导航:首页 > 装置知识 > 中间包水口对中装置作用

中间包水口对中装置作用

发布时间:2022-04-19 06:30:14

❶ 钢包-中间包使用长水口保护浇注的效果如何

钢包-中间包使用长水口保护效果:
(1)减少钢中总氧含量:铝镇静钢铸坯中总氧量,使用长水口为20~25ppm,敞开浇注为40~50ppm。总[O]减少说明铸坯中A12O3少了。硫印检验指出,90%铸坯无皮下夹杂。
(2)减少了钢中酸溶铝损失:钢包-中间包钢水[A1]损失:对塞杆钢包,长水口保护为0.0054%,敞开浇注为0.0119%。对滑动水口钢包,长水口保护为0.0018%,敞开浇注为0.0196%。使用长水口保护,95%铸坯皮下无A12O3夹杂。钢水中A12O3少了,减少水口堵塞几率。
(3)减少中间包渣Al:O,含量:钢包一中间包使用长水口,中间包渣中为A12O320~25%。结晶器渣A12O3小于10%;敞开浇注时中间包渣中A12O3为30~40%,结晶器渣A12O3为10~20%。渣中A12O3减少了,改善了渣子流动性,有利于结晶器传热均匀,减少了纵裂和漏钢。

(4)提高了冷轧薄板质量:钢包-中间包长水口保护浇注,由A12O3夹杂产生的冷轧板条状缺陷废品从24%(敞开浇注)降为8.8%(保护浇注),有的甚至降为0.8%。

但使用长水口缺点是:中间包冲击点侵蚀加重,看不见钢包下渣。

❷ 钢水在中间包内的停留时间的长短对铸坯质量有无影响为什么

对于同一个中间包来说,钢水在里面停留的时间主要与浇铸的速度和中间包的液面有关系,也就是说如果中间包的液面很低的话,大包的钢水下来就流入中间包的水口从而进入结晶器了,这样的浇铸过程最的问题就是钢水从大包下来时会把中间包里面的渣子卷入到钢水中造成钢水夹杂过多。同时,中间包液面过低也会造成钢水中的夹杂不能上浮,甚至在水口处形成涡流进而钢水卷渣,对钢水的维护非常大。当时的铸坯也许看不出来什么问题,后面的轧制等精加工就会出现问题。

❸ 耐火材料水口的作用是什么

因钢包和中间包的维护是繁重的工作,需要有一个自动更换系统来更换下水口、滑板、上水口或浸入式水口用耐火材料。

❹ 连铸如何对中

一般来讲,连铸对中包含两个方面:
一是,中间包水口在结晶器内的对中。较为简单,在待浇位(准备位)做流间距、内外弧等距装置即可。
二是,连铸机在线设备外弧基准线、中心线对中,也叫“对弧”。较为复杂,需对连铸机的设备安装基点用经纬仪测量、校正、调整。

❺ 连铸机中包的作用是什么

简单说是一台过渡容器,大包钢水有100多吨,如果直接倒进结晶器很难控制流量流速及事故关停等情况,加上中间包后就比较容易控制,中包能容纳约40吨钢水,这样就可以保证大包回转台钢包周转-连铸连浇。另外中包也有均匀成分和温度、促进夹杂物的上浮的作用。

❻ 中间包冶金的中间包冶金的功能


1、净化功能。
为生产高纯净度的钢,在中间包采用挡墙加坝、吹氩、陶瓷过滤器等措施,可大幅度降低钢中非金属夹杂,且在生产上去的显著的成效;
2、调温功能。
为使浇注过程中中间包前、中、后期钢水温降小,最好接近液相线温度浇注,扩大铸坯等轴晶区,减少中心偏析,可采取向中间包加小块废钢、喷吹铁粉等措施调节钢水温度;
3、成分微调。
由中间包塞杆中心孔向结晶器喂入铝、钛、硼等包芯线,实现钢中微合金成分微调,既提高了易氧化元素的收得率,有可避免水口堵塞;
4、精炼功能。
在中间包钢水表面加入双层渣吸收钢中上浮夹杂物,或者在中间包喂钙线改变Al2O3夹杂形态,防止水口堵塞;
5、加热功能。
在中间包采用感应加热和等离子加热等措施,控制钢水浇注温度在-8℃到+8℃之间。
为了精炼后的钢液由钢包运送到连铸机的结晶器中,在钢包与结晶器之间采用了一个被称为中间包的中间容器。中间包是上大下小,耐火材料做内衬的矩形容器,其顶部也有一个用耐火材料做内衬的盖。中间包底部有一个或几个水口,并装有控制钢流量的滑板或塞棒。中间包通常被划分为两个区域:入口区,常常有一注流箱,钢包中的钢液流入到此区域;出口区,将钢液注入到结晶器。坝、堰(挡渣墙)和带孔的夹板等各种控流装置安置在中间包的长度方向。从中间包入口到出口的的路径越长越有利于延长钢液在中间包内停留的时间,促进宏观夹杂的上浮。采用中间包的目的是将钢液以设计的流量和温度、无夹杂引发的污染、平稳的运输给结晶器。通过维持中间包内钢液的深度来保持注入结晶器内钢流量的恒定。通过安装在中间包出口位置的滑板或塞棒增加对流量的控制。在换包和钢包注流断流期间,中间包充当了贮钢池的角色,可以连续向结晶器提供钢液,这样使多炉连浇成为可能。夹杂物的形成和钢液被污染的主要原因包括:空气和夹带的钢包氧化性渣对钢液的二次氧化;中间包内钢包渣的卷入与氧化。钢液经过中间包进入结晶器前,这些夹杂物必须在中间包中上浮排除。

❼ 连铸三大件的长水口

当钢水由钢包向中间包浇注时,为了避免氧化和飞溅,在钢包底部的滑动水口的下端安装长水口,一端与下水口相连,另一端插入中间包的钢水内进行密封保护浇注。长水口其作用如下:(1)防止钢水二次氧化,改善钢的质量;(2)减少钢中易氧化元素的氧化产物在水口内壁沉积,延长其使用寿命;(3)长水口可多次使用,降低耐火材料消耗。
长水口应具备以下性能:
(1)优异的抗热震性;
(2)良好的机械性能和抗震动的能力;
(3)抗钢液和熔渣的侵蚀性好;
(4)边接处必须带有气封装置。长水口的材质一般有熔融石英质和铝碳质两大类。
熔融石英长水口,采用泥浆浇注法成型,其特点是抗热冲击性好,有较高的机械强度和耐酸性渣侵蚀,化学稳定性好。但其易与钢水或渣中的铁锰等氧化物形成低熔物,在高温下石英与碳反应被分解和气化,耐侵蚀性差,也不利于冶炼洁净钢。
铝碳质长水口选用高纯原料,降低杂质含量,按合理的颗粒级配改善组织结构,提高抗侵蚀性能;调整天然石墨的含量,利用粗晶鳞片石墨对钢液的不浸润性,以减少长水口的结瘤;改进造型以减少水口裂纹;应用微粉技术,添加适量Al2O3微粉等增强高温强度和热稳定性。铝碳质水口具有良好的抗热震性,对钢种的适应性强。为防止水口表面的碳在烘烤和使用中被氧化,在水口表面涂有防氧化涂层。防氧化涂层主要由长石、石英、粘土等原料组成,通过湿磨制成釉料,用人工或机械方法涂抹在水口表面,这种涂料在700~1000℃的范围内形成釉层,从而保护石墨不被氧化或氧化极少。
表8 长水口的理化性能 项目 Al2O3
% SiO2
% ZrO2
% C
% 显气孔率 % 体积密度 g/cm3 抗折强度 MPa 热膨胀率 % 水口本体 50~56 14~18 28~33 16~20 2.3~2.4 10 0.50 渣线部位 65 18 14 3.15 11 0.31
(900℃) 透气环 88 9 24 2.8 0. 60
(900℃) 对铝碳质长水口,通过加入适量低膨胀材料(熔融石英、钛酸铝),增韧材料(氧化锆)和钢纤维补强等的基础上,为进一步改善其性能从材质上又采取提高水口中Al2O3含量,减少SiO2加入量,以确保热震性能,提高使用寿命。
国内开发的不烘烤长水口,不烘烤直接使用,简化了工序,降低了能源消耗。并在长水口与钢包下水口接合部位采用氩气密封,发挥了长水口耐高温、抗侵蚀、耐冲刷等特点。此外还有铬刚玉-莫来石长水口和Al2O3-SiC-C质浇注料制作的不定形长水口,均取得了较好的使用效果。

❽ 如何降低连铸漏钢

连铸是用来表示铸造过程的一个术语,涉及用液态金属连续大量生产横断面一定的固体金属型材。铸件质量、等级和形状会影响产品的最终使用,即随后精轧机的轧制。全世界90.5%的粗钢都要经过连铸,它因可提高炼钢的产量、质量、生产率和经济情况而获得广泛应用。依据预期年产量、钢水利用率和预期处理时间,设计连铸机的流数和拉速,以匹配炼钢车间钢液的供给。<br/> 温度和化学成分均匀是连铸用钢的基本要求。钢水出钢后倒入钢包,进行各种处理包括合金化和脱气。之后,钢包被运送到连铸车间进行吹氩处理,调整到连铸需要的温度后,放置在旋转台上。打开钢包滑动门,钢水通过耐火砖套流入中间包。中间包内装有各种控流装置如坝、堰、挡板和冲击垫,这些装置可增强夹杂物分离并确保钢水平稳地流进结晶器。包内钢水通过用塞棒和计量水口控制的注流孔注入结晶器。在大方坯连铸机/板坯连铸机的中间包和结晶器之间的浸入式水口有助于避免钢流的再氧化。<br/> 为启动连铸机,结晶器底部用一引锭杆密封,引锭杆由拉矫机在喷雾室以液压方式控制,以防止钢液从结晶器底流出。流入结晶器的钢水部分凝固成硬化坯壳和液芯。为抑制钢水的湍流和控制液面波动, 在现代连铸机上安装带有放射源或浮子装置的结晶器液面自动控制器。结晶器配有振动器,通过调整频率、行程和模式,改变结晶器振动周期,防止坯壳粘结到结晶器上。启用负速拉坯行程模式,该周期的下一行程能使结晶器振动的比断面拉速更快,才能提高坯壳强度。坯壳和结晶器之间的摩擦可通过使用结晶器润滑剂如油或粉状熔剂来减小。一旦坯壳厚度足够,拉矫机开始启动,通过引锭杆抽出部分凝固铸流,中间包内钢水连续流入结晶器。拉速视钢的横断面、等级和质量而定。离开结晶器后,形成坚固坯壳的铸流进入铸辊密封区和二次冷却室。结晶器下面的支撑辊刚性强,辊隙窄,使钢水静压力造成的鼓肚减至最小,防止产生裂纹和偏析。因此,要用水或者水-气混合物(气雾)喷射冷却凝固铸流,促进凝固,这样可保持铸形的完整性和产品质量。铸辊密封区是以铸造产品的横断面为基础,断面越大,铸辊密封区越长。铸流完全凝固后,通过拉矫机断开引锭杆。之后,按照定尺长度用乙炔氧切割机或飞剪切割铸坯。<br/> 连铸机的可靠性(就其有效性和利用率而言)是改进产量和提高生产率的关键。连铸时任何操作故障都可导致铸机停机,影响其有效性。因此,必须重视连铸操作故障的排除,以加强铸机的有效性。<br/> 漏钢—影响铸机有效性<br/> 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。<br/> 漏钢的影响因素<br/> 影响漏钢发生的因素有:<br/> 温度和拉速不一致——钢水过热度越高, 坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳/结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。<br/> 在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。<br/> 结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。<br/> 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温)的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。<br/> 结晶器几何形状不当——为增加钢水-结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严重妨碍所需厚度的坯壳形成,最终导致漏钢。<br/> 磨损和变形造成的结晶器锥度损耗会导致角部纵裂显著增加,这是由于角部再加热的结果。就结晶器变形而言,产生原因是结晶器铜板厚度较薄,不足以支持铜板的热膨胀。还可能是在引锭杆插入结晶器时,导致结晶器下部损坏而造成结晶器变形。结晶器锥度过大会增加拉坯阻力,导致结晶器磨损加大。倒锥度加上热缩造成气隙厚度增加,进而加大角部磨损,因此,要降低使表面温度升高的传热。此现象始终伴随着钢水静压力,这会诱发角部表面产生拉伸应变,从而引发裂纹。这种裂纹会以固定方式大大降低坯壳厚度,可能最终导致漏钢。<br/> 结晶器圆角半径越大,气隙就越大。该气隙阻碍了热传递,致使形成薄坯壳,容易漏钢。在板坯/大方坯连铸机中, 4个分离的铜板被固定,形成空穴环绕在其之间。如果2个铜板之间的接合处有气隙,初始金属就会渗入气隙并开始凝固,在后期造成悬挂,导致漏钢。因而,结晶器调整的不合适就会影响热传递机理,造成漏钢。<br/> 结晶器中钢液面高度不适——连铸期间,结晶器中的钢液面需要维持在结晶器高度的70%~80%。如果钢液面降到浸入式水口以下,那么随后加入的钢水形成的凝固坯壳较薄,容易漏钢。在换水口、换中间包或中间包水口堵塞期间可能发生钢液面下降。当限制钢水从中间包流进结晶器时,如果不调整拉速,可能发生漏钢。因此,如果塞棒控制不合适导致转动而造成钢水溢流,粘结到结晶器顶部,造成悬挂,拉坯受阻,导致漏钢。<br/> 钢液面的降低还会造成夹渣。如果有充足时间使塞棒关闭浸入式水口,钢液面可降低到允许极限以下。如果浇注再次开始,钢水会抑制结晶器保护渣,造成夹渣。因此,在全连铸换钢包时,中间包钢液面下降,如果操作不当,中间包渣可通过浸入式水口进入结晶器内的钢水中。钢流的氧化产物、不当的脱氧产物、方坯结晶器中铝丝喷加不当造成Al2O3偏高而形成的高粘度渣,都可能渗入坯壳形成夹渣,局部抑制坯壳形成,降低坯壳和结晶器间的润滑度,易粘结,导致拉坯中断,发生漏钢。<br/> 中间包浇注流偏心——中间包浇注流偏心导致传热不均,造成凝固坯壳厚薄不均,坯壳薄弱处强度降低,难以承受钢水静压力,因而漏钢。<br/> 气雾冷却喷嘴堵塞——足辊区设在结晶器下方,在此水经喷嘴直接喷于坯壳上。坯壳受到辊子的压力,使坯壳更光滑。此时,传递的热量最大,便于形成更厚的坯壳。如果喷嘴堵塞,坯壳厚度将变薄,易造成漏钢。万一堵塞,需要靠拉辊施加外力,如果超过极限,就会造成坯壳表面破裂,漏钢。<br/> 引锭杆不规则性——钢水一旦在结晶器引锭杆上方凝固,形成足够厚度的坯壳,就将引锭杆慢慢拉出。如果不按规律拉出引锭杆,则易发生漏钢。同样地,引锭杆装配不牢固会使钢水从结晶器流出,导致漏钢。如果引锭杆在引锭杆头提升前从坯壳中过早的分离出来,易导致漏钢。<br/> 漏钢类型<br/> 根据漏钢坯壳的外观,大致把漏钢分成以下几类:<br/> 悬挂或粘结引起漏钢——钢水粘结到结晶器上,因而称为粘结或悬挂。这可能是由结晶器和坯壳之间润滑不适或者结晶器调节不当引起的,而润滑不适可能是由质量较差的保护渣、结晶器中坯壳夹渣、结晶器钢水溢流、结晶器角缝、方坯连铸机润滑不良/不均等原因造成的。<br/> 裂纹引起漏钢——坯壳角部纵裂和宽面纵向裂纹都会造成漏钢发生。如果纵向裂纹引起漏钢,则保护渣流动不均,结晶器传热不均导致坯壳厚度不均,保护渣选择不当和结晶器冷却不均造成冷却时坯壳破裂。对角部纵裂引起漏钢来说,沿结晶器窄面凝固厚度不够的坯壳因收缩时受到拉伸应力而破裂,拉伸应力是由结晶器窄面锥度减小和窄面传热不均造成的。<br/> 夹渣漏钢——坯壳夹带保护渣或大粒夹杂物导致传热减少,形成薄坯壳而漏钢。方坯连铸时,二次氧化产物、低碳钢冶炼时高粘性渣中不当的脱氧产物,结晶器中铝丝喷加不当造成Al2O3偏高,这些都促使坯壳夹渣,抑制坯壳生长,造成漏钢。<br/> 薄壳漏钢——观察方坯连铸机中这类漏钢是由结晶器中坯壳厚度不均造成的,原因可能是结晶器中浇注流偏心,或结晶器冷却管严重变形。<br/> 停止浇注引起漏钢——连铸过程中发生中断而未能断开停止浇注,如果衔接点不能承受重新浇铸施加的拉力,则整炉钢都会溢漏。<br/> 控制漏钢的措施<br/> 考虑到漏钢对连铸机利用率和有效性的影响,须采取必要措施控制漏钢的发生。<br/> ●仅在浇注平台吹氩后进行测温,确保温度的均匀性。根据钢的化学成分,浇注流温度必须保持过热约60℃,才能把钢包放置在回转台上,以确保钢水在中间包内过热25~35℃。<br/> ●根据在钢包中监测的温度控制拉速。钢中的碳含量一定时,确保温度随拉速减小而升高,拉速随温度降低而增大。因此,要依据钢的温度和碳含量正确调整拉速。逐步增加拉速,通过一定的拉速来保持稳态连铸。连铸中的任何中断都要降低拉速。<br/> ●任何保护渣都有有效期,因此过期后不应使用。保护渣只有在铸造期间才能打开,放在高瓦数灯泡下使其干燥。再次铸造时不能使用敞开袋的保护渣。按照规定的钢化学成分选择合适的保护渣。铸造开始时,要用粘性低和熔点低的初始保护渣。对于方坯连铸机,要确保结晶器中亚麻籽油分布均匀。<br/> ●对于板坯/大方坯连铸机,测量熔渣池厚度,以判断渣池厚度是否超过10mm及由附着于钢板上的钢、铜和铝丝组成的设备行程,这有助于避免夹渣、坯壳润滑均匀。<br/> ●对于高速方坯连铸机,可使用多种锥度的结晶器,代替传统线性锥度结晶器。要检查结晶器的变形情况(如果有)。选择合适的结晶器锥度并根据钢的等级和其在板坯/大方坯连铸机上的凝固方式,调节锥度以适应窄面。<br/> ●在连铸开始前,通过测量水压的增加,检查结晶器中的水流量,查明堵塞情况(如果有)。总的说来,检查进出口水温、压力和流量的差异,还有流量设备。水质也要检查。根据钢的等级和其凝固方式,调整结晶器冷却模式,即水流量(l/min),以适应各种结晶器表面。为控制粘结,使用热电偶检测结晶器壁温变化,并降低拉速,以使坯壳继续均匀生长。对于给定的连铸机,要确保进出口水温之间的差异不能在连铸期间超过规定值。<br/> ●保证沿铜板的圆角半径最大值是0.2mm。如果角缝存在于铜板接合处,在开始连铸前要用石膏或石灰填充角缝。<br/> ●在连铸机上安装结晶器液面自动控制器,以保持结晶器的钢液面。为区别结晶器中的钢水和炉渣,并检查夹渣情况,在结晶器上安装电磁传感器。<br/> ●在铸造前,要调整中间包水口,进行对中。处理中间包水口堵塞,把钢包放置在回转台上之前,要确保Ca-Si芯的金属丝喷入,符合高铝钢的要求,以便形成低熔点铝酸钙。使用冷冻器避免塞棒转动。<br/> ●通过使用中间包金属保护性熔剂和在钢包和中间包之间使用屏蔽板,确保脱氧产物适当,防止二次氧化产物生成,对于方坯连铸机要维持Mn/Si>3。<br/> ●用石棉绳密封引锭杆头,使用激冷箱,保证铸造前激冷箱的正确分布。<br/> ●为确定堵塞情况(如果有),检查喷雾冷却喷嘴和水流量。 (毛宏观)

❾ 中间包水口堵塞有哪两种情况如何预防和处理

答:中间包水口堵塞的两种情况是:(1)由于温度低,冷钢堵水口。这时可用氧气冲洗水口,适当提高拉速后保持高拉速一定时间,冷钢会自然熔化,转为正常;(2)连铸铝镇静钢或钢中Al高时,由于脱氧产物或空气二次氧化生成Al2O3等高熔点氧合物附积在水口内壁。随着浇注的进行Al2O3氧化物富积物越多,最后将水口堵死。这种情况的水口堵塞不能用烧氧的办法解决。只能采取预防的办法:(1)中包塞棒芯吹氩气;(2)采用全封闭保护浇注;(3)喷吹SiCa粉或喂Ca线;(4)中间包采用过滤器除去Al2O3;(5)选择合适的水口材质。

❿ 中间包的引言

自18世纪50年代以来,随着贝赛麦转炉和平炉的出现以及大规模的钢铁制造业的兴起,人类社会的文明进步明显加快。尤其是20世纪以来,钢铁行业的蓬勃发展,成为全球经济和社会文明进步的重要物质基础。在可以预见的时间范围内,钢铁仍然是世界上非常重要的材料,钢铁材料的综合优异性能使其在主要基础工业和基础设施中仍是不可替代的材料。钢铁以其成本的竞争力和原料的高储备量、易开采、易加工以及良好的再生利用性,仍将作为全球性的主要基础原材料。
在钢铁工业的发展进程中,其基本原理并没有出现根本性的变化,但钢铁生产工艺流程中各工序的技术形成以及工程的组成内涵则发生了巨大的变化,从而使钢厂结构模式及制造流程发生了深刻变化。
20世纪50年代,作为钢铁工业革命标志的连铸技术发展起来,其特点是过程速度快,投资集中,技术日趋完善。1970年全世界连铸比仅为5.6%,而到1990年全世界连铸比已达到62.4%,一些工业发达国家的连铸比超过了95%。近年来世界上许多炼钢厂相继以全连铸生产取代了模铸生产,到1994年实现全连铸的国家已达24个。
通传统的模铸相比,连铸具有提高金属收得率和降低能量消耗的优越性,而减少金属资源和能量的消耗是符合可持续发展要求的。全连铸的实现使炼钢生产工序简化,流程缩短,生产效率显著提高。中间包是炼钢生产流程的中间环节,而且是由间歇操作转向连续操作的衔接点。中间包作为冶金反应器是提高钢产量和质量的重要一环。无论对于连铸操作的顺利进行,还是对于保证钢液品质符合需要,中间包的作用是不可忽视的。通常认为中间包起以下作用:
1、分流作用。对于多流连铸机,由多水口中间包对钢液进行分流。
2、连浇作用。在多炉连浇时,中间包存储的钢液在换盛钢桶时起到衔接的作用。
3、减压作用。盛钢桶内液面高度有5~6m,冲击力很大,在浇铸过程中变化幅度也很大。中间包液面高度比盛钢桶低,变化幅度也小得多,因此可用来稳定钢液浇铸过程,减小钢流对结晶器凝固坯壳的冲刷。
4、保护作用。通过中间包液面的覆盖剂,长水口以及其他保护装置,减少中间包中的钢液受外界的污染。
5、清除杂质作用。中间包作为钢液凝固之前所经过的最后一个耐火材料容器,对钢的质量有着重要的影响,应该尽可能使钢中非金属夹杂物的颗粒在处于液体状态时排除掉。
中间包冶金研究应该发挥的作用有:
1、改善钢液流动条件,最大可能去除钢中非金属夹杂物;亦即防止短路流,减少死区,改进流线方向,增加钢液的停留时间。
2、控制好钢液温度,必要时增加加热措施,使钢液过热度保持稳定。
3、选择合适的包衬耐火材料和熔池覆盖剂,既减轻热损失又有利于吸收分离和上浮的夹杂物。
计算流体力学对各种流场的研究是非常有效的方法。中间包冶金的特点是在钢液流动中进行各种冶金过程,所以可以用计算流体力学方法求解中间包流场。由于中间包结构复杂,除早期曾用二维流场计算求解外,基本上都用三维流场计算。贺友多较早开展了三维流场计算的研究工作,并利用其计算程序计算了多种中间包内钢液流动特征及影响因素。萧泽强等运用了他们对盛钢桶内吹氩钢液流动的长期研究的成就,也计算了多种中间包内的流场,并较早注意到非等温状态中间包流场的研究,指出了自然对流的影响不可忽视,并用水模型进行了实验验证。计算流体力学方法现已成为中间包冶金分析的主要手段,随着计算机硬件和软件的迅速进步,计算流体力学将会在冶金科学技术中得到更广泛的应用。

阅读全文

与中间包水口对中装置作用相关的资料

热点内容
二氧化磷实验改进装置的优点 浏览:723
常规年检防雷装置检测报告 浏览:177
砂型铸造是怎么回事 浏览:333
水龙头翻砂铸造是什么意思 浏览:475
深圳观澜国泰五金制品 浏览:562
粉碎机械选型应考虑哪些因素 浏览:974
华丰设备比作业员工资高多少钱 浏览:903
河北进口圆锥滚子轴承什么价格 浏览:595
木材含水测定仪用什么仪器来校准 浏览:360
怎么查制冷操作证 浏览:397
阀门上bs代表什么 浏览:561
教你怎么解决微信解冻提示设备不一致的问题 浏览:483
机械表买什么 浏览:864
江苏扬中市阀门厂有限公司 浏览:613
9米6欧曼货车贯通轴承怎么装 浏览:837
是起重机械的超载保护装置 浏览:402
机械白金机电容最好用多少uf 浏览:911
气动阀门由什么组成 浏览:418
研究传动装置 浏览:882
日产轩逸仪表盘照片如何设置 浏览:650