① 机车传动装置的分类
利用原动机驱动离心泵,使获得能量的工作液体(机车用油)冲击涡轮从而驱动车轮来实现传递动力的装置。1902年德国的费廷格提出了液力循环元件(液力耦合器和液力变扭器)的方案,即将泵轮和涡轮组合在同一壳体内,工作液体在壳体内循环流动。采用这种元件大大提高了液力传动装置的效率。液力传动首先用于船舶。1932年制成第一台约60千瓦的液力传动柴油动车。
液力耦合器有相对布置的一个泵轮和一个涡轮。泵轮轴和涡轮轴的扭矩相等。涡轮转速略低于泵轮转速,二者转速之比即为液力耦合器的效率。液力耦合器用于机车主传动时,效率约为97%。液力变扭器除泵轮和涡轮外,还有固定的导向轮。涡轮与泵轮的扭矩之比称变扭比,转速比越小则变扭比越大。在同样的泵轮转速下,涡轮转速越低则涡轮扭矩越大。因此机车速度越低则牵引力越大,机车起动时的牵引力最大。液力变扭器的效率只在最佳工况下达到最大值。现代机车用的液力变扭器效率可达90%~91%。但当转速比低于或高于最佳工况时,效率曲线即呈抛物线形状下降。为使机车在常用速度范围内都有较高的传动效率,机车的液力传动装置一般采用不止一个简单的液力变扭器。机车液力传动装置如梅基特罗型、克虏伯型、苏里型、SRM型、ΓΤК型等,都是将一个液力变扭器与某种机械传动装置结合使用。福伊特型则是采用 2~3个液力变扭器(最佳工况点的转速比一般并不相同)或液力耦合器(图1),利用充油和排油换档,在各种机车速度下都使当时效率最佳的那一液力循环元件充油工作。换档时,前一元件排油和后一元件充油有一段重叠时间,所以换档过程中的机车牵引力只是稍有起伏而不中断。和其他类型相比,福伊特型液力传动装置的重量较大,但有结构简单、可靠性较高的优点。到60年代,经验证明:对于1500千瓦以上的液力传动装置,福伊特型较为适用。中国机车所用的液力传动装置都是这一类型的。
大功率增压柴油机车的液力传动装置都不用液力耦合器,但燃气轮机车的液力传动装置则用一个启动变扭器,并在高速时用一个液力耦合器。
液力循环元件传递功率P的能力也像其他液力机械一样,与工作液体重度r的一次方、泵轮转速n的三次方和元件尺寸D的五次方成正比,即P∝rnD。在柴油机车上,为了减小传动装置的尺寸,柴油机都不直接驱动液力循环元件的泵轮,而是通过一对增速齿轮,在轴承和其他旋转件容许线速度的限制范围内,尽可能提高泵轮转速。燃气轮机车由于转速很高,所以用一级甚至两级减速齿轮来驱动泵轮。同一种传动装置,只要改变这种齿轮的增速比或减速比,即可在经济合理的范围内应用于不同功率的机车。
液力传动装置通常包括一组使输出轴能改变转向的换向齿轮和离合器机构。输出轴通过适当的机械部件(万向轴和车轴齿轮箱,或曲拐和连杆等)驱动机车车轮。液力传动系统还可包括一组工况机构,使机车具有两种最高速度,在高速档有较高的行车速度,在低速档有较高的效率和较大的起动牵引力和加速能力。因此同一机车既可用于客运,也可用于货运,或者既可用于调车,也可用作小运转机车。而当调车工况的最高速度定得较低时,机车在起动和低速运行时的牵引力可以超过同功率的电力传动柴油调车机车。
1965年出现的液力换向柴油调车机车,传动装置有两组液力变扭器,每个行车方向各用一组,换向动作也用充油排油的方式来完成。当机车正在某一方向行驶时改用另一方向的液力变扭器充油工作,由于变扭器的涡轮转向与泵轮相反,对机车即起制动作用。机车换向不必先停车。只要司机改换行车方向手把的位置,机车即可自动地完成从牵引状态经过制动、停车,又立即改换行车方向的全部过程。
液力传动装置不用铜,重量轻,成本低,可靠性高,维修量少,并具有隔振、无级调速和恒功率特性好等优点,因而得到广泛采用。联邦德国和日本的柴油机车全部采用液力传动。 把机车原动机的动力变换成电能,再变换成机械能以驱动车轮而实现传递动力的装置。电力传动装置按发展的顺序有直-直流电力传动装置、交-直流电力传动装置、交-直-交流电力传动装置、交-交流电力传动装置四种。它们所用的牵引发电机、变换器(指整流器、逆变器、循环变频器等)和牵引电动机类型各不相同。
直-直流电力传动装置
1906年美国制造的150千瓦汽油动车最先采用了直-直流电力传动装置。1965年以前,世界各国单机功率75~2200千瓦的电传动机车都采用这种电力传动装置。这是因为同步牵引发电机无法高效变流,异步牵引电动机难于变频调速,只能采用直流电机。直-直流电力传动原理是基于直流电机是一种电能和机械能的可逆换能器,其原理见图 2。原动机G为柴油机,通过联轴器驱动直流牵引发电机ZF,后者把柴油机轴上的机械能变换成可控的直流电能,通过电线传送给1台或多台串并联或全并联接线的直流牵引电动机ZD,直流牵引电动机将电能变换成转速和转矩都可调节的机械能,经减速齿轮驱动机车动轮,实现牵引。此外设有自控装置。自控装置由既对柴油机调速又对牵引发电机调磁的联合调节器、牵引发电机磁场和牵引电动机磁场控制装置等组成,用来保证直-直流电力传动装置接近理想的工作特性。
交-直流电力传动装置
直流牵引发电机受整流子限制,不能制造出大功率电力传动装置。60年代前期,美国发明大功率硅二极管和可控硅,为制造大功率的电力传动装置准备了条件。1965年法国研制成 1765千瓦交-直流电力传动装置,它是世界各国单机功率 700~4400千瓦机车普遍采用的电力传动装置。
交-直流和直-直流电力传动原理相似。由图3可以看出两者差异在于柴油机 G驱动同步牵引发电机TF,经硅二极管整流桥ZL,把增频三相交流电变换成直流电,事实上TF和ZL组成等效无整流子直流电机。其余部分和自控装置主要工作原理与直-直流电力传动装置相同。
交-直-交流电力传动装置
异步牵引电动机结构简单,体积小,工作可靠,在变频调压电源控制下,能提供优良调速性能。联邦德国于 1971年研制成实用的交-直-交流电力传动装置,如图4所示。
交-直-交流电力传动原理如下:柴油机 G驱动同步牵引发电机TF,产生恒频可调压三相交流电(柴油机恒速时),经硅整流桥ZL变换成直流电,再经过可控硅逆变器 N(具有分谐波调制功能)再将直流电逆变成三相变频调压交流电,通过三根电线传输给多台全并联接线的异步牵引电动机AD。AD将交流电能变换成转速和转矩可调的机械能,驱动机车动轴,实现牵引。它的自控装置由联合调节器以及对同步牵引发电机磁场、变换器、异步牵引电动机作脉冲、数模或逻辑控制的装置组成,从而提供接近理想的工作特性。
交-交流电力传动装置
交-直-交变频调压电能经二次变换,降低了传动装置的效率,而且逆变器用可控硅需要强迫关断,对主电路技术有较高的要求。为提高效率,在交-交流电力传动装置中采用了自然关断可控硅相控循环变频器(图5)。60~70年代,美国在重型汽车上,苏联在电力机车上都采用了交-交流电力传动装置。不过美国用的是异步牵引电动机牵引,苏联用的是同步牵引电动机牵引。
交-交流电力传动原理如图5所示。柴油机G驱动同步牵引发电机TF,发出增频可调压交流电,经相控循环变频器FB变换成可变频调压的三相交流电(降频),输给多台全并联接线的异步牵引电动机AD。AD将交流电能变换成转速和转矩可调的机械能,驱动动轮实现牵引。它的自控装置也是由联合调节器、脉冲、数模、逻辑电路等装置构成(但对可控硅导通程序要求严格),同样能保证优良的工作特性。
② 火车轮子原理和构造是怎么的
牵引电机转动带动齿轮箱,带动轴箱,轴箱带动轴,最终将牵引力传到轮专对上,传属统的快速列车是利用车轮和钢轨之间的相互作用来解决支撑、导向和驱动这三大问题。
磁浮列车却利用电磁场所特有的“同性相斥、异性相吸”的相互作用,来实现机车和路轨间的上浮、约束和驱动,从而实现了机车紧贴路面但又是无接触的高速飞行。
内燃机车的工作原理是: 内燃机车以内燃机作为原动力,通过传动装置驱动车轮的机车。根据机车上内燃机的种类,可分为柴油机车和燃气轮机车。
由于燃气轮机车的效率低于柴油机车以及耐高温材料成本高、噪声大等原因,所以其发展落后于柴油机车。在中国,内燃机车的概念习惯上指的是柴油机。
(2)机车传动装置图片扩展阅读:
车轮轧机是先用水压机把坯料压制成型,然后在车轮轧机上扩辗轮辐并轧出轮缘和踏面,最后在弯板水压机上弯曲轮辐并冲孔,工艺流程蒸汽机车用的动轮,由于结构复杂,直径较大(有的大于2m),不易轧制,所以动轮都采用轧制的轮箍套在铸造的轮芯上组合而成。
1853、1854年英国制成了第一台轮箍轧机,是由一台粗轧机(轴向径向轧制环件的轧机)和一台精轧机(径向轧制环件的轧机)组成。
③ 摩托车离合器工作原理及图解
摩托车是靠变速器换档来改变速比,而实现起步和加,减速等协调运行的。为了换档,必须切断发动机传给驱动系的动力。离合器的功用,就是在变速时切断动力。几乎所有的摩托车,都在左车把处装有离合器握把,用以实现离合器的分离与接合。
新式离合器是用油冷却离合器盘的,冷却油不但对摩擦面起保护作用,而且还能使动力传递平滑。油浴冷却的离合器,称为“湿式离合器”,空气冷却的离合器称为“干武离合器”。湿式离合器使用寿命较长,除非经常使用半离合状态而违犯操作规程驾驶,一般是不会发生故障的。
(3)机车传动装置图片扩展阅读:
判断离合器磨损的方法:
1、在发动机转速不变的情况下,明显感觉到行驶速度相比以前有所降低;
2、行驶中感觉虽然发动机转速升高,但是车速变化不明显;
3、支起主支架,让后轮离开地面,挂1档,保持小油门,缓慢踩踏后制动踏板,明显感觉后轮开始制动,但发动机转速没有明显降低;
4、通过机油颜色判断:更换机油时,黑色的机油内有少许灰色物质,可判断是离合器磨损。如果离合器烧蚀严重,机油呈黑灰色混合物状;
5、通过机油味道判断:发动机过热后发出异常焦臭味,或更换机油时机油有明显的焦臭味。
参考资料:网络 离合器
④ 摩托车的基本构造(详细的)
摩托车是一种灵便快速的交通工具,也用于军事和体育竞赛。装有内燃发动机。有两轮和三轮摩托车。
摩托车由发动机、传动系统、行走系统、转向、制动系统和电气仪表设备五部分组成:
一、发动机
1、摩托车发动机的特点
(1)发动机为二冲程或四冲程汽油机。
(2)采用风冷冷却,有自然风冷与强制风冷两种。
(3)发动机的转速高,一般在5000转/分以上。
(4)发动机曲轴箱与离合器、变速箱设计一体,结构紧凑。
2、机体
机体由气缸盖、气缸体和曲轴箱三部分组成,缸盖由铝合金铸造有散热片,新型的四冲程摩托车发动机均采用顶置气门、链条传动、顶置凸轮轴结构方式。
3、曲柄连杆
摩托车发动机的曲轴采用组合式,由左半曲轴、右半曲轴和曲柄销压合而成。左右两半轴的主轴颈上装有滚珠轴承,用以将曲轴支承在曲轴箱上。曲轴的两端分别装有飞轮、磁电机及离合器主动齿轮。
4、化油器
化油器是摩托车燃料供给系统中的一个重要部件,位于空气滤清器与发动机进气口之间。一般摩托车发动机均采用进气气流方向为平吸式,节气阀为柱塞式,浮子室式化油器。化油器结构主要由浮子室和混合室两大部分组成。
5、润滑系统
四冲程发动机采用飞溅润滑与压力滑润相结合的滑润方式。二冲程发动机一般多采用在汽油内混入一定比例的QB级汽油机机油的混合润滑方式。
6、起动
摩托车的起动以脚蹬起动方式为主。脚蹬起动变速杆带动扇形齿轮、起动棘轮、离合器总成链轮、前链条、曲轴链轮驱动曲轴旋转,起动发动机。
另一种为一些引进机型所采用的起动蹬杆式起动机构。与前者不同,起动时首先要捏紧离合器手把,使离合器分离,变速杆可放在任何档次位置,不必一定要放在空档,起动后松开离合器,加大油门即可起步。
二、传动系统
1、初级减速
初级减速主要由装在曲轴端的主动链轮(主动齿轮)、套筒滚子链条和离合器上的从动链轮(从动齿轮)组成,作为一次减速并将发动机动力传到离合器。
2、离合器
摩托车离合器有以下向种结构型式:
(1)湿式多片摩擦式离合器离合器总成浸在机油中工作,分主动、从动和分离三部分。离合器为常接合型,当紧捏离合器手把通过钢索使螺套在左罩内转动,螺套中调节螺钉右移,推动分离推杆和压盖,弹簧压力消失,摩擦征与从动片分离。
(2)自动离心式离合器这种结构根据发动机转速的高低来自动控制离合器的分离与接合。离合器由主动、从动和分离接合机构组成。主动部分由离合器外罩、止推片、离合器片等组成。从动部分由摩擦片、中心套等组成。
(3)蹄块式自动离合器的主动部分为由曲轴带动的固定座,座上有三个蹄块总成,并用销轴连接在固定座上,弹簧将蹄块拉向曲轴中心,当转速增高时,蹄块产生的离心力大于弹簧的拉力时,就向外甩开,当离心力大到一定值时就与离合器盘接合,产生摩擦力带动从动部分转动,传递动力。
3、次级减速及传动
随着摩托车机型的不同,有皮带传动、链传动和万向节轴传动三种传动方式。
三、行走系统
行走系统的作用是支承全车及装载的重量,保证操纵的稳定和乘坐的舒适。行走系统主要包括车架、前叉、前减震器、后减震器、车轮等。
(1)车架:
它是整个摩托车的骨架,由钢管、钢板焊接而成。它将发动机、变速箱、前叉、后悬挂等互相连接起来并有较高的强度与刚度。
(2)前叉:
前叉是摩托车的导向机构,把车架与前轮有机地连接起来,前叉由前减震器、上下联板、方向柱等组成。方向柱与下联板焊接在一起,方向柱套装在车架的前套管内,为了使方向柱车动灵活,在其上下轴颈部位装有轴向推力球轴承,通过上下联板将左右两个前减震器联成前叉。
(3)前后减震器:
前减震器用以衰减由于前轮冲击载荷引起的震动,保持摩托车行驶平稳。
后减震器与车架的后摇臂组成摩托车的后悬挂装置。后悬挂装置是车架与后轮之间的弹性连接装置,承担摩托车的负载、缓减、吸收因路面不平而传给后转的冲击和震动。
(4)车轮:
摩托车的前轮为导向轮,后轮为驱动轮,均为辐条式车轮。轮毂内装有制动器,前轮还装有速度表的蜗轮、蜗杆,后轮装有驱动机构。
四、转向及制动系统
(1)转向:
前轮与车把配合控制着摩托车的行驶方向。车把右端装有控制化油器节气阀开度大小的油门把柄和控制前轮制动器的闸把;左端装有控制离合器的握把和手柄。在车把左右两端还装有后视镜和各种电器开关。
(2)制动:
一般前轮制动由手捏闸把来控制,后轮制动由脚踩制动踏板来完成。鼓式制动器结构与汽车、拖拉机相似,制动蹄块由铝合金压铸成型,上面粘有摩擦制动片,通过制动臂转动制动凸轮并推开制动蹄块起到制动的目的。
五、电器仪表
①摩托车的电器线路与汽车基本相似。电器线路分为电源、点火、照明、仪表及音响几个部分。电源部分一般均为交流发电机(或由磁电机充电线圈供电)、整流器、蓄电池组成。
②摩托车的点火方式,有蓄电池点火系统、磁电机点火系统和晶体管点火系统三种。在点火系统中又分有触点电容放电式点火与无触点电容放电式点火两类。
③摩托车电路中分布着各种颜色的电线,习惯上以红色电线为电源“+”线,黑色电线为地线“-”线,橙色线为通向点火线圈线,磁电机输出电流为白色线,兰色为前大灯线等等,这只是一般习惯用法供参考。
(4)机车传动装置图片扩展阅读:
根据我国《机动车驾驶证申领和使用规定》所示能驾驶摩托车的驾驶证有D、E、F三类。其中D类能驾驶E、F类;E类能驾驶F类;F只能驾驶F,无其他准驾车型。
1、D驾驶证:
(1)驾照代号为D;
(2)申请年龄为18-60岁;
(3)准驾车型为普通二轮摩托车;
(4)准驾的车型为发动机排量大于50ml或者最大设计车速大于50km/h的三轮摩托车;
(5)准驾的其他车型:E、F;
(6)考试车辆的要求:至少有四个速度挡位的普通正三轮摩托车或者普通侧三轮摩托车。
2、E驾驶证:
(1)驾照代号为E;
(2)申请年龄为18-60岁;
(3)准驾车型为普通二轮摩托车;
(4)准驾的车型为发动机排量大于50ml或者最大设计车速大于50km/h的二轮摩托车;
(5)准驾的其他车型为F;
(6)考试车辆的要求为至少有四个速度挡位的普通二轮摩托车。
参考资料来源:网络-摩托车 (交通工具)
⑤ 如何进行摩托车后传动装置的维护保养
摩托车后传动装置有链传动、轴传动、皮带传动、齿轮传动、摩擦传动等方式,但一般多采用链传动,其维护保养主要是对这些后传动装置进行检查、调整等。
(1)链传动方式
为了减少磨损,延长链条的使用寿命,保持链条和链轮的清洁,链条和链轮要定期润滑。一般情况下,摩托车每行驶1000km,应对传动链条和链轮进行一次润滑。比较简单的方法是:向链条上滴注润滑油,同时转动后车轮,使每一节链条都能得到润滑。
①传动链条的清洗与润滑。摩托车行驶3000km后,应卸下传动链条,将其浸在洗涤油或煤油中,洗掉链条上的污物,清洗干净后用布擦干,再将其放入润滑油中浸泡20min或在整个链条上滴注润滑油。然后用布擦掉链条上多余的润滑油,再将链条装回到车上,如图3-41a所示。
链条开口锁片的开口方向,应同链条的运转方向相反。否则很容易在行车中发生断链的现象,如图3-41b所示。
图3-46 皮带松紧程度
齿形三角胶带的夹角一般为30°。齿形三角胶带过紧,车速不高,胶带承受拉力较大;过松,发动机启动困难,皮带工作时易打滑,磨损严重。齿形三角胶带松紧程度如图3-46所示。
齿形三角胶带松紧的调整方法是:先拧松减速器上4个M8固定螺栓,再拧松传动链条调节支架上的两个M6固定螺钉,使后车轮前后自由摆动。调整时,后车轮与后平叉左右距离相等,不要偏斜。调整合适后,先将减速器固定螺栓拧紧,再调整传动链条松紧,并拧紧调节支架固定螺钉,最后调整制动钢丝绳的固定螺钉。
图3-47 齿轮箱机油的更换与加注
(3)齿轮箱机油的更换与加注
将摩托车停在平坦的地面上,支起主停车架,启动发动机,让后轮空转2~3min。然后拧下油面检查螺栓和放油螺栓,放出机油。待机油放净后装上放油螺栓及其密封垫圈,并拧紧。最后从油面检查螺栓孔注入推荐的机油,直至机油从油面检查螺栓孔流出为止,装上并拧紧油面检查螺栓,如图3-47所示。
⑥ 机车传动装置的原理
牵引力与速度成反比,在起动(速度等于零)时具有最大值。机车前进和后退这两个方向内的牵引性能要基本相同。容但是机车柴油机的扭矩-转速特性和机车牵引力-速度特性完全不同。柴油机不能在负载下启动;在转速等于零时没有任何扭矩;在最高转速下才能达到最大功率值;转速愈低,功率也愈低;低于一定转速时即不能稳定工作,甚至熄火停车。此外,机车柴油机不能逆转。因此,柴油机曲轴不能和机车车轮直接连接,两者之间必须有一传动装置作为媒介满足机车牵引要求。燃气轮机也不能逆转,低速时功率较小,为了提高机车的起动牵引和加速的能力,也要有传动装置。
⑦ 内燃机车的传动装置
为使柴油机的功率传到动轴上能符合机车牵引要求而在两者之间设置的媒介装置。柴油机扭矩—转速特性和机车牵引力—速度特性完全不同,不能用柴油机来直接驱动机车动轮:柴油机有一个最低转速,低于这个转速就不能工作,柴油机因此无法启动机车;柴油机功率基本上与转速成正比,只有在最高转速下才能达到最大功率值,而机车运行的速度经常变化,使柴油机功率得不到充分利用;柴油机不能逆转,机车也就无法换向。所以,内燃机车必须加装传动装置来满足机车牵引要求。
常用的传动方式有机械传动、液力传动和电力传动。
液力传动箱、车轴齿轮箱、万向轴等组成。液力变扭器(又称变矩器)是液力传动机车最重要的传动元件,由泵轮、涡轮、导向轮组成。泵轮和柴油机曲轴相连,泵轮叶片带动工作液体使其获得能量,并在涡轮叶片流道内流动中将能量传给涡轮叶片,由涡轮轴输出机械能做功,通过万向轴、车轴齿轮箱将柴油机功率传给机车动轮;工作液体从涡轮叶片流出后,经导向轮叶片的引导,又重新返回泵轮。液力传动机车(图2)操纵简单、可靠,特别适用于多风沙和多雨的地带。
电力传动分为三种:(a)直流电力传动装置。牵引发电机和电动机均为直流电机,发动机带动直流牵引发电机,将直流电直接供各牵引直流电动机驱动机车动轮。(b)交—直流电力传动装置。发动机带动三相交流同步发电机,发出的三相交流电经过大功率半导体整流装置变为直流电,供给直流牵引电动机驱动机车动轮。(c)变—直—交流电力传动装置。发动机带动三相同步交流牵引发电机,发出的交流电通过整流器到达直流中间回路,中间回路中恒定的直流电压通过逆变器调节其振幅和频率,再将直流电逆变成三相变频调压交流电压,并供给三相异步牵引电动机驱动机车动轮。电力传动机车的应用最为广泛。
⑧ 机车传动装置的简介
用机械方式变换机车动轮和原动机(柴油机)的转速比和转矩比以传递动力的装置。柴油机经过主离合器与多档位的齿轮变速箱相连,变速箱的输出轴通过万向轴和车轴齿轮箱连接(或通过曲拐和连杆),驱动机车车轮。启动柴油机时,先将主离合器脱开。柴油机工作平稳后,闭合主离合器,使机车起动。随着机车速度的加快,柴油机转速也成正比地上升。到柴油机转速上升到接近最高转速时,必须及时换接齿轮变速箱的下一档位,以减小变速箱输出轴和输入轴的转速比。换档时,先降低柴油机转速。换档完成后,再提高柴油机转速以增加机车速度,直至柴油机又达到最高转速,再换接到下一档位。柴油机在每一变速档位下的转速与机车速度成正比,它的功率也就基本上与机车速度成正比,因而柴油机几乎总是不能发挥它的全部功率的潜力。机车牵引曲线只能呈阶梯形,阶梯的级数等于变速的档位数。级数越多,功率的利用越好,但传动装置也越复杂、越重、越贵。柴油机车的机械传动装置一般为4~5级。
主离合器的摩擦副在机车起动过程中相对滑转。产生磨耗和发热。变速箱在换档同步的接合过程中,换档齿轮难免发生撞击,换档离合器会滑转磨耗。机械传动装置在换档时又有牵引力中断的缺点。所以机械传动装置尽管效率高于其他种类的传动装置,仍只用在小功率的机车上,用于柴油机车的机械传动装置却不超过400千瓦。
燃气轮机车的机械传动装置用两级变速,但未取得成功。这一方面是因为机车功率大、离合器不适用,一方面是由于机车车轮发生空转时使燃气轮机的叶轮超速旋转会带来危害。
⑨ 机车的概况
牵引或推送其他铁路车辆运行于铁路上,本身不装载营业载荷的自推进车辆,俗称火车头。机车是铁路运输的重要工具。
机车是利用蒸汽机、柴油机、牵引电动机或其他动力机械产生的动力,并通过机车传动装置驱动动轮(驱动轮),借助动轮和钢轨之间有一定的粘着力而产生推动力即机车牵引力。机车产生的牵引力克服列车阻力,可拖动比它自身重量大10倍或20倍以上的车列。通过列车牵引计算,可求得某一机车能牵引车列的总重量。要提高机车牵引力,就要相应地增加机车粘着重量(机车所有动轮作用于轨道上的重量)。然而决定粘着重量的机车轴重(一根动轴上的两个动轮垂直作用于轨道上的重量)是有限度的。如果超过轴重限度,就要增加轴数。因此,轴数是机车的重要参数,由各种轴数组成的车轴排列式可以表征机车的性能和用途。
机车或列车在轨道上运行,必须能随时减速或停止运行,所以在机车和铁路车辆上都装有制动装置(见列车制动装置),由司机操纵。此外,还可以利用机车动力装置、传动装置或牵引电动机的逆动作所产生的阻滞作用辅助制动装置工作(见机车动力制动)。
机车或列车运行时,车轮压在轨道上滚动,而车轮和轨道都是弹性体,都会产生弹性变形,不可能有真正的圆形和平直的线或面。每辆车在运动中的速度不完全一致,车钩缓冲装置动作也不一致,机车车辆在运动中产生不平衡的力,制动时产生不同的制动力,以及列车通过曲线线路等这些复杂因素,加上外界气流紊动的影响,都会使机车或列车产生垂向、横向和纵向振动。因此,产生的机车车辆纵向动力,对机车车辆车架、车体和车钩缓冲装置都有影响。在列车和轨道之间产生的轮轨相互作用的动作用力,影响转向架、轮对和钢轨的使用寿命。
在陆地运输工具中按运送每吨公里消耗燃料量计,机车消耗能源较少。机车的费用却在铁路运营费用中占颇大比重。为了发挥机车的最大经济效益,各国铁路企业都制订有机车运用管理和机车检修的制度。
机车文化 在大陆机车也指摩托车,按照发动机排气量,50cc称为轻型机车。50cc-250cc称为小型机车。250cc-600cc称为中型机车。超过600cc称为重型机车。 按照车型可分为:街车;跑车;巡航;拉力;越野;踏板等。