㈠ 急求硫磺生產工藝!可行性報告!急急急急!
不溶性硫磺的性質、應用及生產工藝概述
1不溶性硫磺分子結構及特性普通硫磺在常溫下為黃色固體,它有兩種同素異形體。95.6℃以下穩定的為斜方硫(Sα),熔點為112.8℃;95.6℃以上穩定的為單斜硫(Sβ),熔點為114.5℃。這兩種形態的硫均以八元環形態(S8)存在,但其晶格排列不同。
不溶性硫磺(InsolubleSulphur)簡稱IS,是普通硫磺在臨界溫度(159℃)以上開環聚合而生成的線性聚合體,又稱為μ形硫(Sμ)。其分子表徵為Sn,硫原子的個數n大於200,最高達1×108以上。由於其結構與高分子聚合物類似,故也稱為聚合硫。
通常使用的不溶性硫磺產品為黃色粉末,密度1950kg/m3,相對分子量約30000。由於分子結構的差異,它甚至不溶於對普通硫磺有很強溶解能力的有機溶劑,如二硫化碳、甲苯等。要獲得常溫下的不溶性硫磺,通常採用「淬火」(即急冷)操作,將高溫硫熔體或蒸氣所存在的化學平衡「凍結」,即把不溶性硫與可溶性硫在高溫下的質量比固定在常溫下,這就是制備不溶性硫磺的工藝原理。但是,未經有效化學穩定處理的不溶性硫磺產品仍然是不穩定的,甚至可在數天內還原為可溶性的低分子斜方硫[1]。
2發展概況及應用前景
2.1不溶性硫磺的發展概況
在國外,Dums在1927年將硫的熔體噴入水中得到一種塑性硫,即聚合硫的一種。直到20世紀30年代,美國Stauffer公司首先取得了制備低品位不溶性硫磺(IS質量分數在50%~60%)的專利,40年代實現了工業化生產。50年代以後,美國、英國、法國、前蘇聯、日本以及東歐的波蘭、羅馬尼亞、捷克等國家相繼對不溶性硫磺進行了研究開發。但由於生產過程中存在著易燃、易爆、靜電、腐蝕、毒性等危險,直到20世紀70年代後期才由美國Stauffer公司取得極大成功,其產品Crystex的IS質量分數達到90%,並逐步生產充油型的不溶性硫磺系列產品。目前,該產品由Flexsys化學公司(荷蘭AKZO公司與美國Monsanto化學公司聯合體的子公司)生產和經營,幾乎壟斷全球的不溶性硫磺市場。
在我國,原化工部北京橡膠工業研究設計院於1974年開始不溶性硫磺制備技術的研究,先後用干法(二硫化碳淬火)、濕法(水介質淬火)、熔融法、氣化法制出含量為55%的不溶性硫磺產品,並於1977年在上海南匯瓦屑化工廠中試成功,為我國發展鋼絲子午線輪胎起了很大作用。「七五」期間,為了適應國家引進鋼絲子午線輪胎配套需要,上海京海化工有限公司與北京橡膠工業研究設計院合作,瞄準了Crystex產品水平,開發出「三錢牌」不溶性硫磺系列產品,開發了新的穩定體系,並形成6000t/a的生產能力。同時,該公司還與南化集團研究院合作,制訂了不溶性硫磺的專業標准,淘汰了含量為58%的低品位產品,中、高品位產品發展到16個,IS-60含量不低於63%、IS-90含量不低於95%,一些產品還出口德國、巴西和美國等。
據不完全統計,全國20多個省市的30多個研究院所、高等院校和化工廠在開發研究不溶性硫磺,建有幾十套不同的生產裝置,部分企業產品質量基本達到了國外先進水平,但仍普遍存在規模較小、部分單元設備落後、生產成本高等問題,不具備競爭優勢。根據中國橡膠工業協會橡膠助劑專業委員會統計數據,2003年國內不溶性硫磺生產能力近2萬t/a,產量為1.12萬t,出口量約為4000t。但由於國內不溶性硫磺產品的熱穩定性大多還達不到國外水平,能滿足全鋼子午線輪胎生產需求的高熱穩定性不溶性硫磺(IS-HS)大部分仍需進口,2003年進口量約8000t。
鑒於國內高熱穩定性不溶性硫磺的巨大缺口和廣闊的市場前景,2004年無錫錢橋化工廠在無錫開發區建成5000t/a生產裝置,據稱高熱穩定性不溶性硫磺的熱穩定性指標可接近Flexsys公司水平。河南省焦作市慧科化工有限責任公司1萬t/a高熱穩定性不溶性硫磺項目也於2004年12月開工,一期工程為3000t/a,計劃2005年8月建成投產。
2.2不溶性硫磺的應用前景
不溶性硫磺是一種性能優異的橡膠硫化劑,具有使橡膠製品或半成品表面不噴霜、增加粘著性的作用,有利於改善操作環境。同時,它也是一種良好的橡膠硫化促進劑,可使硫化速度加快,硫化均勻。目前,不溶性硫磺已廣泛應用於輪胎的胎體膠料、緩沖膠料、白胎側膠與骨架材料的粘合膠料中,可以提高橡膠與鍍銅鋼絲的粘合性能。另外,不溶性硫磺也適用於電纜、膠輥、油封、膠鞋等橡膠製品的膠料中,可防止產生早期硫化,使膠料保持較好的粘性及其它一些優點。盡管不溶性硫磺價格是普通斜方硫的5~15倍,但在鋼絲子午線輪胎及其它橡膠復合製品中仍是首選硫化劑。目前國外輪胎工業中不溶性硫磺的用量已佔總硫磺用量的40%,且還在增加。
隨著高速公路的發展,汽車的速度不斷提高,對輪胎提出更高的要求,普通斜交胎已經無法滿足要求。由於子午線輪胎的耐磨性比普通輪胎提高30%~50%,使用壽命為普通輪胎的1.5倍,節油6%~8%,且在高速下行駛具有安全、舒適、經濟等優點,已成為輪胎工業發展的必然趨勢。一些發達國家的輪胎子午線率已達90%以上[2]。近幾年來,由於市場熱銷和技術日趨成熟,形成了一股生產全鋼子午胎的投資熱潮,特別是國家對子午胎生產實施免收消費稅的扶持政策也促進了全鋼胎的高速發展。中國橡膠工業協會統計數據表明,全國子午線輪胎產量1998年為1986萬條,2003年達到7500萬條,平均增長速度為30.5%;同時,輪胎子午化率也由1998年的22%提高到2003年的47%。預計2004年全國子午線輪胎產量將超過1億條,對不溶性硫磺年需求量將達到約3萬t。
山東省作為化工大省,橡膠工業在全國的地位一直舉足輕重。近年來,隨著科技投入的不斷增加和生產規模的擴大,藉助原料基地和加工應用優勢,山東省橡膠工業呈蓬勃發展態勢。其中,輪胎生產是山東省橡膠加工業的支柱產品,產量多年來一直居於全國首位,有「三角」、「成山」、「玲瓏」、「華青」、「黃海」等多個知名品牌。在2004年全鋼子午胎十大「中國名牌」中,山東省企業佔了一半;在2004年度全球輪胎75強排行榜中,山東省企業佔有6席,足見山東省輪胎工業在國內、國際的重要地位。預計2004年山東省子午線輪胎產量約2000萬條,不溶性硫磺的年需求量約為6000t。同時,自2003年以來,很多民營企業也紛紛搶灘子午胎市場,省內新建擴建全鋼子午胎生產線十幾條,工程設計能力均在120萬條以上,預計未來兩年內全鋼子午胎產量將保持超高速的增長態勢,必將大大帶動不溶性硫磺的需求。
㈡ 工業如何制硫酸
一、接觸法制硫酸的原理、過程及典型設備 1.三種原料:硫鐵礦(FeS2)、空氣、水。利用接觸法制硫酸一般可以用硫黃、黃鐵礦、石膏、有色金屬冶煉廠的煙氣(含一定量的SO2)等。其中用硫黃作原料成本低、對環境污染少。但我國硫黃資源較少,主要用黃鐵礦(主要成分為FeS2)作生產硫酸的原料。 2.三步驟、三反應:(1) 4FeS2 +11O2=== 2Fe2O3+8SO2(高溫)(2)2 SO2+ O2 ≈ 2 SO3 (催化劑,加熱),(3) SO3 + H2O === H2SO4 3.三設備:(1)沸騰爐(2)接觸室(3)合成塔 4.三原理:化學平衡原理、熱交換原理、逆流原理。(1)增大反應物濃度、增大反應物間接觸面積,能提高反應速率並使化學平衡向正反應方向移動,以充分提高原料利用率。(2)熱交換原理:在接觸室中生成的熱量經過熱交換器,傳遞給進入接觸室的需要預熱的混合氣體,為二氧化硫的接觸氧化和三氧化硫的吸收創造了有利條件。(3)逆流原理:液體由上向下流,氣體由下向上升,兩者在逆流過程中充分反應。接觸法制硫酸的原理、過程及典型設備三原料 三階段 三反應(均放熱) 三設備 三凈化黃鐵礦或S 造氣 4FeS2+11O2=== 2Fe2O3+8SO2(高溫)或S+O2=SO2 沸騰爐 除塵空氣 接觸氧化 2 SO2 + O2 ≈ 2 SO3 (催化劑) 接觸室(含熱交換器) 洗滌 98.3%濃硫酸 三氧化硫吸收 SO3+ H2O === H2SO4 吸收塔 乾燥接觸法制硫酸示意圖:
㈢ 硫磺回收工藝問題!
第一章 克勞斯法硫磺回收工藝原理
第一節 克勞斯法工藝的發展過程
第二節 克勞斯法工藝的熱力學基礎
第三節 硫蒸氣對克勞斯反應的影響
第四節 燃燒爐內化學反應的機理
參考文獻
第二章 克勞斯法工藝技術與操作要點
第一節 克勞斯法工藝流程
第二節 克勞斯法制硫主要設備
第三節 尾氣灼燒
第四節 克勞斯法工藝設計與操作要點
參考文獻
第三章 硫磺回收工藝技術的發展方向
第一節 氧基硫磺回收工藝
第二節 選擇性催化氧化工藝(Selectox法)
第三節 選擇性催化氧化工藝(TDA法)
第四節 CrystaSulf法工藝
第五節 液相氧化還原法工藝
第六節 從硫化氫中回收硫磺和氫氣
參考文獻
第四章 液硫的加工與成型
第一節 單質硫的性質
第二節 多硫化物和硫聚合物
第三節 液硫脫氣
第四節 液硫成型
第五節 液硫儲存及處理的風險性分析
參考文獻
第五章 尾氣處理
第一節 尾氣排放標准
第二節 直接灼燒
第三節 在液相中進行的低溫克勞斯反應
第四節 在固體催化劑上進行的低溫克勞斯反應
第五節 還原一吸收法
第六節 氧化一吸收法
第七節 尾氣處理工藝的發展方向
第八節 尾氣處理工藝的選擇與評價
參考文獻
第六章 硫磺回收及尾氣處理催化劑
第一節 克勞斯反應催化劑
第二節 低溫克勞斯反應催化劑
第三節 漏氧保護催化劑
第四節 有機硫水解催化劑
第五節 選擇性催化氧化催化劑
第六節 加氫還原催化劑
第七節 催化劑的失活及其保護
參考文獻
第七章 模型化與模擬計算
第一節 平衡常數法模型
第二節 最小自由能法模型
第三節 CS2等化合物在爐內的生成與轉化
第四節 動力學模型
第五節 模擬計算
參考文獻
㈣ 克勞斯法的工藝流程
傳統克勞斯法是一種比較成熟的多單元處理技術,其本質上是催化氧化制硫的一種工藝方法。克勞斯工藝發明伊始就成為硫回收工業的標准工藝流程,也是目前應用最為廣泛的硫回收工藝之一。改良克勞斯法目前應用的有直流法、分流法和硫循環法三種基本型式。其中前兩種應用最為廣泛。在這三種基本型式的基礎上發展起來了一系列特殊的變形型式,例如超級克勞斯工藝、低溫克勞斯工藝、克勞斯直接氧化工藝以及富氧克勞斯工藝等 。 克勞斯硫磺回收法除了直流法和分流法外,還有許多特殊變形,這里介紹幾種常見工藝。
(1)超克勞斯工藝(Super Claus)
傳統的克勞斯工藝一般採用轉化、冷凝、分硫、過程氣再熱等步驟。常規的三級克勞斯工藝總硫回收率一般可達到96%~97%,但是具有以下局限:受到熱力學平衡的限制;過程氣流中H2O含量會增加,而H2S、SO2含量減少;在火焰中生成COS和CS2,需要水解,有時還生成硫醇,致使工藝熱負荷提高,硫產率降低;O2和H2S的比例要求嚴格控制為1:2,導致整個過程式控制制困難。
超級克勞斯工藝結合了兩個新概念:空氣和酸氣比例控制范圍增大;採用新型選擇性氧化催化劑,使H2S直接生產硫,而不是SO2。其工藝流程有超級克勞斯-99和克勞斯-99.5兩種,前者總硫回收率在99%左右,後者總硫回收率可達99.5%。
(2)低溫克勞斯工藝
該法特點是在低於硫露點的條件下進行克勞斯反應。已工業化的MCRC法和CBA(冷床吸附)法用於尾氣處理後,引起了克勞斯裝置設計概念的變化,即轉化器操作溫度可以低於硫露點以提高轉化率。
(3)克勞斯直接氧化工藝
採用常規克勞斯硫磺回收工藝,當酸氣中H2S含量很低時,其燃燒不足以維持爐溫,裝置無法正常運行,這時可採用直接氧化工藝。直接氧化工藝可分為兩類:一類是將H2S選擇性催化氧化為元素硫,此類工藝在處理克勞斯尾氣中獲得了良好的應用;另一類是將H2S催化氧化為元素硫及SO2,在氧化段後繼之常規克勞斯催化段,此類工藝的典型代表是Selectox工藝。
(4)富氧克勞斯工藝
常規克勞斯裝置均以空氣作為H2S氧化的催化劑,由於帶入了大量的N2等惰性氣體稀釋了過程氣,降低了裝置的總硫回收率。為此,20世紀80年代開發了以富氧空氣作為H2S氧化劑的富氧克勞斯工藝,能夠提高裝置效率、擴大裝置的處理能力,且延伸了對酸氣中H2S含量的適應范圍。
由於較低的富氧程度可在較少的投入下獲得較多的收益,因此目前富氧克勞斯裝置大多在較低的富氧程度下運行。