㈠ 多功能反應實驗裝置都能完成哪些反應
多功能催化反應實驗裝置 型號:TF-DGN
功能:
1、 了解多功能催化反應實驗裝置的組成及工藝。
2、 進行氣固相催化反應、催化劑評價與工藝條件選擇以及宏觀動力學實驗。
3、 進行加氫、脫氫、氧化、烴化、芳構化、氨化等有機催化反應的研究。
4、 了解液相釜式反應器的基本結構及工作原理。
主要配置:
固定床反應器、流化床反應器、釜式反應器、預熱器、冷凝器、氣液分離器、計量泵、氣泵、調速電機、轉子流量計、濕式氣體流量計、溫度儀表、壓力儀表、電流表、實驗台架及控制屏等。
㈡ 苯胺的備制
簡單的說就是將硝基苯和氫氣加熱到200度左右,通入流化床反應器,在金屬負載型催化劑(很多種,你這里是活性銅)的作用下,在200-320度時生成苯胺。
反應化學式為C6H5NO2+3H2—-—- C6H5NH2+2H20
硝基苯催化加氫法是目前工業上生產苯胺的主要方法,包括固定床氣相催化加氫、流化床氣相催化加氫以及硝基苯液相催化加氫三種工藝。
催化劑
C6H5NO2+3H2—-—- C6H5NH2+2H20+Q
生產工藝:1,硝基苯加氫還原:硝基苯經預熱和氫氣以1:9(摩爾比)進入氣化器,氣化並加熱至185~200℃,通人流化床。以銅作催化劑,氣態硝基苯在流化床內發生加氫還原反應。控制流化床內中心溫度220~270℃。H:≥90%。加氫反應產生的熱量由廢熱鍋爐產生1.3~1.7MPa的飽和蒸汽,供氣化器和後續精餾工序使用。流化床頂部出來的氣態反應生成物經冷凝、冷卻。液相為反應生成的苯胺和水,分層得到粗品苯胺。不凝氣(H:≥90%)少量排放,其餘壓縮後。和新鮮氫混合循環使用。床內銅催化劑定期進行再生處理。2,苯胺精製:粗品苯胺從脫水塔頂泵人。控制脫水塔釜溫度140-160℃,塔頂溫度120~140℃。塔內真空度一0.06至-0.07MPa。當脫水塔釜液水分≤0.1%後,進入精餾塔精餾脫除重組份(硝基苯、聯苯胺類等)。控制塔釜溫度l10~120℃。塔頂溫度100~llO~C。塔內真空度一0.09MPa以上。氣態苯胺從塔頂蒸出冷凝得到成品;塔釜內的重組份定期排放,蒸餾回收苯胺後作為焦油。
固定床氣相催化加氫工藝是在l~3 MPa和200—300 攝氏度等條件下,硝基苯和氫發生反應,苯胺的選擇性>99%。具有運轉費用低、投資少、技術成熟和產品質量好等優點,不足之處是易發生局部過熱而引起副反應和催化劑失活。國外大多數苯胺生產廠採用此工藝進行生產。
流化床氣相催化加氫法是汽化後的硝基苯與過量H:混合,進人流化床反應器,在260—280℃進行加氫還原反應生成苯胺和水蒸汽。該法較好地改善了傳熱狀況,避免局部過熱,減少副反應的生成,延長了催化劑的使用壽命;不足之處是操作較復雜,催化劑磨損大,裝置建設、操作和維修費用較高。我國絕大多數苯胺生產廠家均採用流化床氣相催化加氫工藝進行生產。
硝基苯液相催化加氫工藝是在無水條件下硝基苯進行加氫反應生成苯胺,苯胺的收率為99%。優點是反應溫度較低,副反應少,催化劑負荷高,壽命長,設備生產能力大,不足之處是反應物與催化劑以及溶劑必須進行分離,設備操作以及維修費用高。
目前,成功應用於硝基苯加氫工藝的催化劑主要是還原態的銅基催化劑和貴金屬鉑系催化劑。
俄羅斯催化研究所披露了硝基苯加氫制苯胺的銅加強催化劑的制備方法:通過在不銹鋼的柵格中燒結分布在熱交換器表面的鎳和鋁粉末,得到鎳.鋁載體,銅催化劑便依附在此載體上,用此方法製得的催化劑活性高。
硝基苯催化加氫工藝的技術進展主要表現在催化劑的改進方面。
美國杜邦公司成功開發了硝基苯液相催化加氫工藝:在150—250℃和0.15—1.0 MPa條件下,採用貴金屬催化劑,在無水條件下硝基苯進行加氫反應生成苯胺,收率為99%。俄國物理有機研究所研製出以稀土金屬氧化物為載體的硝基苯催化加氫鈀催化劑,實驗證明,在硝基苯加氫制苯胺中,l%Pd/Sm:03比1%Pd/A120 的催化活性高,兩者的穩定性比值為3.5。莫貝公司研製出由金、銀鉑或鈀等貴金屬製成的網狀、波紋狀或蜂窩狀催化劑,在此催化劑存在下,以甲醇為溶劑,於131—150oC和6.4 MPa條件下硝基苯加氫反應63 rain,苯胺收率98.1%以上。天津大學製成了一種功能性磷樹脂,把Pd、Pt或Ni負載於該樹脂上製成催化劑,可用於硝基苯的氫化反應。
㈢ 加氫反應釜怎麼分類 實驗室加氫反應釜的攪拌方式有哪些
加氫反應釜是指釜體下部帶氣體分布器,可使氫氣通過氣體分布器從容器底部自下而上與物料充分混合,從而達到快速反應效果的反應釜。
加氫反應釜在實驗室使用廣泛,可應用於各種催化反應、高溫高壓合成、加氫反應、氣液兩相、液液兩相、放熱反應、組成測試、穩定性、腐蝕性測試、精細加工、超臨界反映、催化劑評價和發展等領域。
常用的加氫反應釜類型可分為兩類:
一類用於高沸點液體或固體(固體需先溶於溶劑或加熱熔融)原料的液相加氫過程,如油脂加氫、重質油品的加氫裂解等。液相加氫常在加壓下進行,過程可以是間歇式的,也可以是連續的。間歇液相加氫常採用具有攪拌裝置的壓力釜或鼓泡反應器。連續液相加氫可採用涓流床反應器或氣、液、固三相同向連續流動的管式反應器。
另一類反應器用於氣相連續加氫過程,如苯常壓氣相加氫制環己烷、一氧化碳高壓氣相加氫合成甲醇等,反應器的類型可以是列管式或塔式。在高溫、高壓下,氫與鋼材中的碳原子能化合生成甲烷,使鋼材變脆,稱為氫蝕。故高壓加氫的反應器,必須採用合金鋼材。氫是易燃、易爆物質,加氫過程必須考慮安全措施。
加氫反應釜一共有三種不同的攪拌方式:
軸流式攪拌
為了實現相間的充分混合,提高傳質效率,翼型軸流槳這種攪拌器葉片面積率較大,即水平投影面上葉片面積占由葉端畫出的圓的面積的百分數較大,大面積的葉片與盤式渦輪中的圓盤類似,可阻止氣體從葉輪穿過,延長了氣液接觸時間。在不考慮氫氣的情況下,軸流式攪拌器循環能力強、排出量大,流體在釜內形成的整體循環流動對催化劑的懸浮操作是十分有效的。
錨式攪拌
作為標准攪拌器之一,錨式攪拌器以其價格低、使用方便最初在液相催化加氫中得到了廣泛的應用。錨式攪拌器葉輪的葉徑較大,且貼近釜底,使之用於懸浮密度很大、很難懸浮的催化劑(如雷尼鎳)也有一定的懸浮效果。但是,錨式攪拌器通常在低速下運行,在低粘液體攪拌時不產生大的剪切力,氫氣幾乎未經分散即上升到釜頂,上部的氫氣和下部的催化劑接觸的幾率低,導致反應速率很慢。
組合式攪拌
組合槳被開發出來後,催化劑懸浮與氫氣分散的問題同時得到了很好的解決,在液相催化加氫中逐漸得到應用。其中應用最廣泛的是兩層攪拌器,下層為軸流式攪拌器,用於固體懸浮;上層為徑流槳,用於氣體分散。採用這種組合時,下層槳將上層槳有效分散的氣體循環進入下部區域,在下部分散不良而凝並的氣泡進入上部區域後又重新被高剪切的槳所分散而再一次循環,因此可有效延長氣相停留時間,提高氣含率,有利於氣液傳質比表面積的增加。