導航:首頁 > 裝置知識 > 論文實驗裝置圖重復

論文實驗裝置圖重復

發布時間:2025-06-18 10:14:06

Ⅰ 歐姆定律的實驗驗證

歐姆第一階段的實驗是探討電流產生的電磁力的衰減與導線長度的關系,其結果於1825年5月在他的第一篇科學論文中發表。在這個實驗中,他碰到了測量電流強度的困難。在德國科學家施威格發明的檢流計啟發下,他把斯特關於電流磁效應的發現和庫侖扭秤方法巧妙地結合起來,設計了一個電流扭力秤,用它測量電流強度。歐姆從初步的實驗中發出,電流的電磁力與導體的長度有關。其關系式與今天的歐姆定律表示式之間看不出有什麼直接聯系。歐姆在當時也沒有把電勢差(或電動勢)、電流強度和電阻三個量聯系起來 。
在歐姆之前,雖然還沒有電阻的概念,但是已經有人對金屬的電導率(傳導率)進行研究。歐姆很努力,1825年7月,歐姆也用上述初步實驗中所用的裝置,研究了金屬的相對電導率。他把各種金屬製成直徑相同的導線進行測量,確定了金、銀、鋅、黃銅、鐵等金屬的相對電導率。雖然這個實驗較為粗糙,而且有不少錯誤,但歐姆想到,在整條導線中電流不變的事實表明電流強度可以作為電路的一個重要基本量,他決定在下一次實驗中把它當作一個主要觀測量來研究。
在以前的實驗中,歐姆使用的電池組是伏打電堆,這種電堆的電動勢不穩定,使他大為頭痛。後來經人建議,改用鉍銅溫差電偶作電源,從而保證了電源電動勢的穩定。
1826年,歐姆用上面圖中的實驗裝置導出了他的定律。在木質座架上裝有電流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盤,s是觀察用的放大鏡,m和m'為水銀杯,abb'a'為鉍框架,鉍、銅框架的一條腿相互接觸,這樣就組成了溫差電偶。A、B是兩個用來產生溫差的錫容器。實驗時把待研究的導體插在m和m'兩個盛水銀的杯子中,m和m'成了溫差電池的兩個極 。

歐姆准備了截面相同但長度不同的導體,依次將各個導體接入電路進行實驗,觀測扭力拖拉磁針偏轉角的大小,然後改變條件反復操作,根據實驗數據歸納成下關系:
x=q/(b+l)式中x表示流過導線的電流的大小,它與電流強度成正比,A和B為電路的兩個參數,L表示實驗導線的長度。1826年4月歐姆發表論文,把歐姆定律改寫為:x=ksa/ls為導線的橫截面積,K表示電導率,A為導線兩端的電勢差,L為導線的長度,X表示通過L的電流強度。如果用電阻l'=l/ks代入上式,就得到X=a/I'這就是歐姆定律的定量表達式,即電路中的電流強度和電勢差成正比而與電阻成反比。

Ⅱ 如何計算重復性

將測量列(10次測量結果,n=10)用貝塞爾公式計算即可。如果要計算由標准裝置重復性引入的標准不確定度,則應該用平均值的實驗標准偏差來表徵。

即:還要將該單次測量結果的實驗標准偏差(重復性)再除以根號m(m為實際測量次數,通常m≤n,自由度仍然為n-1。

貝塞爾曲線(Bézier curve),又稱貝茲曲線或貝濟埃曲線,是應用於二維圖形應用程序的數學曲線。一般的矢量圖形軟體通過它來精確畫出曲線,貝茲曲線由線段與節點組成,節點是可拖動的支點,線段像可伸縮的皮筋,我們在繪圖工具上看到的鋼筆工具就是來做這種矢量曲線的。

貝塞爾曲線是計算機圖形學中相當重要的參數曲線,在一些比較成熟的點陣圖軟體中也有貝塞爾曲線工具,如PhotoShop等。在Flash4中還沒有完整的曲線工具,而在Flash5裡面已經提供出貝塞爾曲線工具。

Ⅲ 阿司匹林的制備

阿司匹靈葯片通常由約0.32克乙醯水楊酸與少量澱粉混合並壓緊而成。澱粉的作用在於使其粘合成片。加過緩沖劑的阿司匹靈通常含有一種鹼性緩沖劑,以減少對胃壁粘膜的酸性刺激作用,因為乙醯化後的產物並非毫無刺激性。一種稱為Bufferin的葯片含阿司匹靈5谷、二羥胺基乙酸鋁0.75谷和碳酸鎂1.5谷。復合解痛片通常含阿司匹靈,非那西汀和咖啡因。例如,Empirin即是一號一種典型的APC(取Aspirin,Phenactin和Caffein三者之字首並合而成),它含有阿司匹靈0.233克,非那西汀0.166克,咖啡因0.03克。

阿司匹靈乃是現代生活中最大眾化的萬應葯(冶百病的葯)之一,而且,盡管它的奇妙歷史開始於200年前,關於這個不可思議的葯我們仍有許多東西該學。雖然至今仍然無人確切知道它究竟怎樣或為什麼會起作用,美國每年消耗的阿司匹靈量卻在二千萬磅以上。

阿司匹靈的歷史開始於1763年6月2日,當時一位名叫Edward Stone的牧師在倫敦皇家學會宣讀一篇論文,題為「關於柳樹治癒寒顫病成功的報告」。Stone 所指的寒顫病實為現在所稱的瘧疾,但他用」治癒」這兩個字則是樂觀主義的;他的柳樹皮提出物真正所起的作用是緩減這種疾病的發燒症狀,幾乎一世紀以後,一位蘇格蘭醫生想證實這種柳樹皮提出物是否也能緩和急性風濕病。最終,發現這種提出物是一種強效的止痛、退熱和抗炎(消腫)葯。

此後不久,從事研究柳樹皮提出物和綉線菊屬植物的花(它含同樣的要素)的有機化學家分離和鑒定了其中的活性成分,稱之為水楊酸(Salicylic Acid);Salicylic取自拉丁文Salix,即柳樹的拉丁文植物名。隨後,此化合物便能用化學方法大規模生產以供醫學上的使用。不久以後,水楊酸作為一種葯物使用受到它的酸性的嚴重限制,這一點巳變得極其明顯。

水楊酸

這個物質嚴重刺激口腔、食道和胃壁的粘膜。設法克服這個問題的第一個嘗試是改用酸性較小的鈉鹽(水楊酸鈉),但這個辦法僅僅取得部分成功。水楊酸鈉的刺激性雖然小些,但卻有令人極為不愉快的甜味,以致大多數病人不願服用它。直到接近十九世紀初期(1893年)才出現一個突破,當時在Bayer公司德國分行工作的化學師Felix Hoffmann發明了一條實際可行的合成乙醯水楊酸的路線。乙醯水楊酸被證明能體現與水楊酸鈉相同的所有醫學上的性質,但沒有令人不愉快的味道或對粘膜的高度刺激性。Bayer公司德國分行遂把它的這個新產品稱為阿司匹靈(Aspirin),這個名稱是從A(指Acetyl,即乙醯基)和字根spir(綉線菊屬植物的拉丁文名spirea)導出的。阿司匹靈的來歷是目前使用的許多葯品的典型。許多醫葯品開始時都以植物的提出物或民間葯物出現,然後由化學家分離出其中的活性成分,測定其結構並加以改良,結果才變成為比原來更好的葯物。

阿 司 匹 林

阿司匹靈的作用方式在最近幾年方始逐漸得到闡明。一組嶄新的叫做前列腺素的化合物巳被證明與身體的免疫反應有關聯。當身體功能的正常運行受到外來物質或受到不習慣的刺激時,會激發前列腺素的合成。這類物質與范圍廣泛的生理過程有關聯,並被認為是負責引起疼痛、發燒和局部發炎的。

最近,已經證實阿司匹靈能阻礙體內合成前列腺素,因而能減弱身體的免疫反應(也就是一些讓你知道什麼地方出現了毛病的反應)的症狀(發燒、疼痛、發炎)。一個更為驚人的發現是,前列腺素F2a能引起子宮平滑肌收縮,從而導致流產。事實上,根據革一假設,IUD(控制生育的子宮內避孕器)是由於避孕使子宮膜受到微弱刺激,激起局部連續不斷地合成前列遙素而奏效的。前列腺素之間的聯系,不免使人懷疑經常服用阿司匹靈的婦女也許不應再信任IUD這種避孕法了。然而,直到目前,還沒有發現服用阿司匹靈和IUD失敗之間的肯定的聯系。

實驗4- 3 阿司匹林的制備
實驗原理

水楊酸 乙酸酐 乙醯水楊酸 乙酸
(阿司匹林)
水楊酸在酸性條件下受熱,還可發生縮合反應,生成少量聚合物。

實驗用品
儀器:三頸瓶(100mL) 、球形冷凝管 、 減壓過濾裝置、電爐與調壓器、表面皿、水浴鍋、溫度計(100℃)
葯品:水楊酸(C.P.)、乙酸酐(C.P.) 、濃硫酸 、鹽酸溶液(1∶2)、 飽和碳酸氫鈉溶液
實驗裝置圖

圖4-3-2減壓過濾裝置
實驗步驟
(1) 醯化
實驗裝置:普通迴流裝置
加料量:
水楊酸: 4g
乙酸酐(新蒸餾): 10mL
濃硫酸: 7滴

反應溫度 :75~80℃
水浴溫度 :80~85℃
反應時間 :20min
(2) 結晶、抽濾
實驗裝置:減壓過濾裝置
試劑用量:
蒸 餾 水:100mL
冰-水浴冷卻
放置20min
(3) 初步提純
實驗裝置; 減壓過濾裝置
試劑用量:
飽和碳酸鈉溶液:50mL
鹽酸溶液:30mL
結晶析出:冰-水浴冷卻

(4) 重結晶
實驗裝置; 普通迴流裝置
減壓過濾裝置
試劑用量: 95%乙醇
適量水

(5) 稱量、計算收率

注意事項
(1)乙酸酐有毒並有較強烈的刺激性,取用時應注意不要與皮膚直接接觸,防止吸入大量蒸氣。加料時最好於通風櫥內操作,物料加入燒瓶後,應盡快安裝冷凝管,冷凝管內事先接通冷卻水。
(2)反應溫度不宜過高,否則將會增加副產物的生成。
(3)由於阿司匹林微溶於水,所以洗滌結晶時,用水量要少些,溫度要低些,以減少產品損失。
(4)濃硫酸具有強腐蝕性,應避免觸及皮膚或衣物。

阿司匹林化學名稱為乙醯水楊酸,是白色晶體,熔點135℃,微溶於水(37℃時,1g/100gH20)。
早在18世紀時,人們就已從柳樹中提取了水楊酸,並發現它具有解熱、鎮痛和消炎作用,但其刺激口腔及胃腸道黏膜。水楊酸可與乙酸
酐反應生成乙醯水楊酸,即阿司匹林,它具有與水楊酸同樣的葯效。近年來,科學家還新發現了阿司匹林具有預防心腦血管疾病的作用,因而得到高度重視。
本實驗以濃硫酸為催劑,使水楊酸與乙酸酐在75℃左右發生醯化反應,製取阿司匹林。

阿司匹林可與碳酸氫鈉反應生成水溶性的鈉鹽,而作為雜質的副產物則不能與鹼作用,可在用碳酸氫鈉溶液進行純化時將其分離除去。

於乾燥的圓底燒瓶中加入4g水楊酸和10mL新蒸餾的乙酸酐,在振搖下緩慢滴加7 滴濃硫酸,參照圖4-3-1安裝普通迴流裝置。通水後,振搖反應液使水楊酸溶解。然後用水浴加熱,控制水浴溫度在80~85℃之間,反應20min。
撤去水浴,趁熱於球形冷凝管上口加入2mL蒸餾水,以分解過量的乙酸酐。
稍冷後,拆下冷凝裝置。在攪拌下將反應液倒入盛有100mL冷水的燒杯中,並用冰-水浴冷卻,放置20min。待結晶析出完全後,減壓過濾。
將粗產品放入100mL燒杯中,加入50mL飽和碳酸鈉溶液並不斷攪拌,直至無二氧化碳氣泡產生為止。減壓過濾,除去不溶性雜質。濾液倒入潔凈的燒杯中,在攪拌下加入30mL鹽酸溶液,阿司匹林即呈結晶析出。將燒杯置於冰-水浴中充分冷卻後,減壓過濾。用少量冷水洗滌濾餅兩次,壓緊抽干,稱量粗產品
將粗產品放入100mL錐形瓶中,加入95%乙醇和適量水(每克粗產品約需3mL95%乙醇和5mL水),安裝球形冷凝管,於水浴中溫熱並不斷振搖,直至固體完全溶解。拆下冷凝管,取出錐形瓶,向其中緩慢滴加水至剛剛出現混濁,靜止冷卻。結晶析出完全後抽濾。
將結晶小心轉移至潔凈的表面皿上,晾乾後稱量,並計算收率。

Ⅳ 戴維森的歷史再現

戴維森花了兩年多的時間繼續這項研究,設計和安裝了新的儀器設備,並用不同的金屬材料作靶子。工作雖然沒有多大進展,但卻為以後的工作作了技術准備。1925 年,戴維森和他的助手革末(L.H.Germer,比戴維森小15歲)又開始了電子束的轟擊實驗。一次偶然的事件使他們的工作獲得了戲劇性的進展。有一天,正當革末給管子加熱、去氣,用於吸附殘余氣體分子的炭阱瓶突然破裂了,空氣沖進了真空系統,致使處於高溫的鎳靶嚴重氧化。過去這種事情也發生過,整個管子只好報廢。這次戴維森決定採取修復的辦法,在真空和氫氣中加熱、給陰極去氣。經過兩個月的折騰,又重新開始了正式試驗。在這中間,奇跡出現了。 1925年5月初,結果還和1921年所得差不多,可是5月中曲線發生特殊變化,出現了好幾處尖銳的峰值。他們立即採取措施,將管子切開,看看裡面發生了什麼變化。經公司一位顯微鏡專家的幫助,發現鎳靶在修復的過程中發生了變化,原來磨得極光的鎳表面,現在看來構成了一排大約十塊明顯的結晶面。他們斷定散射曲線的原因就在於原子重新排列成晶體陣列。
這一結論促使戴維森和革末修改他們的實驗計劃。既然小的晶面排列很亂,無法進行系統的研究,他們就作了一塊大的單晶鎳,並切取一特定方向來做實驗。他們事前並不熟悉這方面的工作,所以前後花了近一年的時間,才准備好新的鎳靶和管子。有趣的是,他們為熟悉晶體結構做了很多X 衍射實驗,拍攝了很多X衍射照片,可就是沒有將X衍射和他們正從事的電子衍射聯系起來。他們設計了很精巧的實驗裝置,鎳靶可沿入射束的軸線轉360°,電子散射後的收集器也可以取不同角度,顯然他們的目標已從探索原子結構,轉向探索晶體結構。1926年他們繼續做電子散射實驗,然而結果並不理想,並沒有馬上重獲偶然事件之後的那種曲線。
1926年夏,戴維森陪伴他的夫人(里查森之妹)回英國探親,戴維森這時正為自己未獲成功的實驗躊躇,就隨身帶著新近得到的實驗結果,希望他的姻兄能給他一些啟示。
這時正值英國科學促進會在牛津開會。戴維森隨里查森參加了會議。在1926 年8月10日的會議上,他聽到了著名的德國物理學家玻恩(M.Born)講到,戴維森和康斯曼從金屬表面反射的實驗有可能是德布羅意波動理論所預言的電子衍射的證據。會議之後,戴維森與里查森找到玻恩和其他一些著名的物理學家,讓他們看新近得到的單晶曲線,並且進行了熱烈的討論。在回美國的航程中,戴維森把所有時間用來閱讀薛定諤的著作。顯然他從牛津的討論中有所啟示,也許從這里可以找到解釋。
戴維森回到紐約後,立即和革末一起研究薛定諤的論文,但是計算結果跟實驗所得結果相差甚遠。於是,他們索性放棄原來的實驗,投入到一項進行全面研究的計劃中去。這時,他們已經完全由「不自覺」的狀態轉到「自覺」地尋找電子波的實驗證據中來了。
1926年12月,全面的研究開始了。經過2~3個月的緊張工作,取得了一系列成果,整理後發表於1927年12月「物理評論」上,論文系統地敘述了實驗方法和實驗結果。
戴維森與革末的實驗裝置極其精巧(圖37-1)。整套裝置僅長12 cm、高5 cm,密封在玻璃泡里,經反復烘烤與去氣,真空度達10-6Pa。散射電子用一雙層的法拉第桶(即所謂電子收集器)收集,送到電流計測量。收集器內外兩層之間用石英絕緣,加有反向電壓,以阻止經過非彈性碰撞的電子進入收集器;收集器可沿軌道轉動,使散射角在20°~90°的范圍內改變。
仔細制備的樣品是從晶體生長的單晶鎳切割下來的,經過研磨、腐蝕,取(111)面正對電子束,這是由於鎳是面心型晶體,(111)面是這類晶體點陣最為密集的方向。晶體安裝在沿入射束方向的軸上,可以隨意改變方位。散射電流取決於四個因素:轟擊電流、方位、散射角和轟擊電壓。已知散射電流與轟擊電流之間有簡單的正比關系,實驗主要考察散射電流跟後面三項的關系。他們做了大量的測試工作。他們綜合幾十組曲線,肯定這是電子束打到鎳晶體發生的衍射現象。於是,他們進一步作定量比較。然而,不同加速電壓下,電子束的最大值所在的散射角,總與德布羅意公式計算的結果相差一些。他們發現,如果用理論值乘0.7,與電子衍射角基本相符。文章發表不久,依卡特(Eckart)指出,這是電子在晶體中的折射率不同所致。
戴維森繼續試驗,發現隨著轟擊電壓增加,偏差越來越小。根據戴維森的數據,貝特(Bethe)推算出金屬表面存在內電勢(鎳約有15 V)。這樣,戴維森就全面證實了電子波的存在。
如果說,戴維森是從偶然的發現中抓住了新的事物,針對解釋不了的實驗結果進行了艱苦的研究,從而發現和證實電子衍射現象的,那麼,G.P.湯姆孫則是從一開始就抓住了這個主題,比較順利地達到了預定目標。
1922 年,30歲的G.P.湯姆孫成為阿伯登(Aberdeen)大學的自然哲學教授。在那裡,他繼續做他父親一直從事的正射線的研究工作,所用實驗裝置主要是真空設備和電子槍。1924年德布羅意第一篇關於物質波的論文在《哲學雜志》上發表時,他就對之深為欣賞,並於1925年也向《哲學雜志》投稿,討論德布羅意的理論。1926年8月英國科學促進會對這個問題的討論,使他也想到正射線有可能產生衍射效應。有一天,他到卡文迪什實驗室,看到氦對電子的散射,當時誤以為這就是電子衍射。G.P.湯姆孫回到阿伯登,就安排一位研究生雷德(A.Reid)用賽璐珞薄膜做這個課題。他們做這項工作很容易,因為他們的正射線散射實驗已經做了好幾年,只要將感應圈的極性反接,雷德立即得到了邊緣模糊的暈圈照片。於是,G.P.湯姆孫和雷德的短訊發表於《自然》雜志1927 年6月18日刊上,僅次於戴維森兩個月。為了說明觀察到的現象正是電子衍射,而不是由於高速電子碰撞產生的X射線衍射,G.P.湯姆孫用磁場將電子束偏向一方,發現整個圖像平移,保留原來的花樣。由此肯定是帶電粒子的射線,而不是X射線。接著,G.P.湯姆孫和他的同事對高速電子衍射進行了一系列的實驗(實驗裝置原理如圖37-2),靶子材料改用鋁、金、鉑等金屬材料。因為當時他們還沒有掌握真空濺射和鍍膜技術,要制備厚度只有10-6cm的薄膜是非常困難的。G.P.湯姆孫在他的正式論文中宣布:他得到的電子衍射圖形與X射線「粉末法」所得圖形非常相似。這些圖形的大小與德布羅意波動力學理論預計的結果在5%的范圍內相符。
後來,戴維森和G.P.湯姆孫的電子衍射實驗分別發展成為低能電子衍射技術(LEED)和反射式高能電子衍射技術(RHEED),在表面物理學中有廣泛應用。
1929年——1930年冬,湯姆孫作為「非常任」講師訪問了紐約伊薩卡的康奈爾大學。1930年被任命為倫敦大學帝國學院教授,一直任職到1952年,此後擔任劍橋神學院院長,1962年退休。
在帝國學院期間,G.P. 湯姆孫對核物理發生了興趣。當1939年初宣布重核裂變的發現時,他注意到了這個發現在軍事方面和其他方面應用的可能性,就建議英國空軍部購買一噸氧化鈾來作實驗。戰爭爆發時,這些實驗尚未完成。此時G.P.湯姆孫回到皇家航空研究院從事一系列軍事課題的研究,包括磁性水雷的研究。一年以後,他擔任了為研製原子彈而成立的國家委員會主席。1941年該委員會報告說製造原子彈是可能的,G.P.湯姆孫被授權向美國科學家通報了這一成果。
第二年,G.P. 湯姆孫在渥太華任科學聯絡處的官員,同美國原子彈計劃保持著密切聯系。他返回英國後,被委任為無線電廣播協會副主席,後來又擔任空軍部的科學顧問。戰後他回到帝國學院工作,1946年初開始對氘產生核動力的可能性發生了興趣。在帝國學院,在維爾(Ware)博士指導下開始了這方面的一些實驗,G.P.湯姆孫的研究是理論性的。後來因保密的需要,這項研究轉交給奧爾德馬斯頓聯合電子工業研究實驗室,G.P.湯姆孫繼續擔任顧問。

Ⅳ 大學物理實驗論文!!!!急急急!!!!注意,是小論文,不是實驗心得體會

大學物理實驗報告-弗蘭克赫茲實驗
大學物理試驗 2009-02-26 18:59:30 閱讀17868 評論14 字型大小:大中小 訂閱
大學物理實驗報告
實驗題目:弗蘭克赫茲實驗
實驗器材:F-H實驗管、恆溫加熱電爐、F-H實驗裝置、示波器。
實驗內容:
1.熟悉實驗裝置,掌握實驗條件。
該實驗裝置由F-H管、恆溫加熱電爐及F-H實驗裝置構成,其裝置結構如下圖所示:

F-V管中有足夠的液態汞,保證在使用溫度范圍內管內汞蒸氣總處於飽和狀態。一般溫度在100 ºC至250 ºC。並且由於Hg對溫度的靈敏度高,所以溫度要調好,不能讓它變化太大。燈絲電壓控制著陰極K發射電子的密度和能量分布,其變化直接影響曲線的形狀和每個峰的位置,是一個關鍵的條件。
2.測量Hg的第一激發電位。
1)起動恆溫控制器,加熱地F-H管,使爐溫穩定在157 ºC,並選擇合適的燈絲電壓,VG1K=2.5V,VG2p=1.5V,Vf=1.3V。
2)改變VG2k的值,並記錄下對應的Ip值上(每隔0.2V記錄一個數據)。
3)作數據處理,作出對應的Ip-VG2k圖,並求出Hg的第一激發電位(用逐差法)。
3.測Ar原子的第一激發電位。
1)調節好相關的數據:Vp=8.36V,VG1=1.62V,VG2k=0~100V,Vf=2.64V;
2)將相關檔位調到自由檔位,在示波器上觀看得到的Ip-VG2k圖,是否符合實驗要求(有六個以上的波峰)。再將相關檔位調到手動檔位。
3)手動改變VG2k的值,並記錄下對應的Ip值上(每隔0.05V記錄一個數據)。
4)作數據處理,作出對應的Ip-VG2k圖,並求出Hg的第一激發電位(用逐差法)。
4.得出結論。

原始數據:
1. Vf=1.3V VG1K=2.5V VG2p=1.5V T=157ºC
求汞原子的第一激發電位的數據表

閱讀全文

與論文實驗裝置圖重復相關的資料

熱點內容
機械stl什麼意思 瀏覽:606
原子吸收儀儀器檢出限等於什麼 瀏覽:137
綿陽液壓設備plc哪裡有賣 瀏覽:204
衡陽中湘機電五金市場 瀏覽:745
將綠色植物放在特定的實驗裝置內 瀏覽:529
永康五金市場三維地圖 瀏覽:587
揚州市五金機電批發市場 瀏覽:354
河南智圓軸承什麼時候倒閉啊 瀏覽:361
前輪軸承異響怎麼回事 瀏覽:380
48v電動工具原理 瀏覽:826
單向軸承怎麼裝 瀏覽:597
手機機械設計軟體有哪些問題 瀏覽:184
啟辰d50用什麼製冷劑 瀏覽:866
清潔家電設備多少錢 瀏覽:815
家庭管道閥門 瀏覽:267
管道上常用閥門 瀏覽:402
生產丁型螺絲設備多少錢 瀏覽:349
油鋸軸承碎了怎麼辦 瀏覽:419
聚氨酯企業用什麼閥門 瀏覽:182
編輯資料庫工具箱 瀏覽:191