A. 消弧線圈的作用是什麼
作用:當電網發生單相接地故障,消弧線圈提供電感電流補償使故障點電流降至10A以下,有利於防止弧光過零後重燃,達到滅弧目的;降低高幅值過電壓出現幾率,防止事故進一步擴大;消弧線圈正確調諧時,可有效減少弧光接地過電壓機率,最大限度減小故障點熱破壞作用及接地網電壓。
消弧線圈結構的特點是電控無級連續可調消弧線圈,全靜態結構,內部無任何運動部件,無觸點,調節范圍大,可靠性高,調節速度快。利用施加直流勵磁電流,改變鐵芯的磁阻,從而改變消弧線圈電抗值的目的,它可以帶高壓以毫秒級的速度調節電感值。
(1)自動滅弧選線裝置擴展閱讀:
消弧線圈的分類:
1、調氣隙式
調氣隙式屬於隨動式補償系統。其消弧線圈屬於動芯式結構,通過移動鐵芯改變磁路磁阻達到連續調節電感的目的。然而其調整隻能在低電壓或無電壓情況下進行,其電感調整范圍上下限之比為2.5倍。控制系統電網正常運行情況下將消弧線圈調整至全補償附近。
2、調匝式
同調氣隙式的唯一區別是動芯式消弧線圈用有載調匝式消弧線圈取代,這種消弧線圈是用原先的人工調匝消弧線圈改造而成,即採用有載調節開關改變工作繞組的匝數,達到調節電感的目的。其工作方式同調氣隙式完全相同,也是採用串聯電阻限制諧振過電壓。
3、調容式
主要是在消弧線圈的二次側並聯若干組用可控硅(或真空開關)通斷的電容器,用來調節二次側電容的容抗值。根據阻抗折算原理,調節二次側容抗值,即可以達到改變一次側電感電流的要求。
B. 斷路器是合閘後儲能,還是分閘後儲能,詳細的動作過程是什麼
斷路器是合閘後儲能。
主觸點閉合後,自由脫扣機構將主觸點鎖在合閘位置上。過電流脫扣器的線圈和熱脫扣器的熱元件與主電路串聯,欠電壓脫扣器的線圈和電源並聯。當電路發生短路或嚴重過載時,過電流脫扣器的銜鐵吸合,使自由脫扣機構動作,主觸點斷開主電路。
當電路過載時,熱脫扣器的熱元件發熱使雙金屬片上彎曲,推動自由脫扣機構動作。當電路欠電壓時,欠電壓脫扣器的銜鐵釋放。也使自由脫扣機構動作。
分勵脫扣器則作為遠距離控制用,在正常工作時,其線圈是斷電的,在需要距離控制時,按下起動按鈕,使線圈通電。
低壓斷路器具有多種保護功能(過載、短路、欠電壓保護等)、動作值可調、分斷能力高、操作方便、安全等優點,所以被廣泛應用。結構和工作原理低壓斷路器由操作機構、觸點、保護裝置(各種脫扣器)、滅弧系統等組成。
(2)自動滅弧選線裝置擴展閱讀
一般來說,具有過載長延時、短路短延時和短路瞬動三段保護功能的斷路器,能實現選擇性保護,大多數主幹線(包括變壓器的出線端)都採用它作主保護開關。
不具備短路短延時功能的斷路器(僅有過載長延時和短路瞬動二段保護),不能作選擇性保護,它們只能使用於支路。IEC92《船舶電氣》指出:具有三段保護的斷路器,偏重於它的運行短路分斷能力值,而使用於分支線路的斷路器,應確保它有足夠的極限短路分斷能力值。
無論是哪種斷路器,雖然都具備Icu和Ics這兩個重要的技術指標。但是,作為支線上使用的斷路器,可以僅滿足額定極限短路分斷能力即可。
較普遍的偏頗是寧取大,不取正合適,認為取大保險。但取得過大,會造成不必要的浪費(同類型斷路器,其H型—高分斷型,比S型—普通型的價格要貴1.3倍~1.8倍)。因此支線上的斷路器沒有必要一味追求它的運行短路分斷能力指標。
而對於干線上使用的斷路器,不僅要滿足額定極限短路分斷能力的要求,同時也應該滿足額定運行短路分斷能力的要求,如果僅以額定極限短路分斷能力Icu來衡量其分斷能力合格與否,將會給用戶帶來不安全的隱患。
C. 消弧線圈與滅弧線圈的區別
消弧線圈是一種帶鐵芯的電感線圈。它接於變壓器(或發電機)的中性點與大地之間,構成消弧線圈接地系統。正常運行時,消弧線圈中無電流通過。而當電網受到雷擊或發生單相電弧性接地時,中性點電位將上升到相電壓,這時流經消弧線圈的電感性電流與單相接地的電容性故障電流相互抵消,使故障電流得到補償,補償後的殘余電流變得很小,不足以維持電弧,從而自行熄滅。這樣,就可使接地迅速消除而不致引起過電壓。
滅弧室是盆狀的,底部有孔,動觸頭在孔中穿過,與靜觸頭接觸形成導電通路.滅弧室、靜觸頭和動觸桿上都有銅鎢合金,滅弧室外有滅弧線圈.當動觸桿和靜觸頭分開即分閘操作時電弧會馬上轉移到滅弧室內,電流流過線圈,在滅弧室內建立磁場.磁場垂直於電弧,使電弧在滅弧室中快速旋轉,把電弧拉長,靠六氟化硫氣體使電弧在電流過零點時熄滅.其特點為:
(1)電弧被磁場控制在滅弧室內,不會把其他部件燒壞.
(2)電弧的高速旋轉使滅弧室燒損不集中在一個部位,使用壽命增長.
(3)電流大時,滅弧能力強,電流小時,能力小.不產生截流現象.
(4)為使在電流過零點時仍具有較強的滅弧能力,在設計上使磁場和電流有一定相位差,保證電流過零點時可靠熄滅.
(5)滅弧室結構簡單,體積小,可使開關體積縮小,製造方便,成本低.
D. 消弧線圈的原理是什麼
消弧線圈電力系統輸電線路經消弧線圈接地,為小電流接地系統的一種,當單相出現斷路故障時,流經消弧線圈的電感電流與流過的電容電流相加為流過斷路接地點的電流,電感電容上電流相位相差90度,相互補償。當兩電流的量值小於發生電弧的最小電流時,電弧就不會發生,也不會出現諧振過電壓現象。10-63KV電壓等級下的電力線路多屬於這種情況。
消弧線圈作用原理及國內外現狀
消弧線圈的作用是當電網發生單相接地故障後,提供一電感電流,補償接地電容電流,使接地電流減小,也使得故障相接地電弧兩端的恢復電壓速度降低,達到熄滅電弧的目的。當消弧線圈正確調諧時,不僅可以有效的減少產生弧光接地過電壓的機率,還可以有效的抑制過電壓的輻值,同時也最大限度的減小了故障點熱破壞作用及接地網的電壓等。所謂正確調諧,即電感電流接地或等於電容電流,工程上用脫諧度V來描述調諧程度
V=(IC-IL)/IC
當V=0時,稱為全補償,當V>0時為欠補償,V<0時為過補償。從發揮消弧線圈的作用上來看,脫諧度的絕對值越小越好,最好是處於全補償狀態,即調至諧振點上。但是在電網正常運行時,小脫諧度的消弧線圈將產生各種諧振過電壓。如煤礦6KV電網,當消弧線圈處於全補償狀態時,電網正常穩態運行情況下其中性點位移電壓是未補償電網的10~25倍,這就是通常所說的串聯諧振過電壓。除此之外,電網的各種操作(如大電機的投入,斷路器的非同期合閘等)都可能產生危險的過電壓,所以電網正常運行時,或發生單相接地故障以外的其它故障時,小脫諧度的消弧線圈給電網帶來的不是安全因素而是危害。綜上所述,當電網未發生單相接地故障時,希望消弧線圈的脫諧度越大越好,最好是退出運行。
3.1補償系統的分類
早期採用人工調匝式固定補償的消弧線圈,稱為固定補償系統。固定補償系統的工作方式是:將消弧線圈整定在過補償狀態,其過補程度的大小取決於電網正常穩態運行時不使中性點位移電壓超過相電壓的15%,之所以採用過補償是為了避免電網切除部分線路時發生危險的串聯諧振過電壓。因為如整定在欠補償狀態,切除線路將造成電容電流減少,可能出現全補償或接近全補償的情況。但是這種裝置運行在過補償狀態當電網中發生了事故跳閘或重合等參數變化時脫諧度無法控制,以致往往運行在不允許的脫諧度下,造成中性點過電壓,三相電壓對稱遭到破壞。可見固定補償方式很難適應變動比較頻繁的電網,這種系統已逐漸不再使用。取代它的是跟蹤電網電容電流自動調諧的裝置,這類裝置又分為兩種,一種稱之為隨動式補償系統。隨動式補償系統的工作方式是:自動跟蹤電網電容電流的變化,隨時調整消弧線圈,使其保持在諧振點上,在消弧線圈中串一電阻,增加電網阻尼率,將諧振過電壓限制在允許的范圍內。當電網發生單相接地故障後,控制系統將電阻短接掉,達到最佳補償效果,該系統的消弧線圈不能帶高壓調整。另一種稱之為動態補償系統。動態補償系統的工作方式是:在電網正常運行時,調整消弧線圈遠離諧振點,徹底避免串聯諧振過電壓和各種諧振過電壓產生的可能性,當電網發生單相接地後,瞬間調整消弧線圈到最佳狀態,使接地電弧自動熄滅。這種系統要求消弧線圈能帶高電壓快速調整,從根本上避免了串聯諧振產生的可能性,通過適當的控制,該系統是唯一可能使電網中原有功率方向型單相接地選線裝置繼續使用的系統。
3.2國內主要產品比較
目前,自動補償的消弧線圈國內主要有三種產品,分別是調氣隙式,調匝式及偏磁式。
調氣隙式
調氣隙式屬於隨動式補償系統。其消弧線圈屬於動芯式結構,通過移動鐵芯改變磁路磁阻達到連續調節電感的目的。然而其調整隻能在低電壓或無電壓情況下進行,其電感調整范圍上下限之比為2.5倍。控制系統的電網正常運行情況下將消弧線圈調整至全補償附近,將約100歐電阻串聯在消弧線圈上。用來限制串聯諧振過電壓,使穩態過電壓數值在允許范圍內(中性點電位升高小於15%的相電壓)。當發生單相接地後,必須在0.2S內將電阻短接實現最佳補償,否則電阻有爆炸的危險。該產品的主要缺點主要有四條:
工作噪音大,可靠性差
動芯式消弧線圈由於其結構有上下運動部件,當高電壓實施其上後,振動噪音很大,而且隨著使用時間的增長,內部越來越松動,噪音越來越大。串聯電阻約3KW,100MΩ。當補償電流為50A時,需要250KW容量的電阻才能長期工作,所以在接地後,必須迅速切除電阻,否則有爆炸的危險。這就影響到整個裝置的可靠性。
調節精度差
由於氣隙微小的變化都能造成電感較大的變化,電機通過機械部件調氣隙的精度遠遠不夠。用液壓調節成本太高
過電壓水平高
在電網正常運行時,消弧線圈處於全補償狀態或接近全補償狀態,雖有串聯諧振電阻將穩態諧振過電壓限制在允許范圍內,但是電網中的各種擾動(大電機投切,非同期合閘,非全相合閘等),使得其瞬態過電壓危害較為嚴重。
功率方向型單相接地選線裝置不能繼續使用
安裝該產品後,電網中原有的功率方向型單相接地選線裝置不能繼續使用
調匝式
該裝置屬於隨動式補償系統,它同調氣隙式的唯一區別是動芯式消弧線圈用有載調匝式消弧線圈取代,這種消弧線圈是用原先的人工調匝消弧線圈改造而成,即採用有載調節開關改變工作繞組的匝數,達到調節電感的目的。其工作方式同調氣隙式完全相同,也是採用串聯電阻限制諧振過電壓。該裝置同調氣隙式相比,消除了消弧線圈的高噪音,但是卻犧牲了補償效果,消弧線圈不能連續調節,只能離散的分檔調節,補償效果差,並且同樣具有過電壓水平高,電網中原有方向型接地選線裝置不能使用及串聯的電阻存在爆炸的危險等缺點,另外該裝置比較零亂,它由四部分設備組成(接地變壓器,消弧線圈、電阻箱、控制櫃),安裝施工比較復雜。
偏磁式
消弧線圈結構的特點
電控無級連續可調消弧線圈,全靜態結構,內部無任何運動部件,無觸點,調節范圍大,可靠性高,調節速度快。這種線圈的基本工作原理是利用施加直流勵磁電流,改變鐵芯的磁阻,從而改變消弧線圈電抗值的目的,它可以帶高壓以毫秒級的速度調節電感值。
控制方式的特點
採用動態補償方式,從根本上解決了補償系統串聯諧振過電壓與最佳補償之間相互矛盾的問題。眾所周知,消弧線圈在高壓電網正常運行時無任何好處,如果這時調諧到全補償或接近全補償狀態,會出現串聯諧振過電壓使中性點電壓升高,電網中各種正常操作及單相接地以外的各種故障的發生都可能產生危險的過電壓。所以電網正常運行時,調節消弧線圈使其跟蹤電網電容電流的變化有害無利,這也就是電力部門規定「固定式消弧線圈不能工作在全補償或接近全補償狀態」的原因。國內同類自動補償裝置均是隨動系統,都是在電網尚未發生接地故障前即將消弧線圈調節到全補償狀態等待接地故障的發生,這了避免出現過高的串聯諧振過電壓而在消弧線圈上串聯一阻尼電阻,將穩態諧振過電壓限制到容許的范圍內,並不能解決暫態諧振過電壓的問題,另外由於電阻的功率限制,在出現接地故障後必須迅速的切除,這無疑給電網增加了一個不安全因素。偏磁式消弧線圈不是採用限制串聯諧振過電壓的方法,而是採用避開諧振點的動態補償方法,根本不讓串聯諧振出現,即在電網正常運行時,不施加勵磁電流,將消弧線圈調諧到遠離諧振點的狀態,但實時檢測電網電容電流的大小,當電網發生單相接地後,瞬時(約20ms)調節消弧線圈實施最佳補償。
E. 消弧線圈的作用
作用:當電網發生單相接地故障,消弧線圈提供電感電流補償使故障點電流降至10A以下,有利於防止弧光過零後重燃,達到滅弧目的;降低高幅值過電壓出現幾率,防止事故進一步擴大;消弧線圈正確調諧時,可有效減少弧光接地過電壓機率,最大限度減小故障點熱破壞作用及接地網電壓。
消弧線圈結構的特點是電控無級連續可調消弧線圈,全靜態結構,內部無任何運動部件,無觸點,調節范圍大,可靠性高,調節速度快。利用施加直流勵磁電流,改變鐵芯的磁阻,從而改變消弧線圈電抗值的目的,它可以帶高壓以毫秒級的速度調節電感值。
(5)自動滅弧選線裝置擴展閱讀:
消弧線圈的分類:
1、調氣隙式
調氣隙式屬於隨動式補償系統。其消弧線圈屬於動芯式結構,通過移動鐵芯改變磁路磁阻達到連續調節電感的目的。然而其調整隻能在低電壓或無電壓情況下進行,其電感調整范圍上下限之比為2.5倍。控制系統電網正常運行情況下將消弧線圈調整至全補償附近。
2、調匝式
同調氣隙式的唯一區別是動芯式消弧線圈用有載調匝式消弧線圈取代,這種消弧線圈是用原先的人工調匝消弧線圈改造而成,即採用有載調節開關改變工作繞組的匝數,達到調節電感的目的。其工作方式同調氣隙式完全相同,也是採用串聯電阻限制諧振過電壓。
3、調容式
主要是在消弧線圈的二次側並聯若干組用可控硅(或真空開關)通斷的電容器,用來調節二次側電容的容抗值。根據阻抗折算原理,調節二次側容抗值,即可以達到改變一次側電感電流的要求。