导航:首页 > 装置知识 > 电催化合成氨装置设计

电催化合成氨装置设计

发布时间:2022-04-19 05:12:40

⑴ 哈伯不懈合成氨

完成氮的固定

19世纪中期,人们对植物生长的机理已经有了一定认识,越来越认识到氮元素对于生物的重要作用。氮是一切生物蛋白质组成中不可缺少的元素,因而它在自然界中对人类以及其他生物的生存有很重要的意义。自然界中氮的总含量约占地壳全部质量的0.04%,大部分是以游离状态存在于大气中,空气中含有约78%(体积分数)的氮气,是空气的主要组成部分。但是,不论是人还是其他生物(少数生物除外),都不能直接从空气中吸收这种游离状态的氮作为养料。植物只能靠根部从土壤中吸收含氮的化合物,转变成蛋白质;人和动物只能摄食各种植物和动物体内的蛋白质,补充需要。因此生物从自然界索取氮元素作为自身营养的问题最终归结为植物由土壤吸收含氮化合物的问题。

土壤中含氮化合物主要来源一是动物的排泄物或动植物的遗体进入土壤后转变形成;二是雷电促使空气中的氮气和氧气化合,形成氮的氧化物,溶于雨水中落进土壤;三是某些细菌,例如与豆科植物共生的根瘤菌,吸收空气中的氮气而生成一些含氮的化合物。但是这些来源远远不能满足大规模农业生产的需要,于是如何使大气中游离的氮转变成能为植物吸收的氮的化合物,也就是氮的固定,成为化学家们探索的课题。

这个课题在19世纪末首先取得突破。按发明时间先后,第一项是制取氰氨化钙(CaNCN)。1898年,德国夏洛登堡(Charlottenburg)工业学院教授弗兰克(Adolf Frank,1834-1916)和他的助手罗特(F.Rother)、卡罗(N.Caro)博士发现碳化钡在氮气中加热后生成氰化钡和氰氨化钡,接着发现碳化钙在氮气中加热到1000℃以上也能生成氰氨化钙:

CaC+N2══CaNCN+C弗兰克于1900年发现以过热水蒸气水解氰氨化钙可产生氨:

CaNCN+3H2O══CaCO3+2NH3↑这样,空气中游离的氮被固定成氰氨化钙和氨的含氮化合物,均可用作肥料。于是1904年在德国建立了第一个工业生产装置,1905年意大利也建起工厂,随后在美国、加拿大相继建厂。到1921年,氰氨化钙的世界产量达每年50万吨。但是从此以后停止建造新工厂,因为由氢和氮直接合成氨的工业兴起了。

第二项是氮气和氧气直接化合,生成氮的氧化物,溶于水后生成硝酸和亚硝酸,但也很快被合成氨的工业排挤。

第三项就是将氢气和氮气直接合成氨。

氨气,又称阿摩尼亚(ammonia)气。这个词来自古埃及太阳神Ammon(也拼写成Amon或Amen)。这是由于在古埃及Ammon神殿旁堆积着朝拜人骑的骆驼排泄的粪便和剩余的供品,经过长时间变化释放出来含氨的气体。在自然界中任何一种含氮有机物在没有空气的情况下分解时就产生氨。这种分解作用是由于受热或受细菌的作用发生的。在马厩里和下水道里可以检查到刺鼻臭味的氨。

1774年英国化学家普里斯特利(Joseph Piestley,1733-1804)加热氯化铵(NH4Cl)和氢氧化钙(Ca(OH)2)的混合物,利用排汞取气法,首先收集到氨气,称它为碱空气(alkalineair)。他已认识到氨气的水溶液具有碱性。由于氨易溶于水,所以采用排汞取气法收集。当时他把一切气体物质都称为“空气”。

1784年法国化学家贝托莱(Claude Louis Berthollet,1748-1822)分析了氨气,确定它是由氮和氢组成的。

最初的氨是来自炼焦工业副产的氨水,因为煤里面含有2%的氮,在炼焦过程中,一部分氮(约20%~25%)转变成氨,含在煤气中,用水把它洗出来,就是粗氨水,含氨不过1%,人们直接把含氨的煤气通入硫酸,制得硫酸铵((NH4)2SO4),作为肥料。

自从19世纪以来,很多化学家试图由氮气和氢气合成氨,采用催化剂、电弧、高温、高压等手段进行试验,一直未能成功,以致有人认为氮气和氢气合成氨是不可能实现的。这是因为氮气和氢气化合成氨是可逆反应:

直到19世纪,在化学热力学、化学动力学和催化剂等这些学科取得一定进展后,才使一些化学家在正确理论指导下,对合成氨的反应进行了有效的研究。

取得成功的是德国化学家哈伯(Fritz Haber,1868-1934)。他在1901-1911年间对氮气和氢气直接合成氨进行了不懈地研究,哈伯和他的学生勒罗西尼奥尔(R.Le Rossignol)以及同事们进行了两万多次实验。1904年,他曾在常压和1000℃条件下将氮气和氢气通过铁,获得0.012%(体积分数)的氨产物。尽管产物中氨的浓度太低,缺乏经济效益,但他却没有停止实验。接着根据荷兰化学家范特荷甫(Jacobus Henricus Van’t Hoff,1852-1911)制定的化学动力学方程,哈伯计算出合成氨反应在常压和1000℃时的平衡常数,并按法国物理学家勒夏特列(Henry Louis Le Chatelier,1850-1936)提出的质量作用定律,计算出常压和不同温度下氨的平衡浓度,1907年又测定了大量合成氨反应平衡的实验数据。他通过上述工作,认识到合成氨不可能达到像硫酸生产那样高的转化率,于是考虑采用反应气体在高压下循环加工的办法,并从这个循环中不断将生成的氨分离出去,再配合选用有效的催化剂以取得成功。1908年哈伯申请了最初的合成氨专利,首次提出对氨合成气进行循环的意见,还提出在高压气体循环中实现热能回收的措施。1909年他又申请用锇和铀—碳化铀的混合物作为催化剂的专利;1910年5月他终于在实验室取得可喜成果。最初用锇作催化剂,在175千克力/厘米2压强和550℃温度下,在氮气和氢气反应后的混合气体中得到8%的氨;以后又用铀—碳化铀作为催化剂,在125千克力/厘米2压强和500℃温度下获得10%的氨。1910年5月18日他在德国卡尔斯鲁厄(Karlsruhe)(他曾是这个城市工业学院的化学教授)自然科学讨论会上发表演讲,并展示高压合成氨实验装置,宣告合成氨新工业的前途已经开拓。

贺炳昌。哈伯及世界上第一座合成氨厂。化学通报,1984(9)。

哈伯把成功的实验运用到工业生产中,与德国闻名的巴迪舍苯胺和纯碱工厂(Badische Anilin and Soda Fabrik(BASF))的化学家博许(Carl Bosch,1874-1940)、拉佩(F.Lappe)、米塔赫(Alwin.Mittash,1869-1953)等人进行合作。博许制成合成氨工业必需的高压设备;拉佩解决了高温、高压下机械方面的一系列难题;米塔赫研制成功用于工业合成氨的含少量三氧化二铝和钾碱助催化的铁催化剂。他们于1911年在德国路德维希港(Ludwig shafen)附近的奥堡(Oppau)建立起世界上第一座合成氨的工业装置,设置氨的年生产能力为9000吨,1913年9月9日开工,从此完成了氮的人工固定。哈伯因此荣获1918年诺贝尔化学奖,博许也荣获1931年诺贝尔化学奖。

哈伯虽然创造了挽救千百万饥饿生灵的方法,但却又设计了一种致人于死地的可怕武器。1915年4月22日下年5时左右,第一次世界大战爆发,德国将装有氯气的近6000个钢瓶、约180吨氯气打开散向面向守卫在比利时伊普尔城防线的加拿大盟军和法裔阿尔及利亚军队,造成1.5万人伤亡,其中5000人死亡,这是有史以来第一次把化学武器用于军事进攻中,是哈伯策划的。他的妻子伊梅瓦尔(Clara Immerwahr)是一位化学博士,曾恳求他放弃这项工作,遭到丈夫拒绝后用哈伯的手枪自杀。为此,哈伯遭到后人的谴责和唾骂。

⑵ 弗里茨·哈伯的学术成就

获得编外讲师职位后,哈伯开始从事电化学研究。他的第一项成果,是硝基苯的还原作用。这项研究,使他声名鹊起。这时的哈伯,最擅长的仍是有机化学,但同时,他又将新学到的物理化学知识应用于有机化学中。盖特曼(L.Gattermann)及其他的化学家,对硝基化合物的电化学还原反应进行过研究,获得大量的不同还原态产物。当时的研究似乎表明,这些还原产物的性质和相对比例,取决于电解质的酸碱度、电流密度、通电时间和金属电极的性质。认为还原作用是由初生态氢引起的。但这种观点,无法解释初生态氢在活性上的巨大差异。1898年,哈伯确立了电极电势的重要性,澄清了电化学中的一些错误认识。
按照能斯特(H. W. Nernst)理论,气体的电极电势由电极上气体的有效浓度决定。哈伯认识到,电极电势由阴阳两极气体活度的比值所决定。在1898年发表的关于硝基苯的电化学还原反应的论文中,哈伯首次提出电极电势决定还原能力的观点,认为电极电势越高,还原剂的还原能力越强。早期的研究者通常用比较恒定的电流密度,逐渐增大阴极的电势。哈伯认为,这样相当于使用还原性逐渐增强的一系列化学还原剂,同时生成一系列主要还原产物。哈伯计划在电解过程中改变电流,在电流密度-电极电势曲线的转折点下,保持被极化阴极的电势恒定,这样,释放出的氢用来还原去极剂。为了从低的阴极电势开始,逐步分离主要的还原产物,哈伯用氢超电势低的铂(有时用镍)作电极。他认为,氢超电势高的电极如锌,会产生很强的还原反应。他采纳勒金的建议,使用辅助电极测定和控制阴极的电势,用薄壁毛细玻璃管将辅助电极和阴极相连,这样就消除了通过电解液的电势降。
他用铂作阴极,在低电势下电解硝基苯的碱溶液,出乎原先的预料,得到主要产物是氧化偶氮苯。根据巴姆贝格(Barmberger)一系列有关硝基苯、亚硝基苯和苯胲还原的研究,哈伯证明电化学还原反应和普通的化学还原反应遵循同样的步骤:RNO2(硝基苯)→RNO(亚硝基苯)→RNHOH(苯胲)→RNH2(苯胺),其它产物来源于副反应。氧化偶氮苯作为主要还原产物出现,是由于在碱性溶液中,中间产物亚硝基苯和苯胲发生了去水反应:
RNO+ RNHOH=RNONR+H2O…………………………
哈伯证明,无论是普通化学反应还是电化学反应,都存在亚硝基苯和苯胲,亚硝基苯是一种比硝基苯更强的去极化剂,因此只能存在于极稀的溶液中。然而,通过偶氮染料固色,能够检测到亚硝基苯和苯胲。他还成功地通过硝基苯的电化学还原反应,制备大量的苯胲,该反应在弱碱性缓冲溶液中进行,用适当高的电势,以能够瞬间还原亚硝基苯为苯胲,从而避免生成偶氮苯,但电势又不能过高,以免进一步还原。他还探讨了偶氮苯的生成,它也是硝基苯的一种电化学还原产物。氧化偶氮苯在强还原作用下只生成二苯肼。哈伯指出,硝基苯在碱性溶液中按下列反应快速生成偶氮苯:
2RNO2+3RNHNHR=RNONR+3RNNR+3H2O…………
哈伯认为,在碱性溶液中,用低氢超电势的阴极电解硝基苯,主要产物是氧化偶氮苯;使用高氢超电势的阴极电解硝基苯,还原作用更强,得到二苯肼,最终生成苯胺。
哈伯还研究了在酸性溶液中硝基苯的电解还原作用,发现反应(1)变得非常慢,但在强酸性溶液中,苯胲迅速转变成对氨基苯酚,二苯肼转变成联苯胺,主产物有对氨基苯酚、联苯胺和苯胺,比例由酸的浓度决定。
哈伯的成功,举世注目,成为他在电解还原和氧化领域研究的极大推动力。1898年,在进入卡尔斯鲁厄技术大学4年后,哈伯被提升为副教授,年仅30岁。同年,他的第一部著作《工业电化学的理论基础》问世,进一步提高了他的声誉。他已经建立了一个公认的电化学学派。这是他创造力最为旺盛的时期,但持续的超强度工作,损害了他的健康。他对工作的专注,达到忘我的境地。在早期的研究生涯中,他仅仅在他意气相投的朋友小圈子中,寻找短暂的放松。和他交往的多是些教师、作家和艺术家,哈伯喜欢和他们一起高谈阔论,但即使在这种场合,也不愿让自己的脑子休息。1902年,哈伯被德国本生学会作为代表派去参加美国电化学会年会,由此可以看出哈伯的声誉。他出众的才华和严谨的态度,给美国同行留下了深刻的印象。他在会所作的长篇报告,获得了欧洲和美国化学家的好评。该报告于1903年发表在《德国电化学学报》,被认为是电化学工业史上具有永久价值的杰出文献。 1904年,哈伯开始研究氨的平衡。当时,他担任维也纳马古里(Margulies)兄弟的科学顾问,兄弟俩对新的工业固氮方法很有兴趣。通过氮和氢的混合气体,在催化剂的作用下,可以连续合成氨。但是,最大产率总是受到氨平衡的制约。哈伯决定首先研究这个问题。曾有化学家作过氮化钙和氮化锰的还原和再生实验,但由于需要高的温度,表明钙和锰这些金属无法用做催化剂。1884年,拉姆塞(Ramsay)和 扬(Young)尝试氨的热合成法。他们发现,在800℃下,用铁作催化剂,氨绝不会完全分解。于是,他们试图利用其逆反应合成氨,可是根本得不到氨。通常认为,氮的化学性质极不活泼,只有在高温下才能与氢化合,而实际上,高温下氨的分解有非常彻底。
他的第一个探索实验,是在1020℃下,以铁作催化剂合成氨。虽然哈伯完全清楚高压对氨合成有利,他还是选择了一个大气压,因为需要的设备简单。出乎哈伯的预想,实验非常顺利,第一次就实现了氨的平衡。然而,氨的浓度很低,在0.005%~0.012%之间,难以选择一个最接近真实的数据。当时,他倾向于上限值,但后来的研究表明下限值才接近于真实值,高的产率可能是新制铁催化剂的特殊作用。确定氨平衡状态的最初目的达到了,他用这段话描述了他的实验结果:“将反应管加热到暗红热以上,在常压下,不用催化剂,顶多只有痕量的氨产生,即使极大地增大压力,平衡位置依然不理想。在常压下,使用催化剂,要获得实际成功,温度不能高于300℃。”看来直接合成氨作为工业固氮的基础,似乎没有多大的希望。哈伯放下这个问题,终止了和马古里兄弟的合作。1906年,能斯特在考察气体平衡的实验数据时,发现在氨的个案中,哈伯的数据和热定理计算值之间存在很大的差异。于是,能斯特在高压下(50个大气压),重新测定氨的平衡数据,使用高压的目的是为了提高氨的浓度,从而降低实验误差。能斯特首次通过加压合成了氨。他得到的氨比哈伯的数据少得多,和理论值比较接近,如在1000℃时,理论值0.0045%,能斯特0.0032%,哈伯0.012%。1906年秋,能斯特在给哈伯的信中谈到了这一情况。于是,哈伯和罗塞格尔(Le Rossignol)用原来的方法,在一个大气压下重新测定氨的平衡数据,实验非常精细,结果与先前的数值很吻合,如在1000℃时,新值为0.0048%,和原来测定的下限0.005%接近。同时证明如能斯特坚持的那样,哈伯最初的近真值0.012%的确过高。哈伯与能斯特实验数据的差异,大大缩小了,但没有完全消除。1907年德国本生学会的会议上,能斯特报告了他的压力实验。在讨论过程中,哈伯宣布撤回原先0.012%这一估值,并公布了新的数值。哈伯的数值依然比能斯特的高50%左右。能斯特拒绝承认哈伯新测定值的精确性,认为在一个大气压下,氨在平衡混合物体系中的浓度很低,建议哈伯应该在高压下进行研究,以消除误差来源。能斯特认为自己的数据才值得信赖,与热定理相吻合。
哈伯坚信自己数据的精确性,视能斯特的观点为自己的奇耻大辱,觉得自己的荣誉受到损害。哈伯和罗塞格尔立即对氨的平衡重新进行精确的测定。这次,是在30个大气压下进行实验。他们的设备非常简单,但能极好地满足实验目的。通过氨的热分解,得到氮和氢的混合物,将其通过装有铁或锰催化剂的厚壁石英管。然后,平衡混合物被迅速移走,进行冷却分析。哈伯根据新数据导出的自由能方程表明,氨的产率能够高到适用于工业目的,只是条件苛刻,不易达到。例如,在600℃,200个大气压下,氨的转化率达8%。但当时压缩机所能达到的最大压强也就是200个大气压,还没有大规模的化学操作使用过如此高的压力,而且最好的催化剂(铁、锰、镍)在700℃时活性大大降低。因此,如果克服了催化剂和高压的障碍,无疑将开辟一条工业合成氨的光明之路,固氮的问题也就迎刃而解。哈伯接受了这个挑战,因为,他有亲密的理想合作伙伴罗塞格尔的鼎力相助。高压技术不久在卡尔斯鲁厄实验室推广使用,并得到罗塞格尔的改进。罗塞格尔心灵手巧,一流的实验技能,有口皆碑。研究工作开始于1908年,他们设计制造了一种转化器,它安装在钢制的高压弹中,在200个大气压下能正常运转。万事皆备,只欠找到一种活性更高的催化剂。经过长时间探索,发现在550℃以下,锇具有高的催化活性,可惜锇太稀少。后来证明铀有同样高的催化活性。从根本上讲,问题已经得到解决。使用新的装置,铀做催化剂,在550℃,150~200大气压下,氨的浓度已经很高了。在工作压力下,经适度冷却,氨被液化而分离,而气体混合物通过转化器、压缩器和循环泵的封闭系统进行循环利用,同时不断输入适量的新鲜气体混合物,最后安装一个热交换器,这套装置简直就是一个小型工厂,每小时生产数百毫升液氨,而且能耗极低。工业化合成氨的前景,似乎一片光明。但是,实验室的方法很少能直接用于工业生产,必须对实验装置进行改进。
合成氨是哈伯一生最大的成就,但是,并它没有马上得到工业界的青睐,他收获的是冷眼和怀疑。虽然BASF公司对固氮有浓厚的兴趣,认为哈伯在氮的电氧化方面的研究很重要,但对哈伯合成氨的前景表示疑虑。经哈伯的好友和同事、BASF公司的顾问恩格耳(Car Engler)的极力推荐,BASF公司的技术领导才开始关注哈伯的工作。1909年7月的一天,BASF公司的工程师波施(C. Bosh)博士和化学家米塔(A. Mittasch)博士,来到卡尔斯鲁厄观看合成氨的演示实验。米塔亲眼看见流动的液氨,完全相信哈伯法的价值。回到路德维希(Ludwigshafen),他们立即着手将哈伯的成果付诸大规模的工业试验。3年后,一座合成氨工厂正式投入运行。合成氨的大规模工业化的荣誉,一直属于波施。虽然,卡尔斯鲁厄实验室为工业化生产氨迈出了最重要的一步,但要实现工业化仍面临许多棘手的难题。在波施的领导下,对这些难题的成功解决,无疑是化学工程领域最卓越成就。哈伯于1919年获得1918年度诺贝尔化学奖,1931年波施和贝吉乌斯(F. Bergius)获得同样的殊荣。哈伯在获奖演说中谦逊地说道:“人们尚未充分认识到,卡尔斯鲁厄实验室其实并没有为合成氨法的工业化作出过什么贡献。”在承认波施和贝吉斯为工业上高压法的发展所做的杰出成就时,不能忘记高压法的先驱哈伯和罗塞格尔。早在1907年,哈伯的实验室就是著名的高压研究中心。贝吉斯提出高压下煤的氢化设想后,1908年到卡尔斯鲁厄做了最初的一批实验。
20世纪前10年,电弧作用下氮的氧化研究和工业应用获得迅速的发展。在这个领域,哈伯的实验室一直是重要的研究中心。在能斯特1904年对一氧化氮热平衡进行测定之后,电弧固氮的纯热学理论得到普遍接受,但不久又引发了许多的疑虑。在一次实验中,哈伯发现高产率与纯的热学理论不相符合,而电的因素在某种程度上发挥了作用。哈伯对这一课题产生了极大的兴趣,在1906~1910年,对低温电弧下固氮问题进行了深入细致的研究。由于反应物的电活性作用,在电平衡状态一氧化氮的含量,超过同温度下热平衡时的含量。撤掉电场后,过量的一氧化氮将会分解,直到热平衡完全建立。由于这个过程的速度随温度的下降而迅速降低,在足够低的电弧温度下,几乎不发生分解作用,在这样的条件下,一氧化氮的产率达到最大值。在达到最终的热平衡时,高温电弧必然导致低的产率。哈伯完全证实了这一理论。电平衡的建立也得到证明。让空气缓慢通过6cm长的交流电弧,在100mm汞柱压力下,在一个狭长的、冷的石英管中燃烧,这样得到的一氧化氮的产率远比2000℃电弧时高。电弧温度越高,产生的氧化物就多,同时分解作用也更利害。总的来说,哈伯的工作,具有巨大的理论和技术价值。 哈伯对火焰和燃烧问题的兴趣,与早期研究燃料技术密切相关。1905年出版的《工业气体反应热力学》,就涉及到火焰中气体反应的研究。最初的实验是利用烃焰的均匀气相,研究水–汽平衡。斯米特(Smithells)已发明火焰分离器,分析了火焰内锥的主要燃烧产物。20年前勒夏特里(Le Chatelier)首次计算出二氧化碳的离解常数和从火焰气的组成推算出火焰温度。1865年得维里(Deville)通过一根冷管获得一氧化碳内焰的温度。哈伯使用一种高冷却效率的新式得维里管,获取火焰锥间区的气体。他证明,当气体混合物通过温度不低于1250℃的内锥时,平衡实际上瞬间就建立起来了。哈伯根据平衡常数和温度的关系,推导出一个改进的广泛适用的自由能方程。这样,提取火焰的任意一点的气体,进行分析,就能得到该点的温度。采用这种化学火焰温度计,哈伯分别测定了烃焰、一氧化碳焰、氢焰和乙炔焰的温度,并且与后来其他研究者用不同方法获得的数据非常的吻合。哈伯还研究了火焰中氮的氧化作用。众所周知,气体爆炸过程中会生成氮的氧化物,但鲜有人注意火焰中的这个过程。哈伯发现,在一氧化碳火焰中,在一个大气压下,固氮几乎没有发生,但在10个大气压下,氧化氮的产率大大增加。在相似的情况下,氢焰中氧化氮的产率仅只有一氧化碳火焰的一半。哈伯研究了火焰内锥的性质。据估计,内锥壁厚仅0.1毫米。哈伯证明它是火焰中最冷的部位,而非先前想象的最热的部位。同时,该区域的反应速率特别快,化学发光强而且电离度较高。哈伯认为这三者之间有相互密切的内在联系。
1906年,哈伯升任卡尔斯鲁厄技术大学教授。1911年,受邀担任柏林近郊达荷姆新建的威廉皇帝物理化学–电化学研究所首任所长。这个研究所于1912年正式落成。在德皇参加的落成庆典上,哈伯演示了他发明的瓦斯笛,这种装置能够检测煤矿中危险气体甲烷的存在,既耐用且效果良好,但并未投入使用。哈伯在达荷姆最初的工作,是完善有关合成氨的研究,尽可能精确地测定氨的平衡和相关的热力学数据,获得了最终的自由能方程式。同时,哈伯开始关注普朗克量子论在化学中的应用,是最早认识到普朗克理论在化学中重要意义的人。这成了他在达荷姆许多工作的基础。哈伯特别关注新物理学知识在化学中的应用。他和好友波恩(M. Born)频繁的讨论,对他的学术思想有极大的帮助。波恩刚提出离子晶格理论:离子的晶格能由离子间的距离和作用力决定,固体反应的反应热则等于其组分晶格能的代数和。波恩认为晶格能为气态原子去掉一个电子生成气态离子的能量和离子形成晶体的能量之和。哈伯清楚地说明了这种能量关系,因而被称为波恩–哈伯循环,即晶格能U为生成热Q、离解能D、升华热S、阴离子电离能I和阳离子电离能E的代数和。哈伯还大胆地将波恩的理论用于HCl气体,得到H++Cl-=HCl的反应热,比循环过程计算值小得多。为了解释这种偏差,1919年,他提出离子变形的观点,这一思想后来在法杨斯那里结出了丰硕的成果。

⑶ 合成氨无催化剂能发生吗

合成氨无催化剂能发生
催化剂
1改变化学反应速率
2本身的质量、组成和化学性质在参加化学反应前后保持不变的物质。

所以合成氨无催化剂能发生,但是速度慢的要死,除了催化剂合成氨外好像还有离子电化学合成氨不用催化剂得.

⑷ 合成氨和硝酸制造是怎么来的

到19世纪中期,人们对植物生长的机理已经有了一定的认识,越来越注意到氨对生物的作用。氟是一切生物蛋白质组成中不可缺少的元素。因而它在自然界中对人类以及其他生物的生存有很重要的意义。自然界中氮的总含量约占地壳全部质量的0.04%,大部分以单质状态存在于大气中。空气中含有约78%的氮气,是空气的主要组成部分。但是,不论是人或其他生物(除少数生物外),都不能从空气中直接吸收这种游离状态的氮作为自己的养料。植物只能靠根部从土壤中吸收含氮的化合物转变成蛋白质。人和其他动物只能摄食各种植物和动物体内已经制好了的蛋白质来补充自己的需要。因此生物从自然界索取氮作为自身营养的问题最终归结为植物由土壤吸收含氮化合物的问题。

土壤中含氧化合物的主要来源是:动物的排泄物或动植物的尸体进入土壤后转变形成;雷雨放电时在大气中形成氮的氧化物溶于雨水被带入土壤;某些与豆科植物共生的根瘤菌吸收空气中的氯气生成一些氟的化合物。但是这些来源远远不能补偿大规模农业生产的需要。于是如何使大气中游离的氟气转变成能为植物吸收的氮的化合物,也就是氨的固定,成为化学家们探索的课题。

这个课题在20世纪初取得突破。首先是在1898年德国化学教授弗兰克和他的助手罗特与卡罗博士发现,碳化钡在氮气中加热后有氰化钡和氰氨基钡生成,接着发现碳化钙在氮气中加热到1000℃以上,也能生成氰氨基钙,并发现氰氨基钙水解后产生氨,于是首先建议将氰氨基钙用做肥料。1904年在德国建立了第一个工业生产装置。1905年在意大利也建立工厂,随后在美国、加拿大相继建厂。到1921年氰氨基钙在世界产量达每年50万吨,但从此以后新工厂建造渐渐停止,因为由氢和氮直接合成氨的工业在悄然兴起。

随后,开始利用电力使氮气和氧气直接化合,生成氯的氧化物,溶于水生成硝酸和亚硝酸。

要使这个方法在工业生产中实现,需要强大的电力、稳定的电弧。1904年这个实验由挪威物理学教授伯克兰德和工程师艾德设计完成。他们用通有冷却水的铜管作为电极,通入交流电。对生成的电弧加上一具强磁场,使电弧形成一个振荡的圆盘状,火焰的面积因此增加很大,温度可达3300℃。此装置于1905年在挪威诺托登投入运转。挪威具有强大的水力发电装置,能够利用这一方法制取硝酸。但是这种制取硝酸的方法在氧的氧化法制硝酸出现后,很快就失去了工业价值。

氨的氧化是先从合成氨开始。合成氧的发明是第三个氮的化学固定方法。

氨又称阿摩尼亚气。这个词来自古埃及的司生命和生殖的神。这是由于在古埃及司生命和生殖神神殿旁堆集着来朝拜人骑的骆驼粪和剩余的供品,逐渐形成氯化铵。含氮的有机物、动植物的尸体和排泄物在细菌的作用下均能生成氨。

1774年普利斯特里加热氯化铵和氢氧化钙的混合物,利用排汞取气法,首先收集到氨。1784年贝托莱分析确定氨是由氮和氢组成。19世纪很多化学家们试图从氯气和氢气合成氧,采用催化剂、电弧、高温、高压等手段进行试验,一直未能获得成功,以致有人认为氮和氢合成氨是不可能实现的。

直到19世纪,在化学热力学、化学动力学和催化剂等这些新学科研究领域取得一定进展后,才使一些化学家在正确理论指导下,对合成氨的反应进行了有效的研究而取得成功。

1904年,德国化学家哈伯利用陶瓷管,内充填铁催化剂,进行合成试验。测定出在常压下和高温1020℃反应达到平衡时,气体混合物中存在有0.012%体积的氨。在1904~1911年,他先后进行了两万多次试验,根据试验的数据,他认为使反应气体在高压下循环加工,并从这个循环中不断将反应生成的氨分离出来,可使这个工艺过程实现。1909年,他申请了用锇和铀、碳化铀的混合物作催化剂的专利。1910年5月终于在实验室取得可喜成果。

哈伯把成功的实验运用到工业生产,得到德国巴迪希苯胺和纯碱公司工程师博施、拉普、米塔赫等人的合作。1910年7月博施制成合成氨工业必需的高压设备;拉普解决了高温、高压下机械方面一系列难题;米塔赫研制成功用于工业合成氨的含少量三氧化二铝和钾碱助催化剂的铁催化剂。他们于1911年在奥堡建立起世界上第一个合成氨的工业装置,设置氨的生产能力为年产9000吨,在1913年9月9日开工。从此完成了氮的人工固定。

氢的合成不仅仅是合成了氨,更创造了高压下促进化学反应的先例。随后德国化学家贝吉乌斯将高压法用于多种化工产品的生产,1920年用高压法实现了煤的液化,合成人造汽油成功。

由此,哈伯获得了1918年诺贝尔化学奖;博施和贝吉乌斯共同获得了1931年诺贝尔化学奖。

但是,哈伯虽然创造了挽救千百万饥饿生灵的方法,却又设计一种致人于死地的可怕手段。

1915年4月22日下午5时左右,第一次世界大战爆发,德国将装有氯气的近6000个钢瓶约180多吨氯气打开散向守卫在比利时伊普尔城防线的加拿大盟军和法裔阿尔及利亚军队,造成1.5万人伤亡,其中5000人死亡,是有史以来第一次把化学武器用于军事进攻中。这是哈伯策划的。他的妻子是一位化学博士,曾恳求他放弃这项工作,遭到丈夫拒绝后用哈伯的手枪自杀。对此,哈伯遭到后人的谴责和唾骂。

合成氨中的氢气来自水,氨气来自空气。向装有煤的煤气发生炉的炉底鼓入空气,使煤燃烧。当炉温达到1000℃左右时,通入水蒸气,产生一氧化碳和氢气,同时吸收热量。为了维持炉中温度,在实际操作中,是将空气和水蒸气交替鼓入,这样得到的气体叫半水煤气。它的组成大致如下:

H2:38%~42%N2:21%~23%CO:30%~32%CO2:8%~9%H2S:0.2%~0.5%半水煤气中氢气和氯气是合成氨所需的,其他气体需要除去。

硫化氢(H2S)是利用氨水吸收。

一氧化碳是在催化剂存在下加热与水反应变换成二氧化碳和氢气,经过变换的气体叫变换气。

变换气中的二氧化碳在水中的溶解度显著大于变换气中其他组分,所以用水就可除去,也可以用碱液、氨水吸收。

生成的碳酸氢铵(NH4HCO3)正是我国农村使用的小化肥。

少量一氧化碳是通过醋酸铜氨液吸收来除净的。

得到纯净的氢气和氮气的混合物经压缩进入合成塔,在一定温度和压力下通过催化剂,部分合成氨。由于氨气易液化,在常压和-33.4℃即转变成液体,从合成塔中出来的氮气、氢气和氨气进入冷却器,氨气被液化,而氮和氢仍是气体。再通过分离器,氨气就与氮气、氢气两种气体分离。未反应的氮气、氢气两种气体用循环压缩机送入合成塔循环使用。

氨的合成也为制取硝酸开辟了一条途径。8世纪阿拉伯炼金术士贾伯的著作里讲述到硝酸的制取:蒸馏1磅绿矾和半磅硝石得到一种酸,很好地溶解一些金属。如果添加1/4磅氯化铵,效果更好。

绿矾蒸馏后得到硫酸,与硝石作用,得到硝酸,添加氯化铵,就得到盐酸。

3份盐酸和1份硝酸的混合液就是王水。

从8世纪开始,欧洲人利用硝石与绿矾制取硝酸。在硫酸扩大生产后,逐渐利用硝酸钠与硫酸作用制取硝酸。

前面曾提到20世纪初利用一氧化氮氧化制取硝酸的方法,不过那种方法要消耗大量电力。

早在1830年法国化学品制造商人库尔曼就提出氨在铂的催化下与氧气结合,形成硝酸和水。

1906年,拉脱维亚化学家奥斯特瓦尔德将这一方法工业化,1918年引进英国。

随后催化剂不断更换。俄罗斯化学家安德列夫在1914年改用铂铱合金;弗兰克和卡罗研究用氧化铈和氧化钍的混合物,催化作用逊于铂,但价低廉;现在使用的多是铂铑合金,并在高温下,氨先被氧化成一氧化氮,然后是二氧化氮。二氧化氮溶于水成硝酸。

⑸ 上哪能找到合成氨催化剂的发展历史

哈伯法合成氨
翻阅诺贝尔化学奖的记录,就能看到1916一
1917年没有颁奖,因为这期间,欧洲正经历着第
一次世界大战,1918年颁了奖,化学奖授予德国
化学家哈伯。这引起了科学家的议论,英法等国
的一些科学家公开地表示反对,他们认为,哈伯
没有资格获得这一荣誉。这究竟是为什么? 随
着农业的发展,对氮肥的需求量在迅速增长。在
19世纪以前,农业上所需氮肥的来源主要来自有
机物的副产品,如粪类、种子饼及绿肥。
1809年在智利发现了一个很大的硝酸钠矿产地,并很快被开采。一方面由于这一矿藏有限,另一方面
,军事工业生产炸药也需要大量的硝石,因此解决氮肥来源必须另辟途径。一些有远见的化学家指出:考
虑到将来的粮食问题,为了使子孙后代免于饥饿,我们必须寄希望于科学家能实现大气固氮。因此将空气
中丰富的氮固定下来并转化为可被利用的形式,在20世纪初成为一项受到众多科学家注目和关切的重大课
题。哈伯就是从事合成氨的工艺条件试验和理论研究的化学家之一。
利用氮、氢为原料合成氨的工业化生产曾是一个较难的课题,从第一次实验室研制到工业化投产,约
经历了150年的时间。1795年有人试图在常压下进行氨合成,后来又有人在50个大气压下试验,结果都失败
了。19世纪下半叶,物理化学的巨大进展,使人们认识到由氮、氢合成氨的反应是可逆的,增加压力将使
反应推向生成氨的方向:提高温度会将反应移向相反的方向,然而温度过低又使反应速度过小;催化剂对
反应将产生重要影响。这实际上就为合成氨的试验提供了理论指导。当时物理化学的权威、德国的能斯特
就明确指出:氮和氢在高压条件下是能够合成氨的,并提供了一些实验数据。法国化学家勒夏特里第一个
试图进行高压合成氨的实验,但是由于氮氢混和气中混进了氧气,引起了爆炸,使他放弃了这一危险的实
验。在物理化学研究领域有很好基础的哈伯决心攻克这一令人生畏的难题。
哈怕首先进行一系列实验,探索合成氨的最佳物理化学条件。在实验中他所取得的某些数据与能斯特
的有所不同,他并不盲从权威,而是依靠实验来检验,终于证实了能斯特的计算是错误的。在一位来自英
国的学生洛森诺的协助下,哈伯成功地设计出一套适于高压实验的装置和合成氨的工艺流程,这流程是:
在炽热的焦炭上方吹人水蒸汽,可以获得几乎等体积的一氧化碳和氢气的混和气体。其中的一氧化碳在催
化剂的作用下,进一步与水蒸汽反应,得到二氧化碳和氢气。然后将混和气体在一定压力下溶于水,二氧
化碳被吸收,就制得了较纯净的氢气。同样将水蒸汽与适量的空气混和通过红热的炭,空气中的氧和碳便
生成一氧化碳和二氧化碳而被吸收除掉,从而得到了所需要的氮气。
氮气和氢气的混和气体在高温高压的条件下及催化剂的作用下合成氨。但什么样的高温和高压条件为
最佳?以什么样的催化剂为最好?这还必须花大力气进行探索。以楔而不舍的精神,经过不断的实验和计
算,哈伯终于在1909年取得了鼓舞人心的成果。这就是在600C的高温、200个大气压和锇为催化剂的条件下
,能得到产率约为8%的合成氨。8%的转化率不算高,当然会影响生产的经济效益。哈怕知道合成氨反应
不可能达到象硫酸生产那么高的转化率,在硫酸生产中二氧化硫氧化反应的转化率几乎接近于100%。怎么
办?哈伯认为若能使反应气体在高压下循环加工,并从这个循环中不断地把反应生成的氨分离出来,则这
个工艺过程是可行的。于是他成功地设计了原料气的循环工艺。这就是合成氨的哈怕法。
走出实验室,进行工业化生产,仍将要付出艰辛的劳动。哈伯将他设计的工艺流程申请了专利后,把
它交给了德国当时最大的化工企业——巴登苯胺和纯碱制造公司。这个公司原先计划采用以电弧法生产氧
化氮,然后合成氨的生产方法。两相比较,公司立即取消了原先的计划,、组织了以化工专家波施为首的
工程技术人员将哈伯的设计付诸实施。
首先,根据哈怕的工艺流程,他们找到了较合理的方法,生产出大量廉价的原料氮气、氢气。通过试
验,他们认识到锇虽然是非常好的催化剂,但是它难于加工,因为它与空气接触时,易转变为挥发性的四
氧化物,另外这种稀有金属在世界上的储量极少。哈怕建议的第二种催化剂是铀。铀不仅很贵,而且对痕
量的氧和水都很敏感。为了寻找高效稳定的催化剂,两年问,他们进行了多达6500次试验,测试了2500种
不同的配方,最后选定了含铅镁促进剂的铁催化剂。开发适用的高压设备也是工艺的关键。当时能受得住
200个大气压的低碳钢,却害怕氢气的脱碳腐蚀。波施想了许多办法,最后决定在低碳钢的反应管子里加一
层熟铁的村里,熟铁虽没有强度,却不怕氢气的腐蚀,这样总算解决了难题。
哈伯的合成氨的设想终于在1913年得以实现,一个日产30吨的合成氨工厂建成并投产。从此合成氨成
为化学工业中发展较快,十分活跃的一个部分。合成氨生产方法的创立不仅开辟了获取固定氮的途径,更
重要的是这一生产工艺的实现对整个化学工艺的发展产生了重大的影响。合成氨的研究来自正确的理论指
导,反过来合成氨生产工艺的研试又推动了科学理论的发展。鉴于合成氨工业生产的实现和它的研究对化
学理论发展的推动,决定把诺贝尔化学奖授予哈伯是正确的。哈伯接受此奖也是当之无愧的。
一些英、法科学家认为哈伯没有资格获取诺贝尔奖,原因何在?有人曾认为,假若没有合成氨工业的
建立,德国就没有足够的军火储备,军方就不敢贸然发动第一次世界大战。有了合成氨工业,就可以将氨
氧化为硝酸盐以保证火药的生产,否则仅依靠智利的硝石,火药就无法保证。当然某些科学的发明创造被
用于非正义的战争,科学家是没有直接责任的。英、法科学界对哈伯的指责更多地集中在哈伯在第一次世
界大战中的表现。
1906年哈伯成为卡尔斯鲁厄大学的化学教授, 1911年改任在柏林近郊的威廉物理化学及电化学研究
所所长,同时兼任柏林大学教授。1914年世界大战爆发,民族沙文主义所煽起的盲目的爱国热情将哈伯深
深地卷入故争的漩涡。他所领导的实验室成了为战争服务的重要军事机构:哈伯承担了战争所需的材料的
供应和研制工作,特别在研制战争毒气方面。他曾错误地认为,毒气进攻乃是一种结束战争、缩短战争时
间的好办法,从而担任了大战中德国施行毒气战的科学负责人。
根据哈怕的建议, 1915年1月德军把装盛氯气的钢瓶放在阵地前沿施放,借助风力把氯气吹向敌阵。
第一次野外试验获得成功。该年4月22日在德军发动的伊普雷战役中,在6公里宽的前沿阵地上,在5分钟内
德军施放了180吨氯气,约一人高的黄绿色毒气借着凤势沿地面冲向英法阵地(氯气比重较空气大,故沉在
下层,沿着地面移动),进入战壕并滞留下来。这股毒浪使英法军队感到鼻腔、咽喉的痛,随后有些人窒
息而死。这样英法士兵被吓得惊慌失措,四散奔逃。据估计,英法军队约有15000人中毒。这是军事史上第
一次大规模使用杀伤性毒剂的现代化学战的开始。此后,交战的双方都使用毒气,而且毒气的品种有了新
的发展。毒气所造成的伤亡,连德国当局都没有估计到。然而使用毒气,进行化学战,在欧洲各国遭到人
民的一致遣责。科学家们更是指责这种不人道的行径。鉴于这一点,英、法等国科学家理所当然地反对授
予哈伯诺贝尔化学奖。哈伯也因此在精神上受到很大的震动,战争结束不久,他害怕被当作战犯而逃到乡
下约半年。
1919年第一次世界大战以德国失败而告终。战后的一段时间里,哈伯曾设计了一种从海水中提取黄金
的方案。希望能借此来支付协约国要求的战争赔款。遗憾的是海水中的含金量远比当时人们想像的要少得
多,他的努力只能付诸东流。此后,通过对战争的反省,他把全部精力都投入到科学研究中。在他卓有成
效的领导下,威廉物理化学研究所成为世界上化学研究的学术中心之一。根据多年科研工作的经验,他特
别注意为他的同事们创造一个毫无偏见、并能独立进行研究的环境,在研究中他又强调理论研究和应用研
究相结合。从而使他的研究所成为第一流的科研单位,培养出众多高水平的研究人员。为了改变大战中给
人留下的不光彩印象,他积极致力于加强各国科研机构的联系和各国科学家的友好往来。他的实验室里将
近有一半成员来自世界各国。友好的接待,热情的指导,不仅得到了科学界对他的谅解,同时使他的威望
日益增高。然而,不久悲剧再次降落在他身上。1868年12月9日哈伯出生在德国的布里斯劳(即现在波兰的
弗劳茨瓦夫市)的一个犹太商人家庭。1933年希特勒篡夺了德国的政权,建立了法西斯统治后,开始推行
以消灭“犹太科学”为已任的所谓“雅利安科学”的闹剧,尽管哈伯是著名的科学家,但是因为他是犹太
人,和其他犹太人同样遭到残酷的迫害。法西斯当局命令在科学和教育部门解雇一切犹太人。弗里茨·哈
伯这个伟大的化学家被改名为:“Jew。哈怕”,即犹太人哈伯。他所领导的威廉研究所也被改组。哈伯于
1933年4月30日庄严地声明:“40多年来,我一直是以知识和品德为标准去选择我的合作者,而不是考虑他
们的国籍和民族,在我的余生,要我改变认为是如此完好的方法,则是我无法做到的。”随后,哈伯被迫
离开了为她热诚服务几十年的祖国,流落他乡。首先他应英国剑桥大学的邀请,到鲍波实验室工作。4个月
后,以色列的希夫研究所聘任他到那里领导物理化学的研究工作。但是在去希夫研究所的途中,哈怕的心
脏病发作,于1934年1月29日在瑞士逝世。
哈怕虽然被迫离开了德国,但是德国科学界和人民并没有忘却他,就在他逝世一周年的那一天,德国
的许多学会和学者,不顾纳粹的阻挠,纷纷组织集会,缅怀这位伟大的科学家。

⑹ (2014路桥区模拟)随着对合成氨研究的发展,2001年两位希腊化学家提出了电解合成氨的方法,即在常压下

A.在电解法合成氨的电解池中不能用水作电解质溶液的溶剂,原因是新法合成氨电解池的反应温度是570℃时,水为水蒸气,故A错误;
B.由氢离子移动方向可知A为银极,B为阳极,阳极连接电源正极,故B错误;
C.A为阴极,发生还原反应,电解方程式为N2+6e-+6H+═2NH3,故C正确;
D.由于气体存在的条件不一定为标准状况下,则不能确定气体的体积,故D错误.
故选C.

⑺ 合成氨的发展历程是怎样的

德国化学家哈伯(F.Haber,1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6上。这是工业普遍采用的直接合成法。

反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。

合成氨反应式如下(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”):

(7)电催化合成氨装置设计扩展阅读:

氨的主要用途:

氨的主要用途是氮肥、制冷剂、化工原料。无机方面主要用于制氨水、液氨、氮肥(尿素、碳铵等)、硝酸、铵盐、纯碱。有机方面广泛应用于合成纤维、塑料、染料、尿素等。

合成氨工业的特点:

1、农业对化肥的需求是合成氨工业发展的持久推动力。世界人口不断增长给粮食供应带来压力,而施用化学肥料是农业增产的有效途径。

氨水(即氨的水溶液)和液氨体本身就是一种氮肥;农业上广泛采用的尿素、硝酸铵、硫酸铵等固体氮肥,和磷酸铵、硝酸磷肥等复合肥料,都是以合成氨加工生产为主。

2、与能源工业关系密切。合成氨生产通常以各种燃料为原料,同时生产过程还需燃料供给能量,因此,合成氨是一种消耗大量能源的化工产品。每吨液氨的理论能耗为 21.28GJ,实际能耗远比理论能耗多,随着原料、工厂规模、流程与管理水平不同而有差异。

日产 1000t氨的大型合成氨装置生产液氨的实际能耗约为理论能耗的两倍(表2[ 大型氨厂生产合成氨的实际能耗])。

3、工艺复杂、技术密集。氨合成是在高压高温和催化剂存在下进行的,为气固相催化反应过程。由于氨合成催化剂(见无机化工催化剂)很易受硫的化合物、碳的氧化物和水蒸气毒害(见催化剂中毒)。

而从各种燃料制取的原料气中都含有不同数量的这些物质,故在原料气送往氨合成前,需将有害物质除去。因此合成氨生产总流程长,工艺也比较复杂,根据不同原料及不同的净化方法而有多种流程(见氨)。

⑻ 关于合成氨

20世纪初发展出来来,由源大气中氮制氨的化学方法。是化学方法方面最重要的发明之一,因为它使大气中氮的固定成为可能,从而还能由将转化为硝酸来生产肥料(和炸药)所需的硝酸盐。哈伯(F.Haber)在理论的实验上证明,如何维持来自空气的氮和来自水中的氢在适当的温度和压力,并在有催化剂的情况下反应。博施(C.Bosch)还证明如何在工业规模上实现这种方法。总反应是3H2+n2=2NH3

⑼ 电化学合成氨发展前景

氨是现代工业和农业生产最为基础的化工原料之一,对人类的生产、生活等方面有着至关重要的作用。而且由于其具有绿色、环保、易储存运输等优点,也被视为良好的氢载体。

氨的人工合成最初源起于德国Adolph Frank等人发明的“氰化法”,即利用从空气中分馏得到的氮气与电石(CaC2)在1100 °C左右反应生成氰胺化钙,氰胺化钙再进一步与水蒸气反应得到氨。但受制于制备原料及过高的能耗,该制备工艺没有得到大规模应用。后来,在20世纪初,Fritz Haber和Carl Bosch等人发现以锇(后来是以铁为主要活性组分的复合物)作为催化剂,可直接将氮气和氢气在高温高压下反应得到氨气(即Haber-Bosch法),且产率最高可达到20%,这一方法的提出,从此开启了合成氨的大规模工业化进程,也正是得益于Haber-Bosch法合成氨,人类自此实现了人工固氮的集约化和规模化发展,从而直接推动了全球粮食产量和人口数量史无前例地增长。然而该方法虽经过百多年的发展,但仍需要在高温高压条件下进行(300~500 °C、200~300 atm),其年均能耗占到世界能源总耗的1~2%,它所产生的CO2年排放量约占到总温室气体的1.5%。因此,如果能够实现在常温常压下氮气和氢气的高效反应合成氨,那将是人们梦寐以求的。特别是如果合成氨过程中的驱动能量还能由可持续的绿色能源供给,将能够彻底克服Haber-Bosch法合成氨所面临的涉及能耗、污染以及安全性等方面的问题。

⑽ 有关化学发展的有突出历史意义的事件

高分子材料 受热发粘,受冷变硬。1839年美国用硫磺及加热天然橡胶,使其交联成弹性体,应用于轮胎及其他橡胶制品,用途甚广,这是高分子化工的萌芽时期。1869年,美国用樟脑增塑硝酸纤维素制成塑料,很有使用价值。1891年在法国贝桑松建成第一个人造丝厂。1909年,美国制成,俗称电木粉,为第一个,广泛用于电器绝缘材料。 这些萌芽产品,在品种、产量、质量等方面都远不能满足社会的要求。所以,上述基础有机化学品的生产和高分子材料生产,在建立起石油化工以后,都获得很大发展。 化学工业的大发展时期 从20世纪初至战后的60~70年代,这是化学工业真正成为大规模生产的主要阶段,一些主要领域都是在这一时期形成的。和石油化工得到了发展,进行了开发,逐渐兴起。这个时期之初,英国和美国的等人提出的概念,奠定了化学工程的基础。它推动了生产技术的发展,无论是装置规模,或产品产量都增长很快。 合成氨工业 20世纪初期异军突起,用物理化学的反应平衡理论,提出氮气和氢气直接合成氨的催化方法,以及原料气与产品分离后,经补充再循环的设想,进一步解决了设备问题。因而使德国能在第一次世界大战时建立第一个由氨生产的工厂,以应战争之需。合成氨原用焦炭为原料,40年代以后改为石油或天然气,使化学工业与石油工业两大部门更密切地联系起来,合理地利用原料和能量。 石油化工 1920年美国用生产,这是大规模发展石油化工的开端。1939年美国标准油公司开发了临氢催化重整过程,这成为芳烃的重要来源。1941年美国建成第一套以为原料用制乙烯的装置。在第二次世界大战以后,由于化工产品市场不断扩大,石油可提供大量廉价有机化工原料,同时由于化工生产技术的发展,逐步形成石油化工。甚至不产石油的地区,如西欧、日本等也以原油为原料,发展石油化工。同一原料或同一产品,各化工企业却有不同的工艺路线或不同催化剂。由于基本有机原料及高分子材料单体都以石油化工为原料,所以人们以乙烯的产量作为衡量有机化工的标志。80年代,90%以上的有机化工产品,来自石油化工。例如、等,过去以电石乙炔为原料,这时改用氧氯化法以乙烯生产氯乙烯,用丙烯氨氧化(见)法以生产丙烯腈。1951年,以天然气为原料,用蒸汽转化法得到一氧化碳及氢,使得到重视,目前用于生产、,个别地区用生产。 高分子化工 高分子材料在战时用于军事,战后转为民用,获得极大的发展,成为新的材料工业。作为战略物质的天然橡胶产于热带,受阻于海运,各国皆研究。1937年德国法本公司开发获得成功。以后各国又陆续开发了顺丁、丁基、氯丁、丁腈、异戊、乙丙等多种合成橡胶,各有不同的特性和用途。方面,1937年美国 成功地合成尼龙 66(见),用熔融法纺丝,因其有较好的强度,用作降落伞及轮胎用。以后涤纶、维尼纶、腈纶等陆续投产,也因为有石油化工为其原料保证,逐渐占有天然纤维和人造纤维大部分市场。塑料方面,继酚醛树脂后,又生产了、醇酸树脂等热固性树脂。30年代后,品种不断出现,如迄今仍为塑料中的大品种,为当时优异的绝缘材料,1939年高压用于海底电缆及雷达,低压聚乙烯、等规聚丙烯的开发成功,为民用塑料开辟广泛的用途,这是齐格勒-纳塔催化剂为高分子化工所作出的一个极大贡献。这一时期还出现耐高温、抗腐蚀的材料,如、,其中聚四氟乙烯有塑料王之称。第二次世界大战后,一些也陆续用于汽车工业,还作为建筑材料、包装材料等,并逐渐成为塑料的大品种。 精细化工 在方面,发明了活性染料,使染料与纤维以化学键相结合。合成纤维及其混纺织物需要新型染料,如用于涤纶的,用于腈纶的,用于涤棉混纺的活性分散染料。此外,还有用于激光、液晶、显微技术等特殊染料。在方面,40年代瑞士P.H.米勒发明第一个有机氯农药之后,又开发一系列有机氯、有机磷,后者具有胃杀、触杀、内吸等特殊作用。嗣后则要求高效低毒或无残毒的农药,如仿生合成的类。60年代,、发展极快,出现了一些性能很好的品种,如吡啶类除草剂、苯并咪唑杀菌剂等。此外,还有抗生素农药(见),如中国1976年研制成的井冈霉素用于抗水稻纹枯病。医药方面,在1910年法国制成606砷制剂(根治梅素的特效药)后,又在结构上改进制成914,30年代的类化合物、甾族化合物等都是从结构上改进,发挥出特效作用。1928年,英国发现,开辟了抗菌素药物的新领域。以后研究成功治疗生理上疾病的药物,如治心血管病、精神病等的药物,以及避孕药。此外,还有一些专用诊断药物问世。摆脱天然油漆的传统,改用,如醇酸树脂、、丙烯酸树脂等,以适应汽车工业等高级涂饰的需要。第二次世界大战后,丁苯胶乳制成水性涂料,成为建筑涂料的大品种。采用高压无空气喷涂、静电喷涂、电泳涂装、阴极电沉积涂装、光固化等新技术(见),可节省劳力和材料,并从而发展了相应的涂料品种。 现代化学工业 20世纪60~70年代以来,化学工业各企业间竞争激烈,一方面由于对反应过程的深入了解,可以使一些传统的基本化工产品的生产装置,日趋大型化,以降低成本。与此同时,由于新技术革命的兴起,对化学工业提出了新的要求,推动了化学工业的技术进步,发展了精细化工、超纯物质、新型结构材料和功能材料。 规模大型化 1963年,美国凯洛格公司设计建设第一套日产540t(即600sh.t)合成氨单系列装置,是化工生产装置大型化的标志。从70年代起,合成氨单系列生产能力已发展到日产 900~1350t,80 年代出现了日产1800~2700t合成氨的设计,其吨氨总能量消耗大幅度下降。乙烯单系列生产规模,从50年代年产50kt发展到70年代年产100~300kt,80年代初新建的乙烯装置最大生产能力达年产 680kt。由于冶金工业提供了耐高温的管材,因之毫秒裂解炉得以实现,从而提高了烯烃收率,降低了能耗。其他化工生产装置如硫酸、烧碱、基本有机原料、合成材料等均向大型化发展。这样,减少了对环境的污染,提高了长期运行的可靠性,促进了安全、环保的预测和防护技术的迅速发展。 信息技术用化学品 60年代以来,大规模集成电路和电子工业迅速发展,所需电子计算机的器件材料和信息记录材料得到发展。60年代以后,多晶硅和单晶硅的产量以每年20%的速度增长。80年代周期表中 ~V族的二元化合物已用于电子器件 随着半导体器件的发展,气态源如磷化氢 (PH )等日趋重要。在大规模集成电路制备过程中,需用多种,其杂质含量小于1ppm,对水分及尘埃含量也有严格要求。大规模集成电路的另一种基材为,其质量和稳定性直接影响其集成度和成品率。此外,对基质材料、密封材料、焊剂等也有严格要求。1963年,荷兰菲利浦公司研制盒式录音成功后,日益普及。它不仅用于音频记录、视频记录等,更重要的是用于计算器作为外存储器及内存储器,有磁带、磁盘、磁鼓、磁泡、磁卡等多种类型。为重要的信息材料,不仅用于光纤通信,且在工业上、医疗上作为内窥镜材料。 高性能合成材料 60年代已开始用(俗称尼龙)、聚缩醛类(如)、,以及丙烯腈-丁二烯-苯乙烯三元共聚物 ()等为结构材料。它们具有高强度、耐冲击、耐磨、抗化学腐蚀、耐热性好、电性能优良等特点,并且自重轻、易成型,广泛用于汽车、电器、建筑材料、包装等方面。60年代以后,又出现、、、等。尤其是为耐高温、耐高真空、自润滑材料,可用于航天器。其纤维可做航天服以抗辐射。聚苯并噻唑和聚苯并咪唑为耐高温树脂,耐热性高,可作烧蚀材料,用于火箭。共聚、共混和复合使结构材料改性,例如多元醇预聚物与经催化反应,为尼龙聚醚嵌段共聚物,具有高冲击强度和耐热性能,用于农业和建筑机械。另一种是以纤维增强树脂的高分子复合材料。所用树脂主要为环氧树脂、不饱和聚酯、聚酰胺 聚酰亚胺等 所用为玻璃纤维、或(常用丙烯腈基或沥青基)。这些复合材料比重轻、比强高、韧性好,特别适用于航天、航空及其他交通运输工具的结构件,以代替金属,节省能量。和含氟材料也发展迅速,由于它们具有突出的耐高低温性能、优良电性能、耐老化、耐辐射,广泛用于电子与电器工业、原子能工业和航天工业。又由于它们具有生理相容性,可作人造器官和生物医疗器材。 能源材料和节能材料 50年代原子能工业开始发展,要求化工企业生产重水、吸收中子材料和传热材料以满足需要。航天事业需要高能。固体推进剂由胶粘剂、增塑剂、氧化剂和添加剂所组成。液体高能燃料有液氢、煤油、偏二甲肼、无水肼等,氧化剂有液氧、发烟硝酸、四氧化二氮。这些产品都有严格的性能要求,已形成一个专门的生产行业。为了满足节能和环保的要求,1960年美国试制成可以实用的膜,以淡化、处理工业污水,以后又扩展用于医药、食品工业。但这种膜易于生物降解,也易水解,使用寿命短。1970年,开发了芳香族聚酰胺反渗透膜,它能够抗生物降解,但不能抗游离氯。1977年,改进后的复合膜用于海水淡化,每立方米淡水仅耗电23.7~28.4MJ 此外,还开发了和用膜等。聚砜中空纤维气体分离膜,用于合成氨尾气的氢氮分离及其他多种气体分离。这种技术比其他工业分离方法可以节能。精细以其硬度见长,用作切削工具。1971年,美国福特汽车公司及威斯汀豪斯电气公司以β-氮化硅 (β-Si N )为燃汽透平的结构材料,运行温度曾高达1370℃,提高功效,节省燃料,减少污染,为良好的节能材料,但经10年试验,仍存在不少问题,尚须进一步改进。现主要用作陶瓷发动机、透平叶片、导电陶瓷、人造骨等。陶瓷的主要物系有氧化物系,如氧化铝(Al O )、氧化锆(ZrO )等,和非氧化物系,如碳化物(SiC)、氮化物(BN)、氮化硅(Si N )等。80年代,为改进陶瓷的脆性,又在开发硅碳纤维增强陶瓷。 专用化学品得到进一步发展,它以很少的用量增进或赋予另一产品以特定功能,获得很高的使用价值。例如食品和饲料添加剂,塑料和橡胶助剂,皮革、造纸、油田等专用化学品,以及胶粘剂、防氧化剂、表面活性剂、水处理剂、催化剂等。以催化剂而言,由于电子显微镜、电子能谱仪等现代化仪器的发展,有助于了解催化机理,因而制备成各种专用催化剂,标志催化剂进入了新阶段。

阅读全文

与电催化合成氨装置设计相关的资料

热点内容
二氧化磷实验改进装置的优点 浏览:723
常规年检防雷装置检测报告 浏览:177
砂型铸造是怎么回事 浏览:333
水龙头翻砂铸造是什么意思 浏览:475
深圳观澜国泰五金制品 浏览:562
粉碎机械选型应考虑哪些因素 浏览:974
华丰设备比作业员工资高多少钱 浏览:903
河北进口圆锥滚子轴承什么价格 浏览:595
木材含水测定仪用什么仪器来校准 浏览:360
怎么查制冷操作证 浏览:397
阀门上bs代表什么 浏览:561
教你怎么解决微信解冻提示设备不一致的问题 浏览:483
机械表买什么 浏览:864
江苏扬中市阀门厂有限公司 浏览:613
9米6欧曼货车贯通轴承怎么装 浏览:837
是起重机械的超载保护装置 浏览:402
机械白金机电容最好用多少uf 浏览:911
气动阀门由什么组成 浏览:418
研究传动装置 浏览:882
日产轩逸仪表盘照片如何设置 浏览:650