① 並聯電容器的作用是什麼
並聯電容器是一種無功補償設備,通常(集中補償式)接在變電站的低壓母線專上。
主要作用有三點:
1、補償屬系統的無功功率;
2、提高功率因數,從而降低電能損耗;
3、提高電壓質量和設備利用率,常與有載調壓變壓器配合使用。
(1)電網並聯電容器裝置作用擴展閱讀:
常用的並聯電容器按其結構不同,可分為單台鐵殼式、箱式、集合式、半封閉式、乾式和充氣式等多類品種。
無熔絲全膜電容器由於前不同的新含義,越過了晶體管繼電器、集成電路繼電器階段,直接進入了微機保護時代。我國無熔絲電容器內部元件的連接方式,有以下三種:
1、傳統的佔主導地位的元件先並聯後串聯的方式。內部並聯元件數量比較少,不宜配置內熔絲的小容量電容器(例如lO0kvar以下),一直沿用這種接線方式。
2、內部元件先串聯後並聯的方式,即最近又被重新倡導的一種接線方式。
3、內部元件既有串聯成分,也有並聯成分,但與上述兩種接線方式不同,串中有並,並中有串,屬於混合連接方式。這樣的接法沒有統一的格式,需要根據設計時對單台容量大小與保護上的要求而定。
② 三相電力電容器並聯電網有什麼作用
補償無功功率
③ 在電力系統中,採用並聯補償電容器進行無功補償的主要作用是什麼
補償電力系統感性負荷的無功功率,作用是提高功率因數,改善電壓質量,降低線路損耗。在電網中安裝並聯電容器等無功補償設備以後,可以提供感性負載所消耗的無功功率,減少了電網電源向感性負荷提供、由線路輸送的無功功率,可以降低線路和變壓器因輸送無功功率造成的電能損耗。
單相並聯電容器主要由心子、外殼和出線結構等幾部分組成。用金屬箔與絕緣紙或塑料薄膜疊起來一起卷繞,由若干元件、絕緣件和緊固件經過壓裝而構成電容心子,並浸漬絕緣油。電容極板的引線經串、並聯後引至出線瓷套管下端的出線連接片。電容器的金屬外殼內充以絕緣介質油。
無熔絲全膜電容器有與前不同的新含義,越過了晶體管繼電器、集成電路繼電器階段,直接進入了微機保護時代。我國無熔絲電容器內部元件的連接方式,有以下三種:
(1)傳統的佔主導地位的元件先並聯後串聯的方式。內部並聯元件數量比較少,不宜配置內熔絲的小容量電容器(例如lO0kvar以下),一直沿用這種接線方式。
(2)內部元件先串聯後並聯的方式,即最近又被重新倡導的一種接線方式。
(3)內部元件既有串聯成分,也有並聯成分,但與上述兩種接線方式不同,串中有並,並中有串,屬於混合連接方式。這樣的接法沒有統一的格式,需要根據設計時對單台容量大小與保護上的要求而定。
④ 並聯電力電容器的作用是
並聯電容器能向系統提供感性無功功率,系統運行的功率因數,提高受電端母線的電壓水平,同時,它減少了線路上感性無功的輸送,減少了電壓和功率損耗,能夠提高線路的輸電能力。
⑤ 兩個電容並聯用在一起,能起到什麼作用呀
一是:同種類型的電容並聯作用主要是擴容。
二是:不同種類型的電容並聯一般是一個感性強、一個感性弱。
小容量電容高頻信號易通過,大容量電容低頻信號易通過。
大電容在低頻時能提供好的通路,而在高頻時由於其寄生電感的存在阻抗將變大而無法提供濾波通路,所以大電容不能濾高頻,而小電容在低頻時阻抗太大而無法提供濾波通路,所以不能共同一電容濾高頻和低頻。
電網負荷時刻發生變化,並聯電容器需頻繁投入和切除,斷路器開斷並聯電容器的過程中,不可避免發生操作過電壓,可能會損壞並聯電容器,影響電網的正常運行。
(5)電網並聯電容器裝置作用擴展閱讀:
當不存在諧振條件即電網的電抗值和並聯電容器的電容值所構成的諧振頻率比較高而負載產生的諧波電流和母線的諧波電壓又很低時,此時,不需要考慮降低諧波值,但是IEC標准並未給出劃分界線的具體數據。
傳統的佔主導地位的元件先並聯後串聯的方式。內部並聯元件數量比較少,不宜配置內熔絲的小容量電容器,一直沿用這種接線方式。內部元件先串聯後並聯的方式,即最近又被重新倡導的一種接線方式。
內部元件既有串聯成分,也有並聯成分,但與上述兩種接線方式不同,串中有並,並中有串,屬於混合連接方式。這樣的接法沒有統一的格式,需要根據設計時對單台容量大小與保護上的要求而定。
這類電容器不宜用於lOkV級電容器成套裝置。先串後並的元件接線方式雖然在三者中相對來說好一些,其單台容量也不宜做得大於lOOkvar。無熔絲電容器的優點是結構簡單,損耗與製造成本較低。
⑥ 請問並聯電容器在電力10KV系統中起什麼作用
提高功率因數,提高線路電能傳輸能力,減少損耗
⑦ 並聯電容器在電力系統中的作用是
並聯復電容器在電力系統中的作用制是用於補償電力系統感性負荷的無功功率,以提高功率因數,改善電壓質量,降低線路損耗,提高系統或變壓器的輸出功率。提高母線電壓質量,降低電能損耗,改善供電質量,達到系統穩定運行目的。
常用的並聯電容器按其結構不同,可分為單台鐵殼式、箱式、集合式、半封閉式、乾式和充氣式等多類品種。並聯電容器組只允許在1.1倍額定電壓長期運行,當供電母線穩態電壓升高時過電壓保護應動作,帶時限發信號或跳閘。當過電壓保護動作於信號時,可以不帶延時。
(7)電網並聯電容器裝置作用擴展閱讀
並聯電容器組分為,星形(包括雙星形),三角形(雙三角形)接線。三角形接線的電容器組其損壞率遠高於星形接線,爆炸起火的事故大多發生在三角形接線的電容器組。因為三角形接線的電容器組當電容器發生極間擊穿時。
會造成電源的相間短路,較大的短路電流流過故障電容器會造成較大的沖擊波而使電容器外殼爆破而起火。而星形接線電容器組,當電容器極間發生擊穿不會形成相間短路。即使發生電容器的極間擊穿,其故障電流只有電容器組相電流的3倍,比起相間短路時故障電流要小得多。
⑧ 為什麼並聯補償電容器能在電網中得到廣泛應用
無功功率補償裝置在電子供電系統中所承擔的作用是提高電網的功率因數,降低供電變壓器及輸送線路的損耗,提高供電效率,改善供電環境。所以無功功率補償裝置在電力供電系統中處在一個不可缺少的非常重要的位置。合理的選擇補償裝置,可以做到最大限度的減少網路的損耗,使電網質量提高。反之,如選擇或使用不當,可能造成供電系統,電壓波動,諧波增大等諸多因素。
一、按投切方式分類:
1. 延時投切方式
延時投切方式即人們熟稱的"靜態"補償方式。這種投切依靠於傳統的接觸器的動作,當然用於投切電容的接觸器專用的,它具有抑制電容的涌流作用,延時投切的目的在於防止接觸器過於頻繁的動作時,電容器造成損壞,更重要的是防備電容不停的投切導致供電系統振盪,這是很危險的。當電網的負荷呈感性時,如電動機、電焊機等負載,這時電網的電流滯帶後電壓一個角度,當負荷呈容性時,如過量的補償裝置的控制器,這是電網的電流超前於電壓的一個角度,即功率因數超前或滯後是指電流與電壓的相位關系。通過補償裝置的控制器檢測供電系統的物理量,來決定電容器的投切,這個物理量可以是功率因數或無功電流或無功功率。
下面就功率因數型舉例說明。當這個物理量滿足要求時,如cosΦ超前且>0.98,滯後且>0.95,在這個范圍內,此時控制器沒有控制信號發出,這時已投入的電容器組不退出,沒投入的電容器組也不投入。當檢測到cosΦ不滿足要求時,如cosΦ滯後且<0.95,那麼將一組電容器投入,並繼續監測cosΦ如還不滿足要求,控制器則延時一段時間(延時時間可整定),再投入一組電容器,直到全部投入為止。當檢測到超前信號如cosΦ<0.98,即呈容性載荷時,那麼控制器就逐一切除電容器組。要遵循的原則就是:先投入的那組電容器組在切除時就要先切除。如果把延時時間整定為300s,而這套補償裝置有十路電容器組,那麼全部投入的時間就為30分鍾,切除也這樣。在這段時間內無功損失補只能是逐步到位。如果將延時時間整定的很短,或沒有設定延時時間,就可能會出現這樣的情況。當控制器監測到cosΦ〈0.95,迅速將電容器組逐一投入,而在投入期間,此時電網可能已是容性負載即過補償了,控制器則控制電容器組逐一切除,周而復始,形成震盪,導致系統崩潰。是否能形成振盪與負載的性質有密切關系,所以說這個參數需要根據現場情況整定,要在保證系統安全的情況下,再考慮補償效果。
2. 瞬時投切方式
瞬時投切方式即人們熟稱的"動態"補償方式,應該說它是半導體電力器件與數字技術綜合的技術結晶,實際就是一套快速隨動系統,控制器一般能在半個周波至1個周波內完成采樣、計算,在2個周期到來時,控制器已經發出控制信號了。通過脈沖信號使晶閘管導通,投切電容器組大約20-30毫秒內就完成一個全部動作,這種控制方式是機械動作的接觸器類無法實現的。動態補償方式作為新一代的補償裝置有著廣泛的應用前景。現在很多開關行業廠都試圖生產、製造這類裝置且有的生產廠已經生產出很不錯的裝置。當然與國外同類產品相比從性能上、元器件的質量、產品結構上還有一定的差距。
動態補償的線路方式
(1)LC串接法原理如圖1所示
這種方式採用電感與電容的串聯接法,調節電抗以達到補償無功損耗的目的。從原理上分析,這種方式響應速度快,閉環使用時,可做到無差調節,使無功損耗降為零。從元件的選擇上來說,根據補償量選擇1組電容器即可,不需要再分成多路。既然有這么多的優點,應該是非常理想的補償裝置了。但由於要求選用的電感量值大,要在很大的動態范圍內調節,所以體積也相對較大,價格也要高一些,再加一些技術的原因,這項技術到目前來說還沒有被廣泛採用或使用者很少。
(2)採用電力半導體器件作為電容器組的投切開關,較常採用的接線方式如圖2。圖中BK為半導體器件,C1為電容器組。這種接線方式採用2組開關,另一相直接接電網省去一組開關,有很多優越性。
作為補償裝置所採用的半導體器件一般都採用晶閘管,其優點是選材方便,電路成熟又很經濟。其不足之處是元件本身不能快速關斷,在意外情況下容易燒毀,所以保護措施要完善。當解決了保護問題,作為電容器組投切開關應該是較理想的器件。動態補償的補償效果還要看控制器是否有較高的性能及參數。很重要的一項就是要求控制器要有良好的動態響應時間,准確的投切功率,還要有較高的自識別能力,這樣才能達到最佳的補償效果。
當控制器採集到需要補償的信號發出一個指令(投入一組或多組電容器的指令),此時由觸發脈沖去觸發晶閘管導通,相應的電容器組也就並人線路運行。需要強調的是晶閘管導通的條件必須滿足其所在相的電容器的端電壓為零,以避免涌流造成元件的損壞,半導體器件應該是無涌流投切。當控制指令撤消時,觸發脈沖隨即消失,晶閘管零電流自然關斷。關斷後的電容器電壓為線路電壓交流峰值,必須由放電電阻盡快放電,以備電容器再次投入。
元器件可以選單項晶閘管反並聯或是雙向晶閘管,也可選適合容性負載的固態接觸器,這樣可以省去過零觸發的脈沖電路,從而簡化線路,元件的耐壓及電流要合理選擇,散熱器及冷卻方式也要考慮周全。
3.混合投切方式
實際上就是靜態與動態補償的混合,一部分電容器組使用接觸器投切,而另一部分電容器組使用電力半導體器件。這種方式在一定程度上可做到優勢互補,但就其控制技術,目前還見到完善的控制軟體,該方式用於通常的網路如工礦、小區、域網改造,比起單一的投切方式拓寬了應用范圍,節能效果更好。補償裝置選擇非等容電容器組,這種方式補償效果更加細致,更為理想。還可採用分相補償方式,可以解決由於線路三相不平行造成的損失。
4. 在無功功率補償裝置的應用方面,選擇那一種補償方式,還要依電網的狀況而定,首先對所補償的線路要有所了解,對於負荷較大且變化較快的工況,電焊機、電動機的線路採用動態補償,節能效果明顯。對於負荷相對平穩的線路應採用靜態補償方式,也可使用動態補償裝置。一般電焊工作時間均在幾秒鍾以上,電動機啟動也在幾秒鍾以上,而動態補償的響應時間在幾十毫秒,按40毫秒考慮則從40毫秒到5秒鍾之內是一個相對的穩態過程,動態補償裝置能完成這個過程。
二、無功功率補償控制器
無功功率補償控制器有三種采樣方式,功率因數型、無功功率型、無功電流型。選擇那一種物理控制方式實際上就是對無功功率補償控制器的選擇。控制器是無功補償裝置的指揮系統,采樣、運算、發出投切信號,參數設定、測量、元件保護等功能均由補償控制器完成。十幾年來經歷了由分立元件--集成線路--單片機--DSP晶元一個快速發展的過程,其功能也愈加完善。就國內的總體狀況,由於市場的需求量很大,生產廠家也愈來愈多,其性能及內在質量差異很大,很多產品名不符實,在選用時需認真對待。在選用時需要注意的另一個問題就是國內生產的控制器其名稱均為"XXX無功功率補償控制器",名稱里出現的"無功功率"的含義不是這台控制器的采樣物理量。采樣物理量取決於產品的型號,而不是產品的名稱。
1.功率因數型控制器
功率因數用cosΦ表示,它表示有功功率在線路中所佔的比例。當cosΦ=1時,線路中沒有無功損耗。提高功率因數以減少無功損耗是這類控制器的最終目標。這種控制方式也是很傳統的方式,采樣、控制也都較容易實現。
* "延時"整定,投切的延時時間,應在10s-120s范圍內調節 "靈敏度"整定,電流靈敏度,不大於0-2A 。
* 投入及切除門限整定,其功率因數應能在0.85(滯後)-0.95(超前)范圍內整定。
* 過壓保護設量
* 顯示設置、循環投切等功能
這種采樣方式在運行中既要保證線路系統穩定、無振盪現象出現,又要兼顧補償效果,這是一對矛盾,只能在現場視具體情況將參數整定在較好的狀態下工作。即使調整的較好,也無法禰補這種方式本身的缺陷,尤其是在線路重負荷時。舉例說明:設定投入門限;cosΦ=0.95(滯後)此時線路重載荷,即使此時的無功損耗已很大,再投電容器組也不會出現過補償,但cosΦ只要不小於0.95,控制器就不會再有補償指令,也就不會有電容器組投入,所以這種控制方式建議不做為推薦的方式。
2. 無功功率(無功電流)型控制器
無功功率(無功電流)型的控制器較完善的解決了功率因數型的缺陷。一個設計良好的無功型控制器是智能化的,有很強的適應能力,能兼顧線路的穩定性及檢測及補償效果,並能對補償裝置進行完善的保護及檢測,這類控制器一般都具有以下功能:
* 四象限操作、自動、手動切換、自識別各路電容器組的功率、根據負載自動調節切換時間、諧波過壓報警及保護、線路諧振報警、過電壓保護、線路低電流報警、電壓、電流畸變率測量、顯示電容器功率、顯示cosΦ、U、I、S、P、Q及頻率。
由以上功能就可以看出其控制功能的完備,由於是無功型的控制器,也就將補償裝置的效果發揮得淋漓盡致。如線路在重負荷時,那怕cosΦ已達到0.99(滯後),只要再投一組電容器不發生過補,也還會再投入一組電容器,使補償效果達到最佳的狀態。採用DSP晶元的控制器,運算速度大幅度提高,使得富里葉變換得到實現。當然,不是所有的無功型控制器都有這么完備的功能。國內的產品相對於國外的產品還存在一定的差距。
3. 用於動態補償的控制器
對於這種控制器要求就更高了,一般是與觸發脈沖形成電路一並考慮的,要求控制器抗干擾能力強,運算速度快,更重要的是有很好的完成動態補償功能。由於這類控制器也都基於無功型,所以它具備靜態無功型的特點。
目前,國內用於動態補償的控制器,與國外同類產品相比有較大的差距,一是在動態響應時間上較慢,動態響應時間重復性不好;二是補償功率不能一步到位,沖擊電流過大,系統特性容易漂移,維護成本高、造成設備整體投資費用高。另外,相應的國家標准也尚未見到,這方面落後於發展。
三、濾波補償系統
由於現代半導體器件應用愈來愈普遍,功率也更大,但它的負面影響就是產生很大的非正弦電流。使電網的諧波電壓升高,畸變率增大,電網供電質量變壞。
如果供電線路上有較大的諧波電壓,尤其5次以上,這些諧波將被補償裝置放大。電容器組與線路串聯諧振,使線路上的電壓、電流畸變率增大,還有可能造成設備損壞,再這種情況下補償裝置是不可使用的。最好的解決方法就是在電容器組串接電抗器來組成諧波濾波器。濾波器的設計要使在工頻情況下呈容性,以對線路進行無功補償,對於諧波則為感性負載,以吸收部分諧波電流,改善線路的畸變率。增加電抗器後,要考慮電容端電壓升高的問題。
濾波補償裝置即補償了無功損耗又改善了線路質量,雖然成本提高較多,但對於諧波成分較大的線路還是應盡量考慮採用,不能認為裝置一時不出問題就認為沒有問題存在。很多情況下,採用五次、七次、十一次或高通濾波器可以在補償無功功率的同時,對系統中的諧波進行消除。
⑨ 電力電容器的作用
電力電容器是一種無功補償裝置。電力系統的負荷和供電設備如電動機、變壓器、互感器等,除了消耗有功電力以外,還要「吸收」無功電力。如果這些無功電力都由發電機供給,必將影響它的有功出力,不但不經濟,而且會造成電壓質量低劣,影響用戶使用。
電容器在交流電壓作用下能「發」無功電力(電容電流),如果把電容器並接在負荷(如電動機)或供電設備(如變壓器)上運行,那麼, 負荷或供電設備要「吸收」 的無功電力, 正好由電容器「發出」 的無功電力供給, 這就是並聯補償。並聯補償減少了線路能量損耗,可改善電壓質量,提高功率因數,提高系統供電能力。
如果把電容器串聯在線路上,補償線路電抗,改變線路參數,這就是串聯補償。串聯補償可以減少線路電壓損失, 提高線路末端電壓水平,減少電網的功率損失和電能損失,提高輸電能力。
電力電容器包括移相電容器、電熱電容器、均壓電容器、藕合電容器、脈沖電容器等。移相電容器主要用於補償無功功率, 以提高系統的功率因數;電熱電容器主要用於提高中頻電力系統的功率因數;均壓電容器一般並聯在斷路器的斷口上作均壓用;藕合電容器主要用於電力送電線路的通信、測量、控制、保護;脈沖電容器主要用於脈沖電路及直流高壓整流濾波。
隨著國民經濟的發展,負荷日益增多,供電容量擴大,無功補償工作必須相應跟上去。用電容器作為無功補償時,投資少,損耗小,便於分散安裝,使用較廣。當然,由於系統穩定的要求,必須配備一定比例的調相機。
⑩ 在電動機上並聯電容的作用是什麼
在電動機上並聯電容的作用是做電動機啟動。電容器將「單相」交流電分裂為相位接近90度的「兩相」交流電,從而使電動機產生旋轉磁場。
電網中的電力負荷如電動機、變壓器等,大部分屬於感性負荷,在運行過程中需向這些設備提供相應的無功功率。
在電網中安裝並聯電容器等無功補償設備以後,可以提供感性負載所消耗的無功功率,減少了電網電源向感性負荷提供、由線路輸送的無功功率。
由於減少了無功功率在電網中的流動,因此可以降低線路和變壓器因輸送無功功率造成的電能損耗。
電網負荷時刻發生變化,並聯電容器需頻繁投入和切除,斷路器開斷並聯電容器的過程中,不可避免發生操作過電壓,可能會損壞並聯電容器,影響電網的正常運行。
(10)電網並聯電容器裝置作用擴展閱讀
各種電動機中應用最廣的是交流非同步電動機(又稱感應電動機)。它使用方便、運行可靠、價格低廉、結構牢固,但功率因數較低,調速也較困難。
大容量低轉速的動力機常用同步電動機(見同步電機)。
同步電動機不但功率因數高,而且其轉速與負載大小無關,只決定於電網頻率。工作較穩定。在要求寬范圍調速的場合多用直流電動機。但它有換向器,結構復雜,價格昂貴,維護困難,不適於惡劣環境。
20世紀70年代以後,隨著電力電子技術的發展,交流電動機的調速技術漸趨成熟,設備價格日益降低,已開始得到應用。電動機在規定工作制式(連續式、短時運行制、斷續周期運行制)下所能承擔而不至引起電機過熱的最大輸出機械功率稱為它的額定功率,使用時需注意銘牌上的規定。
電動機運行時需注意使其負載的特性與電機的特性相匹配,避免出現飛車或停轉。電動機能提供的功率范圍很大,從毫瓦級到萬千瓦級。
電動機的使用和控制非常方便,具有自起動、加速、制動、反轉、掣住等能力。一般電動機調速時其輸出功率會隨轉速而變化。