业发展的需要。根据原油在350℃起就开始分解这个特点,20世纪初就有人开发了石油热裂化生产汽油的方法,并大规模工业化,基本满足了当时的需要。但是到了20世纪40年代,汽车数量激增,汽油机的工作条件越来越苛刻,热裂化汽油无论在数量上还是质量上都已经不能满足需要,此时一种称为催化裂化的新生产工艺便应运而生。自那时起,催化裂化迅速发展,逐渐成为生产汽油的主角,而热裂化则逐渐退出历史舞台,现在已几乎绝迹。
所谓催化裂化就是指在催化剂存在下进行裂化反应,与单纯的热裂化相比,它可以在较低的温度下、较短的时间内完成反应,大大提高了生产的效率和汽油的质量。其反应温度大体在500℃左右,反应时间只有几秒钟。催化裂化的原料比较广泛,最初主要用沸点范围为350~500℃的中间馏分为原料,现在大量采用重质原料(全部或部分掺入常压渣油或减压渣油),就是所谓重油催化裂化。催化裂化所用的催化剂现有许多品牌,但在本质上它们都是硅和铝的化合物,现在普遍采用的是一类称为Y型分子筛的固体酸催化材料,以分子筛为主要成分的裂化催化剂具有很高的催化活性、选择性及稳定性。
催化裂化装置催化裂化汽油的产率大体在50%左右,它在我国车用汽油中的份额约占80%之多。催化裂化汽油基本可达到90号车用汽油的标准,但是从环保上更高的要求来看,其中烯烃的含量较高,硫含量一般也偏高,这是目前正在设法解决的问题。此外,催化裂化还产出25%~30%的柴油馏分,其质量较差,需要经过进一步处理后才能应用。
催化裂化在生成汽油、柴油等液体产物的同时,还生成以丙烷、丙烯、丁烷、丁烯为主要成分的气体产物。它们在不太高的压力下就可以变成液体,这就是常用作民用燃料的液化气。其实,把液化气当燃料烧掉是很可惜的。因为它们是极好的石油化工原料,可以用来制取聚丙烯和聚丙烯腈等许多十分重要的产品。近年来,还开发了一系列用催化裂化方法尽量多产气体烯烃的过程,成为除了高温裂解外另一条提供石油化工原料的重要渠道。
此外,还有一类也能把大分子变小,使重质的原料变轻的过程称为加氢裂化。这种方法是在高达100多个大气压(约10兆帕)的氢气下,经过加氢裂化催化剂的作用,可以生产出质地纯净的优质喷气飞机燃料、柴油以及石油化工的原料(轻油)。
❺ 重油催化裂化装置中再生器的原理和作用
裂化催化剂在反应过程中因为缩合反应生成积炭附着在催化剂上使催化剂失活,再生器的主要作用就是烧去催化剂上的积炭。请参看:石油炼制工程一书。几句话难以解释清楚。
❻ 催化裂化与催化重整有什么区别
一、反应过程不同
1、催化裂化:催化裂化是石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。
2、催化重整:在有催化剂作用的条件下,对汽油馏分中的烃类分子结构进行重新排列成新的分子结构的过程。
二、催化剂不同
1、催化裂化:催化裂化原料是原油通过原油蒸馏(或其他石油炼制过程)分馏所得的重质馏分油;或在重质馏分油中掺入少量渣油,或经溶剂脱沥青后的脱沥青渣油;或全部用常压渣油或减压渣油。
2、催化重整:催化重整催化剂的金属组分主要是铂,酸性组分为卤素(氟或氯),载体为氧化铝。
三、反应机理不同
1、催化裂化:是按碳正离子机理进行的,催化剂促进了裂化、异构化和芳构化反应,裂化产物比热裂化具有更高的经济价值,气体中C3和C4较多,异构物多;汽油中异构烃多,二烯烃极少,芳烃较多。
其主要反应包括:分解,使重质烃转变为轻质烃;异构化;氢转移;芳构化;缩合反应、生焦反应。异构化和芳构化使低辛烷值的直链烃转变为高辛烷值的异构烃和芳烃。
2、催化重整:包括以下四种主要反应:环烷烃脱氢;烷烃脱氢环化;异构化;加氢裂化。
❼ 加氢精制,加氢裂化,催化裂化的反应有什么差别
差别如下:
(1)加来氢精制的目的自主要是为了脱除硫、氮等杂质,提高汽油、柴油产品的质量;
(2)催化裂化装置是加工重油的主要手段,在催化剂作用下,大分子裂化成小分子,蜡油或者常压渣油就能大部分转化成汽油、柴油馏分、液化气等,特点产品中烯烃含量高;
(3)加氢裂化装置也是加工重油的主要手段,在催化剂和氢气作用下,大分子裂化成小分子,常压渣油就能大部分转化成汽油、柴油馏分、液化气等,同时可以脱除硫、氮等杂质,特点汽油、柴油产品质量比催化裂化高,几乎不含烯烃,生产的油品性质稳定。
❽ 什么是流化催化裂化啊
流化催化裂化装置是炼油二次加工装置,它以重质馏分油(直馏蜡油、焦化蜡油、常压重油、减压渣油、脱沥青油等)为原料,在一定的温度、压力下、以分子筛催化剂为载体,采用流态化技术,原料油与高温催化剂接触,发生一系列的化学反应,从而将原料转化为轻质油品的生产加工工艺。主要产品为汽油、轻柴油和液化气。我国车用汽油用量的80%,有催化装置生产。
❾ 重油催化裂化装置膨胀节的作用它分那几种类型都起什么样的作用
我单位在斜管及立管采用复式拉杆和复式万向型膨胀节两种型号 查看原帖>>
❿ 石油加工所使用的催化剂功能有哪些
石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。原料采用原油蒸馏(或其他石油炼制过程)所得的重质馏分油;或重质馏分油中混入少量渣油,经溶剂脱沥青后的脱沥青渣油;或全部用常压渣油或减压渣油。在反应过程中由于不挥发的类碳物质沉积在催化剂上,缩合为焦炭,使催化剂活性下降,需要用空气烧去(见催化剂再生),以恢复催化活性,并提供裂化反应所需热量。催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高(马达法80左右),安定性好,裂化气(一种炼厂气)含丙烯、丁烯、异构烃多。
沿革
催化裂化技术由法国E.J.胡德利研究成功,于1936年由美国索康尼真空油公司和太阳石油公司合作实现工业化,当时采用固定床反应器,反庆和催化剂再生交替进行。由于高压缩比的汽油发动机需要较高辛烷值汽油,催化裂化向移动床(反应和催化剂再生在移动床反应器中进行)和流化床(反应和催化剂再生在流化床反应器中进行)两个方向发展。移动床催化裂化因设备复杂逐渐被淘汰;流化床催化裂化设备较简单、处理能力大、较易操作,得到较大发展。60年代,出现分子筛催化剂,因其活性高,裂化反应改在一个管式反应器(提升管反应器)中进行,称为提升管催化裂化。
中国1958年在兰州建成移动床催化裂化装置,1965年在抚顺建成流化床催化裂化装置,1974年在玉门建成提升管催化裂化装置。1984年,中国催化裂化装置共39套,占原油加工能力23%。
石油炼制过程之一,是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等的过程。原料采用原油蒸馏(或其他石油炼制过程)所得的重质馏分油;或重质馏分油中混入少量渣油,经溶剂脱沥青后的脱沥青渣油;或全部用常压渣油或减压渣油。在反应过程中由于不挥发的类碳物质沉积在催化剂上,缩合为焦炭,使催化剂活性下降,需要用空气烧去(见催化剂再生),以恢复催化活性,并提供裂化反应所需热量。催化裂化是石油炼厂从重质油生产汽油的主要过程之一。所产汽油辛烷值高(马达法80左右),安定性好,裂化气(一种炼厂气)含丙烯、丁烯、异构烃多。
沿革
催化裂化技术由法国E.J.胡德利研究成功,于1936年由美国索康尼真空油公司和太阳石油公司合作实现工业化,当时采用固定床反应器,反庆和催化剂再生交替进行。由于高压缩比的汽油发动机需要较高辛烷值汽油,催化裂化向移动床(反应和催化剂再生在移动床反应器中进行)和流化床(反应和催化剂再生在流化床反应器中进行)两个方向发展。移动床催化裂化因设备复杂逐渐被淘汰;流化床催化裂化设备较简单、处理能力大、较易操作,得到较大发展。60年代,出现分子筛催化剂,因其活性高,裂化反应改在一个管式反应器(提升管反应器)中进行,称为提升管催化裂化。
中国1958年在兰州建成移动床催化裂化装置,1965年在抚顺建成流化床催化裂化装置,1974年在玉门建成提升管催化裂化装置。1984年,中国催化裂化装置共39套,占原油加工能力23%。
催化剂
主要成分为硅酸铝,起催化作用的是其中的酸性活性中心(见固体酸催化剂)。移动床催化裂化采用3~5mm小球形催化剂。流化床催化裂化早期所用的是粉状催化剂,活性、稳定性和流化性能较差。40年代起,开发了微球形(40~80μm)硅铝催化剂,并在制备工艺上作了改进,活院脱≡裥远急冉虾谩?0年代初期,开发了高活性含稀土元素的
X型分子筛硅铝微球催化剂。70 年代起, 又开发了活性更高的Y型分子筛微球催化剂(见石油炼制催化剂)。
化学反应
与按自由基反应机理进行的热裂化不同,催化裂化是按碳正离子机理进行的,催化剂促进了裂化、异构化和芳构化反应,裂化产物比热裂化具有更高的经济价值,气体中C3和C4较多,异构物多;汽油中异构烃多,二烯烃极少,芳烃较多。其主要反应包括:①分解,使重质烃转变为轻质烃;②异构化;③氢转移;④芳构化;⑤缩合、生焦反应。异构化和芳构化使低辛烷值的直链烃转变为高辛烷值的异构烃和芳烃。
工艺过程
催化裂化的流程包括三个部分:①原料油催化裂化;②催化剂再生;③产物分离。原料经换热后与回炼油混合喷入提升管反应器下部,在此处与高温催化剂混合、气化并发生反应。反应温度480~530℃,压力0.14MPa(表压)。反应油气与催化剂在沉降器和旋风分离器(简称旋分器)分离后,进入分馏塔分出汽油、柴油和重质回炼油。裂化气经压缩后去气体分离系统。结焦的催化剂在再生器用空气烧去焦炭后循环使用,再生温度为600~730℃。
使用分子筛催化剂时,为了使炼厂产品方案有一定的灵活性,可根据市场需要改变操作条件以得到最大量的汽油、柴油或液化气。
装置类型
流化床催化裂化装置有多种类型,按反应器(或沉降器)和再生器布置的相对位置的不同可分为两大类:①反应器和再生器分开布置的并列式;②反应器和再生器架叠在一起的同轴式。并列式又由于反应器(或沉降器)和再生器位置高低的不同而分为同高并列式和高低并列式两类。
同高并列式 要特点是:①催化剂由U型管密相输送;②反应器和再生器间的催化剂循环主要靠改变U型管两端的催化剂密度来调节;③由反应器输送到再生器的催化剂,不通过再生器的分布板,直接由密相提升管送入分布板上的流化床可以减少分布板的磨蚀。
高低并列式特点是反应时间短,减少了二次反应;催化剂循环采用滑阀控制,比较灵活。
同轴式装置形式特点是:①反应器和再生器之间的催化剂输送采用塞阀控制;②采用垂直提升管和90°耐磨蚀的弯头;③原料用多个喷嘴喷入提升管。
发展
长期以来,流化床催化裂化原料主要为原油蒸馏的馏出油(柴油、减压馏出油等)和热加工馏出油,原料中镍、钒(会使催化剂中毒)含量一般均小于0.5ppm。在以减压渣油作催化裂化原料时,通常要在进入催化裂化装置前,用各种方法进行原料预处理,除去其中大部分镍、钒等金属和沥青质。70年代以来,由于节约石油资源引起商品渣油需求下降。因此,流化床催化裂化装置掺炼减压渣油或直接加工常压渣油已相当普遍。主要措施是:采用抗重金属中毒催化剂;在原料中加入钝化剂等。