導航:首頁 > 裝置知識 > 液壓控制系統對液力傳動裝置提供傳動

液壓控制系統對液力傳動裝置提供傳動

發布時間:2024-05-13 11:25:44

⑴ 液力傳動裝置有哪些類型

=(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。

⑵ 自動變速器是由哪些零部件組成的


汽車自動變速器常見的有四種型式:分別是液力自動變速器(AT)、機回械無級自動變速器(CVT)、電控答機械自動變速器(AMT)、雙離合器自動變速器(Dual Clutch Transmission--DCT)。目前轎車普遍使用的是AT,AT幾乎成為自動變速器的代名詞。 AT是由液力變扭器、行星齒輪和液壓操縱系統組成,通過液力傳遞和齒輪組合的方式來達到變速變矩。其中液力變扭器是AT最重要的部件,它由泵輪、渦輪和導輪等構件組成,兼有傳遞扭矩和離合的作用。

⑶ 液力傳動的液力傳動裝置

液力傳動裝置是以液體為工作介質以液體的動能來實現能量傳遞的裝置,常見的有液力耦合器、液力變矩器和液力機械元件。
目前,液力傳動元件主要有液力元件和液力機械兩大類。液力元件有液力耦合器和液力變矩器;液力機械裝置是液力傳動裝置與機械傳動裝置組合而成的,因此,它既具有液力傳動變矩性能好的特點,又具有機械傳動效率高的特徵。
液力傳動裝置主要由三個關鍵部件組成,即泵輪、渦輪、導輪。
泵輪:能量輸入部件,它能接受原動機傳來的機械能並將其轉換為液體的動能;
渦輪:能量輸出部分,它將液體的動能轉換為機械能而輸出;
導輪:液體導流部件,它對流動的液體導向,使其根據一定的要求,按照一定的方向沖擊泵輪的葉片。 下圖a是液力變矩器的實物模型圖,圖b是其結構原理簡圖。它主要由泵輪、渦輪、導輪等構成。泵輪、渦輪分別與主動軸、從動軸連接,導輪則與殼體固定在一起不能轉動。當液力變矩器工作時,因導輪D對液體的作用,而使液力變矩器輸入力矩與輸出力矩不相等。當傳動比小時,輸出力矩大,輸出轉速低;反之,輸出力矩小而轉速高。它可以隨著負載的變化自動增大或減小輸出力矩與轉速。因此,液力變矩器是一個無級力矩變換器。
下面以目前廣泛使用的三元件綜合式液力變矩器來具體說明其工作原理。
如圖4所示,泵輪與變矩器外殼連為一體,是主動元件;渦輪通過花鍵與輸出軸相連,是從動元件;導輪置於泵輪和渦輪之間,通過單向離合器及導輪軸套固定在變速器外殼上。
發動機啟動後,曲軸通過飛輪帶動泵輪旋轉,因旋轉產生的離心力使泵輪葉片間的工作液沿葉片從內緣向外緣甩出;這部分工作液既具有隨泵輪一起轉動的園周向的分速度,又有沖向渦輪的軸向分速度。這些工作液沖擊渦輪葉片,推動渦輪與泵輪同方向轉動。
從渦輪流出工作液的速度可以看為工作液相對於渦輪葉片表面流出的切向速度與隨渦輪一起轉動的圓周速度的合成。當渦輪轉速比較小時,從渦輪流出的工作液是向後的,工作液沖擊導輪葉片的前面。因為導輪被單向離合器限定不能向後轉動,所以導輪葉片將向後流動的工作液導向向前推動泵輪葉片,促進泵輪旋轉,從而使作用於渦輪的轉矩增大。
隨著渦輪轉速的增加,圓周速度變大,當切向速度與圓周速度的合速度開始指向導輪葉片的背面時,變矩器到達臨界點。當渦輪轉速進一步增加時,工作液將沖擊導輪葉片的背面。因為單向離合器允許導輪與泵輪一同向前旋轉,所以在工作液的帶動下,導輪沿泵輪轉動方向自由旋轉,工作液順利地迴流到泵輪。當從渦輪流出的工作液正好與導輪葉片出口方向一致時,變矩器不產生增扭作用(這時液力變矩器的工況稱為液力偶合工況)。
液力耦合器其實是一種非剛性聯軸器,液力變矩器實質上是一種力矩變換器。它們所傳遞的功率大小與輸入軸轉速的3次方、與葉輪尺寸的5次方成正比。傳動效率在額定工況附近較高:耦合器約為96~98.5%,變矩器約為85~92%。偏離額定工況時效率有較大的下降。根據使用場合的要求,液力傳動可以是單獨使用的液力變矩器或液力耦合器;也可以與齒輪變速器聯合使用,或與具有功率分流的行星齒輪差速器(見行星齒輪傳動)聯合使用。與行星齒輪差速器聯合組成的常稱為液力-機械傳動。
液力傳動裝置的整體性能跟它與原動機的匹配情況有關。若匹配不當便不能獲得良好的傳動性能。因此,應對總體動力性能和經濟性能進行分析計算,在此基礎上設計整個液力傳動裝置。為了構成一個完整的液力傳動裝置,還需要配備相應的供油、冷卻和操作控制系統。

⑷ 液壓原理

中文名稱:液壓系統
英文名稱:hydraulic system
定義:以油液作為工作介質,利用油液的壓力能並通過控制閥門等附件操縱液壓執行機構工作的整套裝置。
液壓系統的作用為通過改變壓強增大作用力。一個完整的液壓系統由五個部分組成,即動力元件、執行元件、控制元件、輔助元件(附件)和液壓油。一個液壓系統的好壞取決於系統設計的合理性、系統元件性能的的優劣,系統的污染防護和處理,而最後一點尤為重要。近年來我國國內液壓技術有很大的提高,不再單純地使用國外的液壓技術進行加工。
液壓系統定義
一個完整的液壓系統由五個部分組成,即動力元件、執行元件、控制元件、輔助元件(附件)和液壓油。
動力元件的作用是將原動機的機械能轉換成液體的壓力能,指液壓系統中的油泵,它向整個液壓系統提供動力。液壓泵的結構形式一般有齒輪泵、葉片泵和柱塞泵。
執行元件(如液壓缸和液壓馬達)的作用是將液體的壓力能轉換為機械能,驅動負載作直線往復運動或回轉運動。
控制元件(即各種液壓閥)在液壓系統中控制和調節液體的壓力、流量和方向。根據控制功能的不同,液壓閥可分為壓力控制閥、流量控制閥和方向控制閥。壓力控制閥又分為益流閥(安全閥)、減壓閥、順序閥、壓力繼電器等;流量控制閥包括節流閥、調整閥、分流集流閥等;方向控制閥包括單向閥、液控單向閥、梭閥、換向閥等。根據控制方式不同,液壓閥可分為開關式控制閥、定值控制閥和比例控制閥。
輔助元件包括油箱、濾油器、油管及管接頭、密封圈、快換接頭、高壓球閥、膠管總成、測壓接頭、壓力表、油位油溫計等。
液壓油是液壓系統中傳遞能量的工作介質,有各種礦物油、乳化液和合成型液壓油等幾大類。

液壓系統結構
液壓系統由信號控制和液壓動力兩部分組成,信號控制部分用於驅動液壓動力部分中的控制閥動作。
液壓動力部分採用迴路圖方式表示,以表明不同功能元件之間的相互關系。液壓源含有液壓泵、電動機和液壓輔助元件;液壓控制部分含有各種控制閥,其用於控制工作油液的流量、壓力和方向;執行部分含有液壓缸或液壓馬達,其可按實際要求來選擇。
在分析和設計實際任務時,一般採用方框圖顯示設備中實際運行狀況。 空心箭頭表示信號流,而實心箭頭則表示能量流。
基本液壓迴路中的動作順序—控制元件(二位四通換向閥)的換向和彈簧復位、執行元件(雙作用液壓缸)的伸出和回縮以及溢流閥的開啟和關閉。 對於執行元件和控制元件,演示文稿都是基於相應迴路圖符號,這也為介紹迴路圖符號作了准備。 根據系統工作原理,您可對所有迴路依次進行編號。如果第一個執行元件編號為0,則與其相關的控制元件標識符則為1。如果與執行元件伸出相對應的元件標識符為偶數,則與執行元件回縮相對應的元件標識符則為奇數。 不僅應對液壓迴路進行編號,也應對實際設備進行編號,以便發現系統故障。
DIN ISO1219-2標準定義了元件的編號組成,其包括下面四個部分:設備編號、迴路編號、元件標識符和元件編號。如果整個系統僅有一種設備,則可省略設備編號。
實際中,另一種編號方式就是對液壓系統中所有元件進行連續編號,此時,元件編號應該與元件列表中編號相一致。 這種方法特別適用於復雜液壓控制系統,每個控制迴路都與其系統編號相對應
[編輯本段]液壓系統的保養
一個液壓系統的好壞不僅取決於系統設計的合理性和系統元件性能的的優劣,還因系統的污染防護和處理,系統的污染直接影響液壓系統工作的可靠性和元件的使用壽命,據統計,國內外的的液壓系統故障大約有70%是由於污染引起的。 油液污染對系統的危害主要如下:
1)元件的污染磨損
油液中各種污染物引起元件各種形式的磨損,固體顆粒進入運動副間隙中,對零件表面產生切削磨損或是疲勞磨損。高速液流中的固體顆粒對元件的表面沖擊引起沖蝕磨損。油液中的水和油液氧化變質的生成物對元件產生腐蝕作用。此外,系統的油液中的空氣引起氣蝕,導致元件表面剝蝕和破壞。
2)元件堵塞與卡緊故障
固體顆粒堵塞液壓閥的間隙和孔口,引起閥芯阻塞和卡緊,影響工作性能,甚至導致嚴重的事故。
3)加速油液性能的劣化
油液中的水和空氣以其熱能是油液氧化的主要條件,而油液中的金屬微粒對油液的氧化起重要催化作用,此外,油液中的水和懸浮氣泡顯著降低了運動副間油膜的強度,使潤滑性能降低。
一、污染物的種類
污染物是液壓系統油液中對系統起危害作用的的物質,它在油液中以不同的形態形式存在,根據其物理形態可分成:固態污染物、液態污染物、氣態污染物。
固態污染物可分成硬質污染物,有:金剛石、切削、硅沙、灰塵、磨損金屬和金屬氧化物;軟質污染物有:添加劑、水的凝聚物、油料的分解物與聚合物和維修時帶入的棉絲、纖維。
液態污染物通常是不符合系統要求的切槽油液、水、塗料和氯及其鹵化物等,通常我們難以去掉,所以在選擇液壓油時要選擇符合系統標準的液壓油,避免一些不必要的故障。
氣態污染物主要是混入系統中的空氣。
這些顆粒常常是如此的細小,以至於不能沉澱下來而懸浮於油液之中,最後被擠到各種閥的間隙之中,對一個可靠的液壓系統來說,這些間隙的對實現有限控制、重要性和准確性是極為重要的。
二、污染物的來源:
系統油液中污染物的來源途徑主要有以下幾個方面:
1)外部侵入的污染物:外部侵入污染物主要是大氣中的沙礫或塵埃,通常通過油箱氣孔,油缸的封軸,泵和馬達等軸侵入系統的。主要是使用環境的影響。
2)內部污染物:元件在加工時、裝配、調試、包裝、儲存、運輸和安裝等環節中殘留的污染物,當然這些過程是無法避免的,但是可以降到最低,有些特種元件在裝配和調試時需要在潔凈室或潔凈台的環境中進行。
3)液壓系統產生的污染物:系統在運作過程當中由於元件的磨損而產生的顆粒,鑄件上脫落下來的砂粒,泵、閥和接頭上脫落下來的金屬顆粒,管道內銹蝕剝落物以其油液氧化和分解產生的顆粒與膠狀物,更為嚴重的是系統管道在正式投入作業之前沒有經過沖洗而有的大量雜質。
系統的維護
一個系統在正式投入之前一般都要經過沖洗,沖洗的目的就是要清除殘留在系統內的污染物、金屬屑、纖維化合物、鐵心等,在最初兩小時工作中,即使沒有完全損壞系統,也會引起一系列故障。所以應該按下列步驟來清洗系統油路:
1)用一種易乾的清潔溶劑清洗油箱,再用經過過濾的空氣清除溶劑殘渣。
2)清洗系統全部管路,某些情況下需要把管路和接頭進行浸漬。
3)在管路中裝油濾,以保護閥的供油管路和壓力管路。
4)在集流器上裝一塊沖洗板以代替精密閥,如電液伺服閥等。
5)檢查所有管路尺寸是否合適,連接是否正確。
要是系統中使用到電液伺服閥,我不妨多說兩句,伺服閥得沖洗板要使油液能從供油管路流向集流器,並直接返回油箱,這樣可以讓油液反復流通,以沖洗系統,讓油濾濾掉固體顆粒,沖洗過程中,沒隔1~2小時要檢查一下油濾,以防油濾被污染物堵塞,此時旁路不要打開,若是發現油濾開始堵塞就馬上換油濾。
沖洗的周期由系統的構造和系統污染程度來決定,若過濾介質的試樣沒有或是很少外來污染物,則裝上新的油濾,卸下沖洗板,裝上閥工作!
有計劃的維護:建立系統定期維護制度,對液壓系統較好的維護保養建議如下:
1)至多500小時或是三個月就要檢查和更換油液。
2)定期沖洗油泵的進口油濾。
3)檢查液壓油被酸化或其他污染物污染情況,液壓油的氣味可以大致鑒別是否變質。
4)修護好系統中的泄漏。
5)確保沒有外來顆粒從油箱的通氣蓋、油濾的塞座、回油管路的密封墊圈以及油箱其他開口處進入油箱。

國產液壓系統的發展
目前我國液壓技術缺少技術交流,液壓產品大部分都是用國外的液壓技術加工回來的,液壓英才網提醒大家發展國產液壓技術振興國產液壓系統技術。 其實不然,近幾年國內液壓技術有很大的提高,如派瑞克、維民液壓等公司都有很強的實力。

液壓附件
世界上,做附件較好的有:EMB(德國)、派克(美國)、賀德克(德國、伊頓(美國)頗爾、(美國),西德福(德國))等

國內較好的有:旭展液壓、歐際、意圖奇、恆通液壓、依格等

國內美國派克Parker的運營合作商有:北京威士樂機電設備有限公司,石家莊北方眾誠機電設備有限公司等等。

⑸ 液壓傳動知識

(一)液壓傳動概述

液壓傳動是以液體為工作介質來傳遞動力和運動的一種傳動方式。液壓泵將外界所輸入的機械能轉變為工作液體的壓力能,經過管道及各種液壓控制元件輸送到執行機構→油缸或油馬達,再將其轉變為機械能輸出,使執行機構能完成各種需要的運動。

(二)液壓傳動的工作原理及特點

1.液壓傳動基本原理

如圖2-62所示為一簡化的液壓傳動系統,其工作原理如下:

液壓泵由電動機驅動旋轉,從油箱經過過濾器吸油。當控制閥的閥心處於圖示位置時,壓力油經溢流閥、控制閥和管道(圖2-62之9)進入液壓缸的左腔,推動活塞向右運動。液壓缸右腔的油液經管道(圖2-62之6)、控制閥和管道(圖2-62之10)流回油箱。改變控制閥的閥心的位置,使之處於左端時,液壓缸活塞將反向運動。

改變流量控制閥的開口,可以改變進入液壓缸的流量,從而控制液壓缸活塞的運動速度。液壓泵排出的多餘油液經限壓閥和管道(圖2-62之12)流回油箱。液壓缸的工作壓力取決於負載。液壓泵的最大工作壓力由溢流閥調定,其調定值應為液壓缸的最大工作壓力及系統中油液經閥和管道的壓力損失之總和。因此,系統的工作壓力不會超過溢流閥的調定值,溢流閥對系統還起著過載保護作用。

在圖2-62所示液壓系統中,各元件以結構符號表示。所構成的系統原理圖直觀性強,容易理解;但圖形復雜,繪制困難。

工程實際中,均採用元件的標准職能符號繪制液壓系統原理圖。職能符號僅表示元件的功能,而不表示元件的具體結構及參數。

圖2-63所示即為採用標准職能符號繪制的液壓系統工作原理圖,簡稱液壓系統圖。

圖2-62 液壓傳動系統結構原理圖

1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥

圖2-63 液壓傳動系統工作原理圖

1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥

2.液壓傳動的特點

(1)液壓傳動的主要優點

1)能夠方便地實現無級調速,調速范圍大。

2)與機械傳動和電氣傳動相比,在相同功率情況下,液壓傳動系統的體積較小,質量較輕。

3)工作平穩,換向沖擊小,便於實現頻繁換向。

4)便於實現過載保護,而且工作油液能使傳動零件實現自潤滑,因此使用壽命較長。

5)操縱簡單,便於實現自動化,特別是與電氣控制聯合使用時,易於實現復雜的自動工作循環。

6)液壓元件實現了系列化、標准化和通用化,易於設計、製造和推廣應用。

(2)液壓傳動的主要缺點

1)液壓傳動中不可避免地會出現泄漏,液體也不可能絕對不可壓縮,故無法保證嚴格的傳動比。

2)液壓傳動有較多的能量損失(泄漏損失、摩擦損失等),故傳動效率不高,不宜作遠距離傳動。

3)液壓傳動對油溫的變化比較敏感,不宜在很高和很低的溫度下工作。

4)液壓傳動出現故障時不易找出原因。

(三)液壓傳動系統的組成及圖形符號

1.液壓傳動系統的組成

由上述例子可以看出,液壓傳動系統除了工作介質外,主要由四大部分組成:

1)動力元件——液壓泵。它將機械能轉換成壓力能,給系統提供壓力油。

2)執行元件——液壓缸或液壓馬達。它將壓力能轉換成機械能,推動負載做功。

3)控制元件——液壓閥(流量、壓力、方向控制閥等)。它們對系統中油液的壓力、流量和流動方向進行控制和調節。

4)輔助元件——系統中除上述三部分以外的其他元件,如油箱、管路、過濾器、蓄能器、管接頭、壓力表開關等。由這些元件把系統連接起來,以支持系統的正常工作。

液壓系統各組成部分及作用如表2-6所示。

表2-6 液壓系統組成部分的作用

2.液壓元件的圖形符號

圖2-64是液壓千斤頂的結構原理示意圖。它直觀性強,易於理解,但難於繪制。特別是當液壓系統中元件較多時更是如此。

圖2-64 液壓千斤頂的結構原理圖

1—杠桿;2—泵體;3,11—活塞;4,10—油腔;5,7—單向閥;6—油箱;8—放油閥;9—油管;12—缸體

為了簡化原理圖的繪制,液壓系統中的元件可採用符號來表示,並代表元件的職能。使用這些圖形符號可使系統圖即簡單明了又便於繪制,如果有些液壓元件職能無法用這些符號表達時,仍可採用它的結構示意圖形式。如表27為液壓泵的圖形符號;表2-8為常用控制方式的圖形符號。欲了解更多液壓元件的圖形符號,可參閱相關書籍。

表2-7 液壓泵的圖形符號

表2-8 常用控制方式圖形符號

(四)液壓傳動的主要元件

1.液壓泵

是一種能量轉換裝置。它將機械能轉換為液壓能,為液壓系統提供一定流量的壓力油液,是系統的動力元件。

液壓泵的結構類型有齒輪式、葉片式和柱塞式等。目前鑽探設備的液壓系統中主要採用前兩種形式。

(1)齒輪泵

齒輪泵分為外嚙合和內嚙合兩種形式。外嚙合式齒輪泵由於結構簡單,價格低廉,體積小質量輕,自吸性能好,工作可靠且對油液污染不敏感,所以應用比較廣泛。

1)齒輪泵的工作原理。齒輪泵由泵殼體,兩側端蓋及由各齒間形成密封的工作空間組成。齒輪的嚙合線把容腔分隔為兩個互不相通的吸油腔和排油腔。當齒輪按圖示方向旋轉時吸油一側的輪齒逐漸分離,工作空間的容腔逐步增大,形成局部真空。此時油箱中的油液在外界大氣壓的作用下進入吸油容腔,隨著齒輪的旋轉,齒間的油液帶到排油一側。由於此側的輪齒是逐步嚙合,工作空間的容腔縮小,油液受擠壓獲得能量排出油口並輸入液壓系統。

2)齒輪泵的結構。YBC-45/80齒輪泵是鑽探設備常用的一種液壓泵,額定流量45L/min,額定泵壓8MPa(圖2-65)。該泵主要由泵體、泵蓋、主動齒輪、被動齒輪及幾個軸套等組成。齒輪與軸呈一體,以4隻鋁合金軸套支撐於泵體內,泵蓋與泵體用螺栓緊固,端面及泵軸處均以密封圈密封,兩個軸套(圖2-65之7與19)在壓力油的作用下有一定的軸向游動量,油泵運轉時與齒輪端面貼緊,減少軸向間隙同時在軸套和泵蓋之間有封嚴板等,將吸排油腔嚴格分開,防止竄通以提高泵的容積效率。在軸套靠近齒輪嚙合處開有卸荷槽。泵主軸伸出端以半圓鍵與傳動裝置連接,接受動力。

圖2-65 YBC—45/80齒輪泵

1—卡圈;2—油封;3—螺栓;4—泵蓋;5,13,20—O型密封圈;6—封嚴板;7,10,17,19—軸套;8—潤滑油槽;9—主動齒輪;11—進油口;12—泵體;14—油槽;15—排油口;16—定位鋼絲;18—被動齒輪;21—油孔;22—壓力油腔

3)齒輪泵的流量。齒輪泵的流量可看作是兩個齒輪的齒槽容積之和。若齒輪齒數為z,模數為m,節圓直徑為D(D=z·m),有效齒高h=2m,齒寬為b時,泵的流量Q為

Q=πDhb=2πzm2b

考慮齒間槽比輪齒的體積稍大一些,通常取π為3.33加以修正,還應考慮泵的容積效率ηv,則齒輪泵每分鍾的流量為

地勘鑽探工:基礎知識

(2)葉片泵

葉片泵與齒輪泵相比較具有結構緊湊,外形尺寸小,流量均勻,工作平穩噪音小,輸出壓力較高等優點,但結構較復雜,自吸性能差,對油液污染較敏感。在液壓鑽機中也有採用。

葉片泵分為單作用和雙作用兩種。前者可作為變數泵,後者只能作定量泵。

2.液壓馬達

液壓馬達是將液壓能轉換為機械能的裝置,是液壓系統的執行元件。其結構與液壓泵基本相同,但由於功能和工作條件不同,一般液壓泵和液壓馬達不具有可逆性。

液壓馬達按結構特點分為齒輪式、葉片式和柱塞式三類。鑽探設備中常用柱塞式液壓馬達。

如圖2-66所示,當壓力油經配油盤進入缸體的柱塞時,柱塞受油的作用向外伸出,並緊緊抵在斜盤上,這時斜盤對柱塞產生一法向反作用力F。由於斜盤中心線與缸體軸線傾斜角為δM,所以F可分解為兩個分力,其中水平分力Fx與柱塞推力相平衡,而垂直分力Fg則對缸體產生轉矩,驅動缸體及馬達軸旋轉。若從配油盤的另一側輸入壓力油,則液壓馬達朝反方向旋轉。

圖2-66 軸向柱塞式液壓馬達工作原理

1—斜盤;2—缸體;3—柱塞;4—配油盤;5—主盤

若液壓馬達的排量為Q,輸入液壓馬達的液壓力為P,機械效率為ηm,則液壓馬達的輸出轉矩M為:M=PQηm/2π。

3.液壓缸

液壓缸是液壓系統的執行元件。它的作用是將液壓能轉變為機械能,使運動部件實現往復直線運動或擺動。液壓缸結構簡單,使用方便,運動平穩,工作可靠,在鑽探設備中應用十分廣泛。液壓缸的種類很多,按結構類型可分為活塞式、柱塞式和擺動式三種。其中活塞式液壓缸最常用。活塞或液壓缸可分為單出桿式和雙出桿式兩種。其固定方式可以是缸體固定或活塞桿固定。

(1)單出桿活塞式液壓缸

如圖2-67所示為液壓式鑽機給進油缸的結構。它由活塞、活塞桿、缸筒、上蓋、下蓋、密封圈和壓緊螺母等組成。活塞桿與活塞以螺紋連接成一體。活塞環槽中配裝的活塞環及上蓋處的密封圈等用以保證缸內具有良好的密封性。在液缸的上下蓋上設有輸油口,壓力油經輸油口進入液缸的上、下腔,即推動活塞移動,並通過活塞桿頂端的連接螺母帶動立軸上行或下行。由圖示結構可知,單出桿液壓缸活塞兩側容腔的有效工作面積是不相等的,因此當向兩腔分別輸入壓力和流量相等的油液時,活塞在兩個方向的推力和運行速度是不相等的。

圖2-67 鑽機給進油缸的結構

(2)雙活塞桿式液壓缸

雙活塞桿式液壓缸結構,組成件與單活塞桿液壓缸基本相同,所不同的是活塞左右兩端都有活塞桿伸出,可以連接工作部件,實現往復運動。由圖示結構可知,

兩側活塞桿直徑相同,當兩腔的供油壓力和流量都相等時,兩個方向的推力和運行速度也相等。

4.液壓控制閥

液壓控制閥是液壓系統中的控制元件,用於控制系統的油液流動方向及壓力和流量的大小,以保證各執行機構工作的可靠、協調和安全性。

液壓控制閥按其用途和工作特點不同,通常可分為方向控制閥(如單向閥和換向閥等)、壓力控制閥(如溢流閥、減壓閥和順序閥等)和流量控制閥(如節流閥和調速閥等)。這3種閥可根據需要互相組合成為集成式控制閥,如液壓式鑽機或其他工程機械就是將一個或多個換向閥、調壓溢流閥和流量閥等組裝在一起成為集中手柄控制的液壓操縱閥。

(五)液壓傳動系統的基本迴路簡介

1.壓力控制迴路

主要是利用壓力控制閥來控制系統壓力,實現增壓、減壓、卸荷、順序動作等,以滿足工作機構對力或力矩的要求。如圖2-68所示為一減壓迴路,由於油缸G往返時所需的壓力比主系統低,所以在支路上設置減壓閥,實現分支油路減壓。

圖2-68 減壓迴路

2.速度控制迴路

主要有定量泵的節流調速、變數泵和節流閥的調速、容積調速等迴路,可以實現執行機構不同運動速度(或轉速)的要求。在定量泵的節流調速迴路中,採用節流閥,調速閥或溢流調速閥來調節進入液壓缸(或液壓馬達)的流量。根據閥在迴路中的安裝位置,分為進口節流、出口節流和旁路節流3種。

3.換向控制迴路

換向控制迴路是利用各種換向閥或單向閥組成的控制執行元件的啟動、停止或換向的迴路。常見的有換向迴路、閉鎖迴路、時間制動的換向迴路和行程制動的換向迴路等。

如圖2-69所示是簡化的工作台作往復直線運動的液壓系統圖。為了控制工作台的往復運動,在這個系統中設置了一個手動換向閥,用來改變液流進入液壓缸的方向。當手動換向閥的閥心在最右端時(圖2-69a),壓力油由P—A,進入液壓缸左腔。此時,右腔中的油液由B—O流回油箱,因而推動了活塞連同工作台一起向右運動。

若把手動換向閥的閥心扳到中間位置(圖2-69b),壓力油的進油口P與回油口O都被閥心封閉,工作台停止運動。

如果把閥心扳到最左端,壓力油從P—B進入液壓缸右腔(圖2-69c),左腔中的油液由A—O回油箱,從而推動活塞連同工作台向左運動,完成換向動作。

圖2-69 換向工作原理圖

4.同步迴路

當液壓設備上有兩個或兩個以上的液壓油缸,在運動時要求能保持相同的位移和速度,或要求以一定的速度比運動時,可採用同步迴路。

5.順序動作迴路

當用一個液壓泵驅動幾個要求按照一定順序依次動作的工作機構時,可採用順序動作迴路。實現順序動作可以採用壓力控制、行程式控制制和時間控制等方法。

閱讀全文

與液壓控制系統對液力傳動裝置提供傳動相關的資料

熱點內容
路由器上有unknown連接是什麼設備 瀏覽:525
啟辰D50分離軸承多少錢 瀏覽:386
牙機雕刻機與電動工具 瀏覽:208
外匯期貨交易實驗裝置 瀏覽:791
設備投資怎麼算 瀏覽:95
好的攝影器材有哪些 瀏覽:463
溫州新五金製品有限公司怎麼樣 瀏覽:293
錦州五金機電城出租出售 瀏覽:417
卡爾蔡司公司有哪些醫學器材 瀏覽:261
重慶市機械鑿打岩石套什麼定額 瀏覽:557
閥門外面加個框是什麼意思 瀏覽:756
會議設備系統哪裡有 瀏覽:340
列印室需要哪些設備多少錢 瀏覽:577
通用型機床設備加工用於什麼 瀏覽:290
書畫工具箱套裝 瀏覽:772
燃燒固體需要哪些儀器 瀏覽:969
2213ktn1是什麼軸承 瀏覽:640
電腦固體硬碟怎麼加機械硬碟 瀏覽:197
崑山汽車門板超聲波焊接機怎麼樣 瀏覽:787
發說說怎麼隱藏設備 瀏覽:804