导航:首页 > 装置知识 > cfb脱硫装置的设计计算

cfb脱硫装置的设计计算

发布时间:2022-04-29 01:55:45

㈠ 什么是脱硫装置的脱硫效率怎样提高其脱硫效率

脱硫装置的脱硫效率就是进气含硫量减去出气的硫含量(即脱除的硫含量)/进气含硫量
提高脱硫效率的方法很多:如果脱硫装置一定的话,可以通过加药吸收,提高脱硫剂与硫的接触面积等.

㈡ 脱硫塔设计-浆液循环泵使用

第十一届全国燃煤二氧化硫氮氧化物污染治理技术“十一五”烟气脱硫脱氮技术创新与发展交漉会 -351? 脱硫吸收塔浆液循环泵的汽蚀周立年 (许继联华国际环境工程有限责任公司,北京 100085) 摘要循环泵的汽蚀在湿法脱硫工艺经常出现,但并没有引起重视。本文从汽蚀原理上分析出循环 泵汽蚀极容易发生,指出了避免汽蚀现象发生的一些措施。 石灰石一石膏法烟气脱硫工艺中,循环泵的工作效率关系到吸收塔内浆液喷淋效果,影响到脱硫效率和耗电量。通常对循环泵的腐蚀和磨蚀比较注意,循环泵的汽蚀现象不容易发现而没有 引起足够的重视。我们在脱硫作业中发现循环泵叶轮叶片出现一些坑坑点点损坏现象,循环泵电流下降,脱硫效率降低,经过仔细分析认为是汽蚀作用比较大,同时存在的腐蚀、磨蚀现象,也 加重了循环泵叶轮叶片的损坏。为此,我们必须对循环泵的汽蚀作认真的研究,避免或者减轻汽蚀现象的发生。 一、汽蚀机理 汽蚀现象是当水泵内液体流通时水汽化成汽泡,汽泡再凝结成水的过程中,对水泵流通金属表面的破坏,这种现象称为汽蚀或空蚀。 在一个标准大气压时,水加热到100℃会沸腾,产生大量气泡。当容器内压力小于一个标准 大气压时,降低一定温度水也会沸腾。例如,当水温在50℃时,水面上的压降到12.3 kPa,水 会开始汽化而沸腾,当水面上的压力升到大于12.3 kPa时,水就会停止汽化沸腾。所以水和汽 在温度一定时,通过变化压力可以互相转化。 循环泵的运转过程中,泵各处的流速和压力变化巨大,在叶轮进浆处压力最低。这个地方的浆液温度为50℃,当这个地方浆液压力小于或等于12.3 kPa时,浆液就会汽化,形成许多细小 的汽泡,有些汽泡会附着在叶轮叶片和泵壳内壁上,同时溶解在浆液中的SO:、0:、CI等腐蚀性 气体会因为压力降低而逸出,这些气体腐蚀性极强。由于吸收塔内浆液加入了大量的氧化空气, 所以吸收塔内是一个充满大量空气汽泡的石膏一石灰石浆液混合液体,在进入循环泵之前,已经充满了气体,更加有利于汽化现象发生。 浆液中SO:、0:、CI气体在总压力(气体和汽体)等于101.33 kPa时溶解于lOOg水中的气体质量为:S02:6.47 是一种强腐蚀性气体。 循环泵叶轮边缘是泵体内压力最低和最高的切换点,浆液中瞬间形成许多蒸汽和气体混合的 小气泡,当小气泡随水流到达压力较高区域时,汽泡急剧凝结而消失,同时,汽泡周围的浆液以 很高的速度填充汽泡空间。 从汽泡产生到消失,时间极短。估计这段时间,如叶轮叶片进口处浆液的相对速度为30m/ S,叶轮叶片汽蚀破坏部位与叶片进口边的距离为3cm,汽泡从产生到消失的时间约为0.001S。 汽泡在短暂的时间内消失,会产生很强的水锤压强,局部压强可达到200MPa以上,这样高的瞬 时冲击压强作用在叶轮叶片上足以使表面上微观裂缝处产生破坏作用。同时,汽泡中的SO:、 0:、CI等腐蚀性气体,也会借助汽泡凝结及气体压强而产生的热量,加快叶轮叶片表面的化学 腐蚀破坏作用。所以叶轮叶片表面首先出现坑坑点点的“点蚀”损坏现象。g;02:0.0031 g;CI:0.459 g。浆液中s02、cI气体含量大于02含量, ?352? “十一五”烟气脱硫脱氮技术创新与发展交流会(2007) 二、循环泵产生汽蚀的现象 2.1对循环泵过流部件产生破坏作用汽蚀破坏最严重的是叶轮,及叶轮上的叶片部件,叶轮口环间隙处会产生汽蚀破坏现象。 2.2产生噪声和振动 汽蚀发生时,会有汽泡的破灭产生的各种频率的噪声,如炒豆子的燥裂声,同时机组会有振 动现象。 2.3循环泵效率下降 循环泵汽蚀严重时,由于浆液中有大量汽泡,实际上改变了浆液的密度,叶片表面充满了汽 泡,造成脱流,造成泵实际扬送的充满汽体的浆液,而不是单纯的浆液,使循环泵的功率、扬程 和效率均会迅速下降,如图所示: 三、汽蚀的界限Pn 3.1、泵汽蚀余量NPSH, 泵汽蚀余量Ahr是由泵本身的特性决定的, 是表示泵本身抗汽蚀性能的参数,与泵本身的设 计、制造和泵的使用转速有关。泵的汽蚀余量Ahr越低,说明泵的抗汽蚀性能越好,反之,泵 的抗汽蚀性能越差。 3.2、装置汽蚀余量NPSH。:图1Q 装置汽蚀余量是由外界的吸入装置特性决定 汽蚀对特性曲线的影响 的,是表示装置汽蚀性能的参数,(例如吸收塔浆液循环泵吸人装置的装置汽蚀余量是由塔内液 面高度及管道系统阻力所决定的)。装置汽蚀余量越高,泵越不容易汽蚀,反之,泵越容易 汽蚀。 3.3、泵产生汽蚀的界限: 泵产生汽蚀的界限是泵汽蚀余量NPSH,等于装置汽蚀余量NPSH。。当装置汽蚀余量低到等 于泵汽蚀余量NPSH,时,泵就己经开始汽蚀,换言之,泵的汽蚀余量高到等于装置汽蚀余量时,泵就已开始汽蚀。 四、装置汽蚀余量计算为使循环泵不发生汽蚀,装置汽蚀余量(NPSH。)必须大于泵的汽蚀余量(NPSH,),为了 安全还应增加1m的安全余量即:NPSH。≥NPSH,+1 m 装置汽蚀余量是指泵入口处单位重量液体所具有的高于汽化压力能头的能量。影响循环泵装 置汽蚀余量的条件有:吸收塔内浆液高度与循环泵入口高度之差,泵人lZl管道直径、长度、形 式、阀门,入口管道内壁光洁度,当地绝对标高,浆液温度,以及浆液中汽体含量和汽泡大 小等。 泵的汽蚀余量为循环泵的结构的设计参数所决定,由泵厂商在泵试验中确定。 装置汽蚀余量的计算如下式: NPSH。=(H砒m—H,。。)/10pp+Hs 式中:H。——泵安装地点的环境压力,kPa; H,。。——浆液汽化压力,kPa; 第十一届全国燃煤二氧化硫氮氧化物污染治理技术“十一五”烟气脱硫脱氮技术创新与发展交流会 ‘353? Hs——泵入口总水头,m; pp——浆液密度,t/m3 泵入口总水头计算如下式:H。=Zl~Hnl—Hii z。——循环泵实际提升高度(吸收塔内浆液面与循环泵中心线之差),m; H。.——循环泵进口管段沿程水头损失,m; Hii——循环泵进口管段局部水头损失之和,m;Hnl=f×L/D×V2/29 F——泵进口管内壁摩擦系数; L——泵进口管当量长度,lIl; D——泵进口管内径,in; V——泵进口管浆液流速,m/s; g——重力加速度,g=9.81m/s2;Hii=H^一HB—Hc—HD HA——泵进口管过滤网水头损失,in; H。——泵进口管蝶阀水头损失,m; H。——泵进I=I管收缩段水头损失,m; H。——泵进I=I管与吸收塔接头型式水头损失,m; 五、泵的汽蚀余量计算泵的汽蚀余量的计算如下式:NPSH,=V02/29+hW02/29 由泵的汽蚀余量计算公式可以看出,减少泵的汽蚀余量,提高泵的汽蚀性能应该采取以下措施: 降低泵的转速,采用低转速泵。 入值采用求导方式取最小值点,加大叶轮进口直径,符合KO值在4.5—5.5之间,为高汽蚀余量泵。 增加叶片进口宽度,从而减小Vo和Wo。 增加了盖板进口部分曲率半径,采用两段圆弧设计,从而减低Vo值。叶片数量最少,排挤系数小。 叶片进口冲角在保证效率的情况,采用正冲角。 叶片进口采用自然流线角度,流体阻力小。 加大平衡孔设计,进出口压力得到平衡,减小泄流量。 采用能耐酸腐蚀、耐磨蚀、强度高、韧性大的金属材料。国际和国内通用材料有:A49(双 相耐磨白口铁)或1.4517、1.4460、1.4539、1.4529等双相钢,也可以采用衬胶方式,均表现 出比较良好的耐腐蚀、耐磨损性能。 六、循环泵汽蚀实例计算某600MW机组脱硫吸收塔,循环泵浆液输送量为9800m3/h,吸收塔浆液面与泵进121之差为9.6m,进口管直径为1.2m,进121管几何长度为6.26m,石膏浆液比重1.15 t/m3,循环泵必需汽 蚀余量NPSH,=8.7 m。 m。 根据当地标高,Hatm为90 kPa,Hvap为13 kPa。PP为1.15 t/m3。经过计算,Hs=9.7 “十一五”烟气脱硫脱氮技术创新与发展交流会(2007) NPSH。=(Hatm—Hvap)/10pp+Hs=(90—13)/10×1.15+9.7=15.7 由于NPSH。+1=8.7+1=9.7m m 该泵的装置汽蚀余量大于泵的汽蚀余量加l米的数值,满足汽蚀余量的要求,不会发生汽蚀现象。 七、循环泵避免汽蚀现象的措施改进循环泵的内部结构和参数。 循环泵进口管道适当加粗,减少弯曲和变径,改进管道与吸收塔的接口形式。 减少循环泵进口管道长度。 调试及正常生产时,降低吸收塔低液位的使用频率,保持正常液位操作,保持较高的装置汽蚀余量与泵的汽蚀余量的差值。 吸收塔内氧化空气管出口尽量设计在较高的位置上,减少浆液中的空气含量。 在石灰石进入制浆前设筛子或者过滤装置,提高石灰石的纯度,减少石灰石中的SiO:及异物,避免进入吸收塔内造成对循环泵叶轮叶片的损坏。 在石膏排放泵出口设过滤器,在往塔内回输时可以净化石膏浆液,减少SiO:及异物在浆液 中循环,减少对泵的损坏。 脱硫装置开始运行时严格检查烟道及浆液系统的杂质和异物。 使用质量良好的浆液喷头,减少破损喷头对泵的损伤。 八、结论湿法脱硫工程中循环泵极容易形成汽蚀,和循环浆液中充满大量氧化空气、浆液温度较高有 关,同时浆液中有大量腐蚀性气体,加剧了循环泵叶轮叶片的破坏。在循环泵外部配置设计时应 充分注意,改善各种装置的外部条件,避免汽蚀的发生。对泵生产厂商要求浆液泵在研制和生产 时,采取专门的防范措施,避免汽蚀、腐蚀、磨蚀对泵的损伤。参考文献 《选矿设计手册》冶金工业出版社 《水泵原理、运行维护与泵站管理》化学工业出版社 《锅炉设计手册》机械工业出版社 《化学分析手册》化学工业出版社 脱硫吸收塔浆液循环泵的汽蚀作者: 作者单位: 周立年 许继联华国际环境工程有限责任公司,北京,100085 相似文献(10条) 1.会议论文 王乃华.鲁天毅 石灰石/石膏湿法烟气脱硫金属浆液循环泵国产化研究及实践 2006 本文介绍了襄樊五二五泵业有限公司成功开发烟气脱硫金属浆液循环泵的有关情况.包括:泵的水力模型、结构、机械密封、材料的研究成果,经工业 性考核和鉴定该泵已达国际先进水平,完全可实现我国火电机组湿法脱硫装置的各种金属浆液循环泵的国产化. 2.会议论文 孙克勤.徐海涛.徐延忠 利用自主工艺包实施WFGD核心设备国产化 2004 本文对石灰石-石膏湿法烟气脱硫关键设备吸收塔浆液输送及分配系统——浆液循环泵及FRP喷林管道进行国产化研究及工程实施的过程进行了介绍 。试验数据表明,由江苏苏源环保工程股份有限公司与连云港中复连众复合材料集团公司联合开发的FRP喷淋管道及与石家庄泵业集团有限公司联合开发 的大流量浆液循环泵完全满足600MW等级火电厂湿法烟气脱硫工程的需要,部分指标已达到或接近世界先进水平,此两项设备已成功应用于太仓港环保发电 有限公司一二期烟气脱硫工程中,其成功开发将对推动我国烟气脱硫技术及装备的国产化产生深远的意义。 3.会议论文 龙辉.钟明慧 影响600MW机组湿法烟气脱硫厂用电率主要因素分析 2005 针对影响600MW机组湿式石灰石—石膏法脱硫岛厂用电率的主要因素,对煤收到基硫分高低、烟气量大小、采用的不同脱硫设备等对脱硫厂用电率的 影响进行了详细分析,结论是应根据工程具体煤种情况核算硫系统主要6kV设备(增压风机、浆液循环泵、磨粉机、真空泵、氧化风机等)的轴功率,在初步 设计(预设计)阶段对可能出现的厂用电率计算后,完成湿式石灰石—石膏法脱硫岛硫部分厂用变容量的选择. 4.会议论文 王乃华 石灰石(石灰)/石膏湿法烟气脱硫装置用泵及其国产化 2003 为了实现石灰石(石灰)/石膏湿法烟气脱硫装置用泵国产化,满足市场用泵需求,襄樊五二五泵业有限公司根据输送浆液的腐蚀磨蚀特性,在引进技术 基础上进行了大量研发工作,并取得了良好的应用业绩,实现了烟气脱硫装置中吸收塔循环泵、各种渣浆泵、长轴液下泵以及搅拌机等多种设备的国产化. 5.会议论文 朱晨曦.吴志宏 烟气脱硫浆液循环泵国产化研究 2006 本文介绍了湿法烟气脱硫装置(WFGD)脱硫浆液循环泵国产化的研究过程,将成果转化为产品并应用于实际工位,达到了设计参数要求,同时填补国 内湿法脱硫大型石膏浆液循环泵(合金泵)空白,突破与掌握了脱硫大型浆液循环泵创新技术和关键技术。 6.会议论文 黄河 FGD浆液循环泵叶轮叶片断裂原因分析及防范措施 2008 针对石灰石-石膏湿法脱硫系统浆液循环泵保证寿命期内叶轮叶片断裂的现象,探讨了其断裂的因素。结合断样金相组织分析、断面能谱成分和扫描 电镜分析结果,提出了该位置断裂的原因及防范措施。 7.期刊论文 赵芳.黄魁 烟气湿法脱硫优化运行讨论 -科技信息2009,""(34) 从分析烟气湿法脱硫系统的运行特性出发,提出合理控制吸收塔内浆液的pH值、石膏浆液的密度和石灰石粉的颗粒度,优化浆液循环泵的运行,加强烟 气、废水系统的管理等控制策略.结合脱硫单耗调控、能耗排序优化、入炉煤的合理掺混,并结合系统和设备改造与完善,最终达到优化运行的目的. 8.期刊论文 周祖飞.ZHOU Zu-fei 燃煤电厂烟气脱硫系统的运行优化 -浙江电力2008,27(5) 介绍了燃煤电厂石灰石-石膏湿法脱硫系统运行优化的研究成果,主要内容有以吸收塔浆液pH值控制为核心的脱硫化学反应工艺的细调,增压风机和 GGH等设备及系统运行方式的调整优化,以及循环泵的节能组合投运等提高脱硫运行经济性的措施. 9.会议论文 龙辉.于永志 影响600MW机组湿法烟气脱硫装置厂用电率主要因素分析 2006 针对影响600MW机组湿式石灰石-石膏法脱硫岛厂用电率的主要因素,对煤收到基硫分高低、烟气量大小、采用的不同脱硫设备等对脱硫厂用电率的影 响进行了详细分析,国内现设计的600MW机组采用湿法烟气脱硫工艺时,设计煤种为高热值,低硫分(硫分低于0.7%),并且脱硫烟气系统不设GGH或设GGH时 ,脱硫厂用电率为1.0%~1.1%;当采用低热值,高水分设计煤种,脱硫厂用电率在1.7%以上.当采用高硫分(硫分高于4%)、中等热值的煤种时,脱硫厂用 电率最高可达1.98%.应根据工程具体煤种情况核算脱硫系统主要设备(增压风机、浆液循环泵、磨粉机、真空泵、氧化风机等主要设备)的轴功率,在初 步设计阶段核算脱硫部分厂用电率后,完成湿式石灰石-石膏法脱硫岛脱硫部分厂用变容量的选择. 10.学位论文 杜谦 并流有序降膜组脱除烟气中SO<,2>过程的研究 2004 在当前的湿法烟气脱硫技术中占主导地位的是喷雾型石灰石—石膏法烟气脱硫.喷雾型吸收塔具有许多优点,但也存在一些问题.如因喷雾的要求,循 环泵能耗较大、对喷嘴的要求高;雾滴被气体包夹,脱水除雾困难,塔内难实现高气速,且烟气带水对尾部设备腐蚀较严重等.随着对脱硫过程的深入了解 ,吸收塔内的化学过程能得到很好的控制,结垢问题基本得到解决.本文针对喷雾型吸收塔存在的问题及塔内结垢问题得到解决的基础上,提出了新型并流 有序降膜式湿法烟气脱硫工艺,旨在利用降膜反应器的一系列优点,如塔内降膜能提供充分有效的气液接触反应面,是一种高效的气液反应器;塔内气、液 膜互不贯通,可防止脱硫后烟气中携带雾滴,可省却除雾器,简化系统设备,同时可减轻尾部设备的腐蚀;塔内能实现高气速,可缩小塔体;塔内气相压降小 ,降膜通过布液器采用溢流方式形成,且可实现低液气比,系统能耗低等特点,从而降低脱硫装置投资及运行成本;同时本文旨在利用并流有序降膜塔内气、 液接触的表面积相对已知,是一种良好的研究脱硫过程机理的反应器的特点,对湿式石灰石-石膏法脱硫过程进行比较准确的研究,以便更深入了解湿法脱 硫过程,为合理设计和运行脱硫设备提供理论依据.本文最后对新型并流有序降膜式湿法烟气脱硫过程进了数值模拟,并将模拟结果与试验结果进行了比较 分析.结果表明,模型能较准确地对并流降膜式湿法烟气脱硫过程进行模拟,能较准确地对系统脱硫率、浆液中剩余石灰石含量及各离子浓度进行预测.

㈢ 烟气湿法脱硫 脱硫率是怎么计算的

脱硫效率指由脱硫装置脱除的SO2
量与未经脱硫前烟气中所含SO2
量的百分比.
C1
/
C2
x
100%
C1:脱硫前烟气中SO2
的折算浓度
C2:脱硫后烟气中SO2
的折算浓度

㈣ cfb锅炉主要性能参数及结构尺寸的计算及选择 请问出自那本书

哈尔滨普华煤燃烧技术开发中心《CFB锅炉燃烧设备性能设计方法》

㈤ 计算进入脱硫系统的烟气流量和组成

烟气由进气口进入吸收塔的吸收区,在上升过程中与浆液逆流接触,烟气中所含的污染气体绝大部分因此被清洗入浆液,与浆液中的悬浮微粒发生化学反应而被脱除,处理后的净烟气经过除雾器除去水滴后进入烟道。

从锅炉来的热烟气经增压风机增压后进入烟气换热器(GGH)降温侧,经GGH冷却后,烟气进入吸收塔,向上流动穿过喷淋层,在此烟气被冷却到饱和温度,烟气中的SO2被浆液吸收。除去SOX及其它污染物的烟气经GGH加热至80℃以上,通过烟囱排放。

(5)cfb脱硫装置的设计计算扩展阅读:

注意事项:

1、加强主机、辅机及就地检修人员的回报联系工作。当班辅机班长负责必须与4#脱硫吸收塔系统及水平烟道系统检修工作的工作负责人取得联系互通联系方式,并将其联系电话回报当值值长。

2、主机3#运行人员应加强运行监视、调整,维持机组稳定运行,避免3#炉负压大幅度波动,当3#机组负压发生大幅度变化或发生锅炉掉焦、灭火等其他异常事件时,第一时间汇报值长,值长应立即通知工作负责人组织检修人员撤离现场。

3、如工作负责人向班长汇报就地有异常时,班长应第一时间汇报值长,并亲自到就地了解实际情况。

4、辅机人员必须按规定进行定期巡检,发现就地有异常情况时,及时向班长汇报。班长应及时查明情况并进行汇报。

㈥ 煤气脱硫塔如何设计及其设计参数

简单说两句:
首先确定设计所必须的条件:
1,煤气处理量xxxxxNM3/H 2,初始H2S含量g/Nm3 3,最终H2S含量g/Nm3 4,当地海拔Km
5,煤气入口温度℃ 6,煤气入口压力Pa 7,煤气入口压力Pa
设计脱硫塔时应考虑的数据:
1,空塔速度 0.4~0.75m/s
2,填料比表面积95~120m-1
3,溶液入口流速2~3.5m/s
4,溶液出口流速0.2~1.2m/s
以上是设计的前题然后根据以上数据计算出脱硫塔的塔径及高度。不知道这些东西能不能帮助你.

㈦ CFB锅炉自动控制

CFB锅炉的结构及运行方式具有自身的特殊性,其控制系统需要针对相应特点进行设计。下面分别对各控制子系统予以描述。

1 .主蒸汽压力控制

采用DEB直接能量平衡策略。控制煤粉量来保证母管蒸汽压力恒定。燃料及风量之间设有交叉限制,以保证增负荷时先加风后加煤,减负荷时先减煤后减风。对于变频控制的给粉机进行高低速的限制。控制系统输出一前馈信号至送风控制系统,使送风量能及时跟上煤量的变化,以保持适当的风煤配比。

此控制系统通过改变锅炉燃烧平衡维持机前压力恒定,当汽机负荷改变时,风量和煤量的调节协调动作,以使锅炉快速响应这一负荷变化,同时也部分补偿了负荷变化时锅炉热量的改变。

2 .床温控制

床温是CFB锅炉运行状态的重要表征参数,也是较难控制的参数之一。这是因为床温是燃料燃烧发热和床料放热综合作用的结果,而影响燃料发热和床料放热的因素较多,如燃料热值、粒度尺寸、物料流速、物料浓度、入炉风量、入炉风温以及吸热工质参数等等。

床温通过在燃烧室密相区布置多支热电偶进行测量。将多个测量值进行综合运算后得出床温表征值。为了保证循环流化床锅炉的稳定燃烧并有利于获得最佳脱硫和脱硝效果,床温最好控制在850℃至900℃之间。

对于采用高温回料系统的CFB锅炉,循环灰(回料)温度与炉内床温十分接近,循环灰量不能明显影响床温且在正常运行中不单独调整(保证返料风在正常范围时,循环灰量具有平衡能力)。影响床温的主要因素是一次风与二次风比率和燃料量。一次风为床料提供流化动力和初始燃烧氧气,但同时对密相区有明显的冷却效果;二次风为床料提供燃尽风,从不同高度送入可均衡各段床温,二次风还主要承担调节烟气含氧量的任务。燃料量直接影响炉内发热量,与锅炉负荷相适应的风煤比是决定床温的最终因素。

为达到控制床温的目的,采取串级校正调节方式。床温信号进入床温调节器与床给定值比较所得偏差经不同的函数转换后生成校正指令分别送至一次风调节器、二次风调节器和燃料调节器对其给定值进行修正,这样通过调节一、二次风的比率来实现床温调节基本满足床温控制的要求,同时一次风量的调整还必须受安全流化风量的限制。床温调节器输出信号转换函数考虑调节床温时对负荷的影响最小。

床温校正函数可参考同型锅炉预设,但需在锅炉运行后通过试验加以修正,最终达到床温调节的最佳效果。

3 .床层厚度(床压)控制

在循环流化床锅炉中,床层厚度对炉内流化状态、床温和传热效率有直接影响,锅炉一定的负荷对应一个适当的床层厚度。

床层厚度基本同床压(或料层差压)成正比。床压控制系统的任务就是通过调节排渣量维持床料厚度在适当值。

循环流化床没有明显的流化料层界面,但有密相区和稀相区之分,床层厚度是指密相区内静止时料层厚度,一定的床压(或料层差压)对应着一定的料层厚度。在运行中,料层厚度必须控制在一定的范围内。若料层太薄,一方面炉膛内传热强度低,限制锅炉出力,对锅炉稳定运行不利;另一方面炉料的保有量少,放出炉渣可燃物含量也高。若料层太厚,料层阻力必然增加,虽然锅炉运行容易控制,炉渣可燃物含量低,但增加了风机电耗。所以为了经济运行,床压(或料层差压)控制在负荷对应的适当值,运行中床压(或料层差压)超过此值,可以通过放渣来调整,放渣的原则是少放、勤放,最好能连续适量排放,一次放渣量太多,将影响锅炉的稳定运行、出力和效率。

采用床压信号作为床压调节器的测量值,同床压设定值比较后经PI调节器运算,其输出控制底渣的排放量。

4 .燃料控制

锅炉燃料量指令是由锅炉负荷指令与实际进入锅炉的总风量取小值,并经床温控制校正信号修正后获得。锅炉燃料量指令作为燃料主控的给定值,所有输入锅炉的燃煤量测量值的总和经发热量补偿运算后所得值,与燃油折算煤量之和作为反馈值,燃料主控PID输出值经分配后调整各给煤机的出力,保证总热量输入满足锅炉负荷及床温调整的要求。

在锅炉的冷态启动过程中,先启动点火燃烧器,按预定的升温曲线对启动床料加热,当床温升高到可以燃烧主燃料的程度,允许间断投运给煤机。破碎的煤粒进入炉膛燃烧,床温继续升高,当床温超过某限定值,允许停止投油,并保持合适给煤量。

对于采用气力播煤装置的系统,还需对播煤风压和风量进行调节,使之与给煤量相适应,才能实现煤粒在密相区床面上的均匀分布。

在由DEB为基础构成的燃料控制系统中,不同于其它控制策略之处在于:根据热负荷计算出来的锅炉指令在燃料调节器的入口直接同锅炉的热量指令信号比较,使热负荷与锅炉之间的能量供求关系得到快速平衡。热量信号反映锅炉内总燃料所释放的热量,用于该系统中无需精确计量燃料量,这正表明该系统对燃料的适应性很强。

本设计的燃料控制系统,同时考虑了煤和油的控制。在锅炉的冷态启动过程中,先启动床下风道燃烧器,按预定的升温曲线对启动床料加热,把床温提高到可以燃烧煤燃料的程度,少量间断投入煤粒,破碎的煤粒进入炉膛燃烧,使床温继续升高。当床温超过某限定值,就可以停止投油,并保持合适给煤量。在锅炉启动的初始阶段必须加强对床温和烟气含氧量的监视,以判断煤燃料是否真正燃烧。

5 .主蒸汽温度控制

在屏式热器喷出口至高温过热器之间管道布置二级喷水减温器。调节二级喷水量是控制主汽蒸温度最后的和最直接的手段。

典型的过热蒸汽温度控制分两级完成,通过串级方式控制一、二级喷水减温使锅炉的主蒸汽温度控制在允许范围。

第一级喷水主调节器响应二级过热器出口温度和给定值(根据锅炉负荷计算确定)之间的偏差,副调节器响应由主调节器修改的温度和一级减温器出口温度之间的偏差,为了克服负荷扰动下的过热器喷水调节过程的滞后和惯性,还将代表负荷扰动的主蒸汽流量作为前馈信号加到副调节器的给定值。一旦负荷发生变化,则提前调节减温水流量,快速消除扰动,维持二级过热器出口蒸汽温度在期望值。

第二级喷水主调节器响应末段过热器出口蒸汽温度和手动调节设定值之间的偏差,副调节器响应由主调节器修改的温度和二级减温器出口温度之间的偏差,为了克服负荷扰动下的过热器喷水调节过程的滞后和惯性,还将代表负荷扰动的主蒸汽流量作为前馈信号加到副调节器的给定值。一旦负荷发生变化,则提前调节减温水流量,快速消除扰动,提高了控制品质,确保主汽温度稳定在严格规定范围。

6 .再热器蒸汽温度控制

再热蒸汽温度的精确控制通常是通过喷水减温控制来实现的。

控制回路采用串级方式,主调节器响应再热器出口蒸汽温度和设定值之间的偏差,副调节器响应由主调节器修改的温度和减温器出口温度之间的偏差,调节减温水流量,确保再热器蒸汽温度稳定在严格规定范围。

7 .燃油压力控制

本系统采用单回路PID调节,根据燃油压力控制油泵转速维持压力正常。保证油枪进油压力满足机械雾化和出力要求。

8.总风量控制

本系统主要以产生正确的一、二次风量为目的,根据实际进入锅炉的总燃料量需要的燃烧风量与锅炉负荷要求的总风量取大值,以保证升负荷时,先增风量,后增燃料;降负荷时先降燃料,后降风量,防止燃料富余。并结合烟气含氧量的校正,和锅炉设定的最小总风量取大值作为总风量的设定值,通过与实际总风量的偏差,经总风量调节器运算后,产生锅炉总风量信号。根据此总风量信号按特定函数关系分配锅炉一次风量和二次风量的控制指令。

一次风量控制

一次风量必须保证炉膛内物料能够流化,并为燃料的燃烧提供初始燃烧空气;本系统就是以提供适当的床下一次风量为目的,根据总风量按分配函数计算一次风量的预定值,引入床温信号的修正,与最小一次风量取大值(确保最低流化风量),作为一次风量的给定,与实际进入炉膛的一次风量的偏差,通过一次风量调节器运算生成控制信号,控制相应调节挡板的开度,使一次风量满足运行要求。

二次风量控制

二次风为床料提供燃尽风,主要承担调节烟气含氧量的任务,从不同高度送入还可均衡各段床温。根据总风量指令分配的二次风量(床上配风)指令,经烟气含氧量修正和床温控制校正信号修正,作为二次风量的给定值。通过PID调节回路,控制相应的二次风挡板开度使二次风量满足运行要求。

烟气含氧量调节器的输出作为二次风量(床上配风)指令的有限幅的修正系数,并设置手/自动切换接口。在正常运行时调整烟气含氧量为期望值,保证锅炉燃烧经济性;当氧量信号故障时也不会造成二次风量的大幅突变,有利于炉内流化稳定。

大中型CFB锅炉的二次风由单独配置的一台甚至两台二次风机提供。通过调节二次风机入口挡板或二次风机转速,控制二次风母管风压为需要值。

9 .汽包水位控制

该系统的目标是保证锅炉汽包中的水位稳定在安全运行的范围内,并实现汽包水位全程控制。

在启动和低负荷期间,由汽包水位单冲量调节回路控制启动给水调节阀开度,调整给水流量,实现汽包水位控制。在正常运行时,由汽包水位、主蒸汽流量和给水流量构成的三冲量调节回路控制主给水调节阀开度或给水泵转速,调整给水流量,实现汽包水位控制。

三冲量与单冲量调节间的自动切换过分配算法功能实现。

给水采用单冲量控制时,经压力补偿的汽包水位信号(三取中)作为水位调节器的反馈信号,与给定值的偏差通过比例积分运算,所得输出值控制启动给水调节阀开度,调整给水流量,维持水位在给定值。

给水采用串级三冲量控制时,经压力补偿的汽包水位信号(三取中)作为水位调节器(PI)的反馈信号,与水位给定值的偏差通过比例积分运算,再与主蒸汽流量(前馈)相加后作为主给水调节器(ID)的给定值。此给定值与作为反馈信号的主给水流量的偏差通过PID运算,所得输出值控制主给水调节阀开度或给水泵转速,调整给水流量,维持水位在给定值。

10 .炉膛压力控制

本控制回路是一个带前馈的单回路PID调节系统,控制引风机入口挡板开度或引风机转速,改变引风量,以维持炉膛压力的平衡。为减小动态偏差,引入送风(含一、二次风)执行机构位置(经适当加权运算后)作为前馈信号,可使引风机迅速响应总风量的变化,维持炉膛压力在设定值。

由于炉内床料存量随负荷而变化,从运行的经济性考虑,炉膛压力设定值随负荷变化应进行适当调整。

11 .回料器配风控制(返料风控制)

CFB锅炉最基本的工况之一就是要建立物料按照炉膛—分离器—回料器—炉膛的流程的单向循环。而回料器是这一循环中的关键部件,它是一个具有自密封特性的非机械式物料输送装置。通过对回料器下降段用风、底部用风和上升段用风的合理控制,实现回料器的畅通和物料单向输送,即单向返料。在回料器进口立管中的物料形成的静压与炉膛床压之间的差压是物料循环的根本动力。

回料器用风要求有较高压力。小容量CFB锅炉的回料器用风由一次风提供,回料器用风压力由一次风机保证。大中型CFB锅炉的回料器用风则由专门的罗茨风机(组)提供,回料器用风压力通过罗茨风机(组)出口母管至一次风管的旁路阀(溢流阀)来调节,该压力控制回路是一个单回路PID调节系统。在保证回料器用风压力足够的前提下,还需控制各段用风风量均达到相应的必须值,且各段风量应保持一定比例,才能保证物料的可靠循环。

12 .风道燃烧器控制

大多数CFB锅炉采用风道燃烧器完成点火启动。每台风道燃烧器装有一支油枪,布置有内通道风、外通道风和出口冷却风。内通道风和外通道风由一次风经点火风机增压后提供。内通道风为油枪提供稳燃风,外通道风为油枪提供燃尽风,出口冷却风调节风道燃烧器烟温。

风道燃烧器控制的任务是控制其出力并合理配置各部分风量,达到安全运行,快速点燃床料中的煤燃料,或稳定流化床燃烧的目的。

风道燃烧器的配风需要加以控制。根据油枪的流量计算出所需内、外通道风量,经PID调节控制相应挡板开度,保证油枪稳定和完全燃烧。出口烟温按单回路PID调节,通过控制出口冷却风挡板开度调整冷却风量稳定出口烟温,以避免烟温过高造成风道燃烧器内衬的保温材料坍塌甚至穿壁事故。

风道燃烧器的配风分三部分,第一部分为初始稳燃风,第二部分为燃烬风,第三部分为风道燃烧器出口调温风。其中第一、第二部分风量根据进油量按比例调节。第三部分风量根据风道燃烧器出口烟气温度调节,其目的是通过调整对应风门挡板控制风道燃烧器出口烟气温度维持在给定值。

13 .石灰石控制

石灰石量的给定值由石灰石量与煤量的比值(Ca/S)乘以给煤量得到预估值,再由SO 2调节器输出值作为修正系数与预估值相乘后获得。石灰石量给定值与测量值的偏差经调节器PI运算,其输出控制石灰石给料装置,从而改变石灰石量来保证烟气中SO 2排放量达到环保要求。另外石灰石颗粒的几何尺寸应严格控制,颗粒太大或太小都会降低整个脱硫效率,在运行过程中造成不良影响。

SO 2调节器输出设置手/自动切换和限值功能(如:0.8—1.2)。在SO 2调节回路投入自动运行时,回路可由SO 2调节器精确调整所需石灰石量,控制烟气中SO 2含量为给定值。当SO 2调节回路未处于自动状态时(如SO 2测量信号故障时回路退出自动),回路也可获得一个相对合适的石灰石量的给定值,进而给入相应的石灰石量。

这一回路结构还减小了尾部烟气中SO 2含量变化相对于给煤量变化的滞后对匹配石灰石量调节带来的延迟,提高了石灰石量调节的快速性。

石灰石由给料装置给出后,多数CFB锅炉采用高压空气通过管道完成其后续的输送任务。这种系统中,还需要控制高压输送空气的风压和风量,以保证石灰石颗粒被可靠输送到炉膛。

14 .暖风器控制

该控制系统用于控制末级空气预热器冷端温度,以保证这一温度高于烟气中硫酸露点,从而防止冷端金属腐蚀。在空气进入末级预热器前,调整进入暖风器的蒸汽量以保证进入空气预热器的风温度足够高,使得空气预热器冷端烟气温度高于酸露点。

本系统采用单回路PID调节,采用末级预热器空气入口风温和烟气温度的平均值为反馈值,通过控制加热蒸汽调节阀开度,调整加热蒸汽流量,维持末段空气预热器冷端烟气温度在安全范围。

15 .冷渣器控制

通过冷渣器内各床的床压和温度控制进入相应床内的风量,以保证排渣温度符合输渣系统的要求。

当冷渣器内某床的温度高于允许值时,开启相应冷却水阀,对该冷渣器进行强制冷却,直到床温恢复到正常值。

16 .高压加热器水位控制

本系统采用单回路PID调节,根据高压加热器水位控制疏水阀开度,调整疏水量,维持水位在正常范围。当高压加热器水位超过高限水位,应停运高压加热器。

17 .低压加热器水位控制

本系统采用单回路PID调节,根据高压加热器水位控制疏水阀开度,调整疏水量,维持水位在正常范围。

18 .凝汽器水位控制

本系统采用单回路PID调节,通过控制补给水调节阀开度,调整补给水流量,维持凝汽器水位在正常范围。

19 .除氧器压力控制

本系统采用单回路PID调节,通过控制加热蒸汽调节阀开度,调整加热蒸汽量,维持除氧器压力为给定值。

20 .除氧器水位控制

除氧器水位控制回路,在启动和低负荷时采用单冲量调节,正常负荷时采用三冲量调节,通过调节除氧器水位调节阀和凝结水再循环阀来维持水位,保持凝结水流量和给水流量的平衡。当水位高报警时,系统保护逻辑超驰控制凝结水再循环阀开,直至水位恢复正常。

21 .轴封压力控制

本系统采用单回路PID调节,在汽机启停时通过控制进汽调节阀开度,调整进汽流量,维持轴封压力在规定范围。

在汽机正常工作时通过控制排汽调节阀开度,调整排汽流量,维持轴封压力在规定范围。

22 .播煤风量控制

对每台气力播煤装置,通过给煤量按比例设定播煤风量给定值,测量值与给定值之差经PID运算,调整播煤风风门的开度,使播煤风量满足给煤要求。

23 .密封风压控制

本系统采用单回路PID调节,通过调节各密封风挡板开度,以维持密封风压在正常值。

㈧ 脱硫塔喷淋管管径计算

喷淋系统立管管径计算要考虑以下三个因素:
1、立管所带的喷头数量要符合规范要求;
2、立管所在系统保护面积设计流量;
3、允许流速〈10m/s,并满足系统充水时间不大于2min。

脱硫塔喷淋分为洗涤降温喷淋、吸收(可能有多级吸收)。洗涤降温喷淋主要是把热烟气降温洗涤掉烟气里的灰尘,用热量守恒Q=热烟气的量X入口热焓值=eX水量X温度下水的气化潜热+(1-e)X4.18X水量+排气量X排气烟气的热焓值+脱硫产品离开脱装置带走热量,e水汽化%。水量知道了就可以计算管径了。吸收喷淋主要与单位时间内脱硫量和脱硫剂的浓度有关。

㈨ 脱硫塔的液气比怎么计算

脱硫塔的液气比L/G=Q/1000:V(Nm3/h),也就是吸收1m3的烟气所需的液体体积。L/G=Q/1000:V(Nm3/h)。

Q:循环浆液流量,V:进入吸收塔烟气流量。

现在随着玻璃钢技术的发展,脱硫塔逐渐改为用玻璃钢制造。相比花岗岩脱硫塔,玻璃钢脱硫塔成本低、加工容易、不锈不烂、重量轻,因此成为今后脱硫塔的发展趋势。另外316L不锈钢具有耐腐蚀、耐高温、耐磨损三大优势,也是脱硫塔发展重要趋势之一。

湿法烟气脱硫环保技术因其脱硫率高、煤质适用面宽、工艺技术成熟、稳定运转周期长、负荷变动影响小、烟气处理能力大等特点,被广泛地应用于各大、中型火电厂,成为国内外火电厂烟气脱硫的主导工艺技术。

但该工艺同时具有介质腐蚀性强、处理烟气温度高、SO2吸收液固体含量大、磨损性强、设备防腐蚀区域大、施工技术质量要求高、防腐蚀失效维修难等特点。因此,该装置的腐蚀控制一直是影响装置长周期安全运行的重点问题之一。

(9)cfb脱硫装置的设计计算扩展阅读:

脱硫塔和脱硫除尘器应满足以下的基本要求:

(1)气液间有较大的接触面积和一定的接触时间;

(2)气液间扰动强烈,吸收阻力小,对SO2的吸收效率高;

(3)操作稳定,要有合适的操作弹性;

(4)气流通过时的压降要小;

(5)结构简单,制造及维修方便,造价低廉,使用寿命长;

(6)不结垢,不堵塞,耐磨损,耐腐蚀;

(7)能耗低,不产生二次污染。

阅读全文

与cfb脱硫装置的设计计算相关的资料

热点内容
煤气阀门平着是关 浏览:813
中山和益五金制品厂 浏览:153
机械车间常见的防护装置有 浏览:912
征服者摩托车后工具箱 浏览:358
超声波测量身高怎么作弊 浏览:841
mido机械表如何清洗 浏览:748
仪器仪表组装怎么做 浏览:946
氯气制备与性质实验装置图 浏览:94
煤气罐阀门长什么样子 浏览:236
机械表为什么突然走快了 浏览:31
制冷原理实验装置 浏览:789
防雷装置检测资格证考试内容 浏览:840
冰箱制冷原理属于什么内容 浏览:417
实验室安装尾气吸收装置 浏览:95
变压器主要测试设备有哪些 浏览:506
制作美容仪器有什么危害 浏览:486
农村打水井设备多少钱 浏览:875
小xi同学设计如下实验装置 浏览:152
天然气阀门进场试验时间 浏览:672
洛阳lyc轴承怎么代理 浏览:99