導航:首頁 > 裝置知識 > 推送裝置機械簡圖

推送裝置機械簡圖

發布時間:2024-04-16 10:16:40

⑴ SMC氣缸的執行元件

氣動執行元件和控制元件氣動執行元件是一種能量轉換裝置, 它是將壓縮空氣的壓力能轉化為機械能, 驅動機構 實現直線往復運動,擺動,旋轉運動或沖擊動作.氣動執行元件分為氣缸和氣馬達兩大類. 氣缸用於提供直線往復運動或擺動, 輸出力和直線速度或擺動角位移. 氣馬達用於提供連續 回轉運動,輸出轉矩和轉速. 氣動控制元件用來調節壓縮空氣的壓力流量和方向等, 以保證執行機構按規定的程序正 常進行工作.氣動控制元件按功能可分為壓力控制閥,流量控制閥和方向控制閥. 第一節 氣缸 一,氣缸的工作原理,分類及安裝形式 氣缸的工作原理, 1 2 14 3 4 5 6 13 12 11 10 9 8 7 1.氣缸的典型結構和工作原理 圖 13-1 普通雙作用氣缸 1,3-緩沖柱塞 2-活塞 4-缸筒 5-導向套 6-防塵圈 7-前端蓋 8-氣口 9- 感測器 10-活塞桿 11-耐磨環 12-密封圈 13-後端蓋 14-緩沖節流閥 以氣動系統中最常使用的單活塞桿雙作用氣缸為例來說明,氣缸典型結構如圖 13-1 所示.它由缸筒,活塞,活塞桿,前端蓋,後端蓋及密封件等組成.雙作用氣缸內部被活塞 分成兩個腔.有活塞桿腔稱為有桿腔,無活塞桿腔稱為無桿腔. 當從無桿腔輸入壓縮空氣時, 有桿腔排氣, 氣缸兩腔的壓力差作用在活塞上所形成的力 克服阻力負載推動活塞運動, 使活塞桿伸出; 當有桿腔進氣, 無桿腔排氣時, 使活塞桿縮回. 若有桿腔和無桿腔交替進氣和排氣,活塞實現往復直線運動. 2.氣缸的分類 氣缸的種類很多,一般按氣缸的結構特徵,功能,驅動方式或安裝方法等進行分類.分 類的方法也不同.按結構特徵,氣缸主要分為活塞式氣缸和膜片式氣缸兩種.按運動形式分 為直線運動氣缸和擺動氣缸兩類. 3.氣缸的安裝形式 氣缸的安裝形式可分為 1)固定式氣缸 氣缸安裝在機體上固定不動,有腳座式和法蘭式. 2)軸銷式氣缸 缸體圍繞固定軸可作一定角度的擺動,有 U 形鉤式和耳軸式. 3)回轉式氣缸 缸體固定在機床主軸上,可隨機床主軸作高速旋轉運動.這種氣缸常 用於機床上氣動卡盤中,以實現工件的自動裝卡. 4)嵌入式氣缸 氣缸缸筒直接製作在夾具體內. 二,常用氣缸的結構原理 1.普通氣缸 包括單作用式和雙作用式氣缸.常用於無特殊要求的場合. 圖 13-2 為最常用的單桿雙作用普通氣缸的基本結構,氣缸一般由缸筒,前後缸蓋,活 塞,活塞桿,密封件和緊固件等零件組成. 缸筒 7 與前後缸蓋固定連接.有活塞桿側的缸蓋 5 為前缸蓋,缸底側的缸蓋 14 為後缸 蓋.在缸蓋上開有進排氣通口,有的還設有氣緩沖機構.前缸蓋上,設有密封圈,防塵圈 3, 同時還設有導向套 4,以提高氣缸的導向精度.活塞桿 6 與活塞 9 緊固相連.活塞上除有密 封圈 10,11 防止活塞左右兩腔相互漏氣外,還有耐磨環 12 以提高氣缸的導向性;帶磁性開 關的氣缸,活塞上裝有磁環.活塞兩側常裝有橡膠墊作為緩沖墊 8.如果是氣緩沖,則活塞 兩側沿軸線方向設有緩沖柱塞,同時缸蓋上有緩沖節流閥和緩沖套,當氣缸運動到端頭時, 圖 13-2 普通雙作用氣缸 1,13-彈簧擋圈 2-防塵圈壓板 3-防塵圈 4-導向套 5-桿側端蓋 6-活塞桿 7-缸筒 8-緩沖墊 9-活塞 10-活塞密封圈 11-密封圈 12-耐磨環 14-無桿 側端蓋 緩沖柱塞進入緩沖套,氣缸排氣需經緩沖節流閥,排氣阻力增加,產生排氣背壓,形成緩沖 氣墊,起到緩沖作用. 2.特殊氣缸 圖 13-3 1-缸體 薄膜氣缸 4-活塞桿 2-膜片 3-膜盤 為了滿足不同的工作需要,在普通氣缸的基礎上,通過改變或增加氣缸的部分結構,設 計開發出多種特殊氣缸. (1) 薄膜式氣缸 圖 13-3 為膜片氣缸的工作原理圖. 膜片有平膜片和盤形膜片兩種 一 般用夾織物橡膠,鋼片或磷青銅片製成,厚度為 5~6mm (有用 1~2mm 厚膜片的) . 圖 13-3 所示的膜片氣缸的功能類似於彈簧復位的活塞式單作用氣缸, 工作時, 膜片在 壓縮空氣作用下推動活塞桿運動.它的優點是:結構簡單,緊湊,體積小,重量輕,密封性 好,不易漏氣,加工簡單,成本低,無磨損件,維修方便等,適用於行程短的場合.缺點是 行程短,一般不趁過 50mm.平膜片的行程更短,約為其直徑的 1/10. (2) 磁性開關氣缸 磁性開關氣缸是指在氣缸的活塞上安裝有磁環, 在缸筒上直接安裝 磁性開關,磁性開關用來檢測氣缸行程的位置,控制氣缸往復運動.因此,就不需要在缸筒 上安裝行程閥或行程開關來檢測氣缸活塞位置,也不需要在活塞桿上設置擋塊. 其工作原理如圖 13-4 所示. 它是在氣缸活塞上安裝永久磁環, 在缸筒外殼上裝有舌簧 開關.開關內裝有舌簧片,保護電路和動作指示燈等,均用樹脂塑封在一個盒子內.當裝有 永久磁鐵的活塞運動到舌簧片附近,磁力線通過舌簧片使其磁化,兩個簧片被吸引接觸,則 開關接通.當永久磁鐵返回離開時,磁場減弱,兩簧片彈開,則開關斷開.由於開關的接通 或斷開,使電磁閥換向,從而實現氣缸的往復運動. 圖 13-4 磁性開關氣缸 1-動作指示燈 2-保護電路 3-開關外殼 4-導線 5-活塞 6-磁環 7-缸筒 8-舌簧開關 氣缸磁性開關與其它開關的比較見表 3-1. 表 3-錯誤!未定義書簽. 氣缸磁性開關與其它開關的比較 <![endif]> 開關形式 控制原理 成本 調整安裝復雜性 (3)帶閥氣缸 帶閥氣缸是由氣缸, 磁性開關 磁場變化 低 方便,不佔位置 換向閥和速度控制 閥等組成的一種組 低 麻煩,佔位置 合式氣動執行元件. 行程開關 機械觸點 它省去了連接管道 接近開關 阻抗變化 高 麻煩,佔位置 和管接頭, 減少了能 量損耗, 具有結構緊 湊,安裝方便等優 點. 帶閥氣缸的閥有 光電開關 光的變化 高 麻煩,佔位置 電控,氣控,機控和 手控等各種控制方 式.閥的安裝形式有安裝在氣缸尾部,上部等幾種.如圖 13-5 所示,電磁換向閥安裝在氣 缸的上部,當有電信號時,則電磁閥被切換,輸出氣壓可直接控制氣缸動作. 圖 13-5 帶閥組合氣缸 1-管接頭 2-氣缸 3-氣管 4-電磁換向閥 5-換向閥底板 6-單向節流閥組合 件 7-密封圈. (4) 帶導桿氣缸 圖 13-6 為帶導桿氣缸, 在缸筒兩側配導向用的滑動軸承 (軸 瓦式或滾珠式),因此導向精度高,承受橫向載荷能力強. <![endif]> <![endif]> <![endif]> 13-6 典型帶導桿氣缸的結構 13-6 典型帶導桿氣缸的結構 (5)無桿氣缸 無桿氣缸是指利用活塞直接或間 接方式連接外界執行機構,並使其跟隨活塞實現往復運動的氣缸.這種氣缸的最 大優點是節省安裝空間. 1)磁性無桿氣缸 活塞通過磁力帶動缸體外部的移動體做同步移動,其結構如 圖 13-7 所示.它的工作原理是:在活塞上安裝一組高強磁性的永久磁環,磁力 線通過薄壁缸筒與套在外面的另一組磁環作用,由於兩組磁環磁性相反,具有很 強的吸力.當活塞在缸筒內被氣壓推動時,則在磁力作用下,帶動缸筒外的磁環 套一起移動.氣缸活塞的推力必須與磁環的吸力相適應. 圖 13-7 磁性無桿氣缸 1-套筒 2-外磁環 3-外磁導板 4-內磁環 5-內磁導板 6-壓蓋 7-卡環 8 -活塞 9-活塞軸 10-緩沖柱塞 11-氣缸筒 12-端蓋 13-進,排氣口 2)機械接觸式無桿氣缸 稱機械接觸式無桿氣缸,其結構如 13-8 所示.在氣 缸缸管軸向開有一條槽,活塞與滑塊在槽上部移動. 為了防止泄漏及防塵需要, 在開口部採用聚氨脂密封帶和防塵不銹鋼帶固定在兩 端缸蓋上,活塞架穿過槽,把活塞與滑塊連成一體.活塞與滑塊連接在一起,帶 動固定在滑塊上的執行機構實現往復運動.這種氣缸的特點是:1) 與普通氣缸 相比,在同樣行程下可縮小 1/2 安裝位置;2) 不需設置防轉機構;3) 適用於缸 徑 10~80mm,最大行程在缸徑≥40mm 時可達 7m;4) 速度高,標准型可達 0.1~ 0.5m/s;高速型可達到 0.3~3.0m/s.其缺點 圖 13-8 機械接觸式無桿氣缸 是:1) 密封性能差,容易產生外 泄漏.在使 l-節流閥 2-緩沖柱塞 3-密封帶 4-防塵不銹鋼帶 5-活塞 6-滑塊 7-活塞架 用三位閥時必須選用中壓式;2) 受負載力小,為了增加負載能力,必須增加導 向機構. 圖 13-8 機械接觸式無桿氣缸 l-節流閥 2-緩沖柱塞 3-密封帶 4-防塵不銹鋼帶 5-活塞 6-滑塊 7-活塞 架 (6)鎖緊氣缸 帶有鎖緊裝置的氣缸稱為鎖緊氣缸按鎖緊位置分為行程末端鎖 緊型和任意位置鎖緊型. 1)行程末端鎖緊型氣缸 如圖 13-9 所示,當活塞運動到行程末端,氣壓釋放後,鎖 定活塞 1 在彈簧力的作用下插入活塞桿的卡槽中,活塞桿被鎖定.供氣加壓時,鎖定活塞 1 縮回退出卡槽而開鎖,活塞桿便可運動. 圖 13-9 帶端鎖氣缸的結構原理 a)手動解除非鎖式 b)手動解除鎖式. 1-鎖定活塞 2-橡膠帽 3,12-帽 4-緩沖墊圈 5-鎖用彈簧 6-密封件 7-導向套 8-螺釘 9-旋鈕 10-彈簧 11-限位環 2) 任意位置鎖緊型氣缸 按鎖緊方式可分為卡套錐面式, 彈簧式和偏心式等多種形式. 卡套錐面式鎖緊裝置由錐形制動活塞 6,制動瓦 1,制動臂 4 和制動彈簧 7 等構成,其結構 原理如圖 13-10 所示.作用在錐狀鎖緊活塞上的彈簧力由於楔的作用而被放大,再由杠桿 原理得到放大. 這個放大的作用力作用在制動瓦 1 上, 把活塞桿鎖緊. 要釋放對活塞的鎖緊, 向供氣口 A′供應壓縮空氣,把鎖緊彈簧力撤掉. 圖 13-10 制動氣缸制動裝置工作原理 a)自由狀態 b)鎖緊狀態 l-制動瓦 2-制動瓦座 3-轉軸 4-制動臂 5-壓輪 6-錐形制動活 塞 7-制動彈簧 (7)氣動手爪 氣動手爪這種執行元件是一種變型氣缸.它可以用來抓取物體, 實現機械手各種動作.在自動化系統中,氣動手 爪常應用在搬運,傳送工件機構中抓取,拾放物體. 圖 13-10 制動氣缸制動裝置工作原理 圖 13-11 平行開合手指 a)自由狀態 b)鎖緊狀態 l-制動瓦 2-制動瓦座 3-轉軸 4-制動臂 5-壓輪 6-錐形制動活塞 7-制動彈簧 圖 13-11 平行開合手指 氣動手爪有平行開合手指(如圖 13-11 所示),肘節擺動開合手爪,有兩爪, 三爪和四爪等類型, 其中兩爪中有平開式和支點開閉式驅動方式有直線式和旋轉 式. 氣動手爪的開閉一般是通過由氣缸活塞產生的往復直線運動帶動與手爪相連的 曲柄連桿,滾輪或齒輪等機構,驅動各個手爪同步做開,閉運動. (8)氣液阻尼缸 氣缸以可壓縮空氣為工作介質,動作快,但速度穩定性差,當負載變 化較大時,容易產生爬行或自走現象.另外,壓縮空氣的壓力較低,因而氣缸的輸 出力較小.為此,經常採用氣缸和油缸相結合的方式,組成各種氣液組合式執行元件,以達 到控制速度或增大輸出力的目的. 氣液阻尼缸是利用氣缸驅動油缸,油缸除起阻尼作用 圖 13-12 氣液阻尼缸 外,還能增加氣缸的剛性(因為油是不可壓縮的) ,發揮了 液壓傳動穩定,傳動速度較均勻的優點.常用於機床和切削 裝置的進給驅動裝置. 串聯式氣液阻尼缸的結構如圖 13-12 所示.它採用一根活塞桿將兩活塞串在一起,油 缸和氣缸之間用隔板隔開, 防止氣體串入油缸中. 當氣缸左端進氣時, 氣缸將克服負載阻力, 帶動油缸向右運動,調節節流閥開度就能改變阻尼缸活塞的運動速度 . 圖 13-13 單葉片式擺動氣缸 工作原理圖 1-葉片 2-轉子 3-定子 4-缸體 圖 13-12 氣液阻尼缸 (10)擺動氣缸 擺動氣缸 是一種在小於 360°角度范圍內做往復擺動的氣 缸,它是將壓縮空氣的壓力能轉換成機械能,輸出 力矩使 機構實現往復擺動.擺動氣缸按結構特點可分為葉片式和活塞式兩種. 1) 葉片式擺動氣缸 單葉片式擺動氣缸的結構原理如圖 13-13 所示. 它是由葉片軸轉 子(即輸出軸) ,定子,缸體和前後端蓋等部分組成.定子和缸體固定在一起,葉片和轉子 聯在一起.在定子上有兩條氣路,當左路進氣時,右路排氣,壓縮空氣推動葉片帶動轉子順 時針擺動.反之,作逆時針擺動. 葉片式擺動氣缸體積小,重量最輕,但製造精度要求高,密封困難,泄漏是較大,而且 動密封接觸面積大,密封件的摩擦阻力損失較大,輸出效率較低,小於 80%.因此,在應用 上受到限制,一般只用在安裝位置受到限制的場合,如夾具的回轉,閥門開閉及工作台轉位 等. 圖 13-13 單葉片式擺動氣缸工作原理圖 1-葉片 2-轉子 3-定子 4-缸體 2)活塞式擺動氣缸 圖 13-14 活塞式擺動氣缸是將活塞的往復運動通過機構轉變為輸出 軸的擺動運動.按結構不同可分為齒輪齒條 式, 齒輪齒條式擺動氣缸結構原理 螺桿式和曲柄式等幾種. 1-齒條組件 2-彈簧柱銷 3-滑塊 4-端蓋 5-缸體 6-軸承 7-軸 8-活塞 9-齒輪 圖 13-14 齒輪齒條式擺動氣缸結構原理 1-齒條組件 2-彈簧柱銷 3-滑塊 4-端蓋 5-缸體 6-軸承 7-軸 8-活塞 9- 齒輪 齒輪齒條式擺動氣缸是通過連接在活塞上的齒條使齒輪回轉的一種擺動氣缸, 其 結構原理如圖 13-14 所示.活塞僅作往復直線運動, 摩擦損失少,齒輪傳動的效率較高,此擺動氣缸效率可達到 95%左右.
三,氣缸的技術參數
1)氣缸的輸出力 氣缸理論輸出力的設計計算與液壓缸類似,可參見液壓缸的設計計 算.如雙作用單活塞桿氣缸推力計算如下: 理論推力(活塞桿伸出) Ft1=A1p (13-1) 理論拉力(活塞桿縮回) Ft2=A2p 式中 (13-2) Ft1,Ft2——氣缸理論輸出力(N) ; A1,A2——無桿腔,有桿腔活塞面積(m2) ; p — 氣缸工作壓力(Pa) . 實際中, 由於活塞等運動部件的慣性力以及密封等部分的摩擦力, 活塞桿的實際輸出力 小於理論推力,稱這個推力為氣缸的實際輸出力.
氣缸的效率 η 是氣缸的實際推力和理論推力的比值,即 F η= Ft (13-3) 所以 F = η ( A1 p ) (13-4) 氣缸的效率取決於密封的種類,氣缸內表面和活塞桿加工的狀態及潤滑狀態.此外,氣 缸的運動速度,排氣腔壓力,外載荷狀況及管道狀態等都會對效率產生一定的影響.
2) 負載率β 從對氣缸運行特性的研究可知, 要精確確定氣缸的實際輸出力是困難的. 於是在研究氣缸性能和確定氣缸的出力時,常用到負載率的概念.氣缸的負載率β定義為 β= 氣缸的實際負載 F × 100 % 氣缸的理論輸出力 Ft (l3-5) 氣缸的實際負載是由實際工況所決定的,若確定了氣缸負載率 θ,則由定義就能確定氣 缸的理論輸出力,從而可以計算氣缸的缸徑. 對於阻性負載,如氣缸用作氣動夾具,負載不產生慣性力,一般選取負載率β為 0.8; 對於慣性負載,如氣缸用來推送工件,負載將產生慣性力,負載率β的取值如下 β<0.65 當氣缸低速運動,v <100 mm/s 時; β<0.5 當氣缸中速運動,v=100~500 mm/s 時; β<0.35 當氣缸高速運動,v >500 mm/s 時.
3)氣缸耗氣量 氣缸的耗氣量是活塞每分鍾移動的容積,稱這個容積為壓縮空氣耗氣 量,一般情況下,氣缸的耗氣量是指自由空氣耗氣量. 4)氣缸的特性 氣缸的特性分為靜態特性和動態特性.氣缸的靜態特性是指與缸的輸 出力及耗氣量密切相關的最低工作壓力,最高工作壓力,摩擦阻力等參數.氣缸的動態特性 是指在氣缸運動過程中氣缸兩腔內空氣壓力,溫度,活塞速度,位移等參數隨時間的變化情 況.它能真實地反映氣缸的工作性能. 四,氣缸的選型及計算 1.氣缸的選型步驟 氣缸的選型應根據工作要求和條件, 正確選擇氣缸的類型. 下面以單活塞桿雙作用缸為 例介紹氣缸的選型步驟. (1)氣缸缸徑.根據氣缸負載力的大小來確定氣缸的輸出力,由此計算出氣缸的缸徑. (2)氣缸的行程.氣缸的行程與使用的場合和機構的行程有關,但一般不選用滿行程. (3)氣缸的強度和穩定性計算 (4)氣缸的安裝形式.氣缸的安裝形式根據安裝位置和使用目的等因素決定.一般情況 下,採用固定式氣缸.在需要隨工作機構連續回轉時(如車床,磨床等) ,應選用回轉氣缸. 在活塞桿除直線運動外,還需作圓弧擺動時,則選用軸銷式氣缸.有特殊要求時,應選用相 應的特種氣缸. (5)氣缸的緩沖裝置.根據活塞的速度決定是否應採用緩沖裝置. (6)磁性開關.當氣動系統採用電氣控制方式時,可選用帶磁性開關的氣缸. (7)其它要求.如氣缸工作在有灰塵等惡劣環境下,需在活塞桿伸出端安裝防塵罩. 要求無污染時需選用無給油或無油潤滑氣缸. 2.氣缸直徑計算 氣缸直徑的設計計算需根據其負載大小,運行速度和系統工作壓力來決定.首先,根據 氣缸安裝及驅動負載的實際工況,分析計算出氣缸軸向實際負載 F,再由氣缸平均運行速度 來選定氣缸的負載率 θ,初步選定氣缸工作壓力(一般為 0.4 MPa~0.6 MPa) ,再由 F/θ, 計算出氣缸理論出力 Ft, 最後計算出缸徑及桿徑, 並按標准圓整得到實際所需的缸徑和桿徑. 例題 氣缸推動工件在水平導軌上運動.已知工件等運動件質量為 m=250 kg,工件與 導軌間的摩擦系數 =0.25,氣缸行程 s 為 400 mm,經 1.5 s 時間工件運動到位,系統 工作壓力 p = 0.4 MPa,試選定氣缸直徑. 解:氣缸實際軸向負載 F = mg =0.25 × 250 × 9.81=613.13 N 氣缸平均速度 s 400 v= = ≈ 267 mm/s t 1.5 選定負載率 θ =0.5 則氣缸理論輸出力 F1 = F 雙作用氣缸理論推力 θ = 613.13 = 1226.6 N 0.5 1 F1 = πD 2 p 4 氣缸直徑 按標准選定氣缸缸徑為 63 mm. D= 4 Ft 4 ×1226.3 = ≈ 62.48 mm πp 3.14 × 0.4
smc氣缸種類:
氣缸整理 氣缸整理氣缸主要作用是通過壓縮空氣的開關流向實現伸縮和擺動等動作. (一).公司所用到的氣缸主要有以下幾種類型: 一. 無導向氣缸 1.圓缸 需感測器安裝支架 2.方缸 3.緊湊型氣缸 2010-6-2 1 二. 有導向氣缸 1.帶滑塊的氣缸: a.DGSL 滑塊 精確度高,封閉式滾珠導向,重復精度高, 兩端採用彈性緩沖,並且不帶金屬擋塊 b.SLF 滑塊 扁平結構帶高精度滾珠導軌和可調端位 c. SLF, SLS, SLT 滑塊 窄型結構帶 高精度滾珠導軌 d. SLT 滑台 高精度,耐重載的滾珠導軌和可調剛性端位. e. 滑動單元(雙活塞) SPZ 雙活塞桿, 2.帶導桿的氣缸 a 微型導向驅動器 DFC 帶滑動導軌. 直徑 4, 6, 10 mm 行程 5 … 30 mm 輸出力 7,5 … 47 N 2010-6-2 2 b 中型導向驅動器 DFM 導向氣缸,內置導軌 C 高精度導桿氣缸 DFP 導向氣缸,抗扭轉, 雙活塞桿. d 緊湊型氣缸 ADVUL 帶防止活塞轉動的導柱 e 導向驅動單元 SLE 直線驅動單元 可配置 圓缸加配件 3.雙活塞桿的氣缸 DPZ 帶兩根平行的活塞桿,位置感測,終端帶彈性緩 沖環 三.其它氣缸 1.直線擺動夾緊缸 CLR 夾緊系統,具有直線及擺動動作,90 度向右 2010-6-2 3 2.擺動氣缸帶可調液壓緩沖器和能補償間隙的齒輪系統. 擺動角度 0 ... 360 用於搬運和裝配的系統產品. 3.平行氣爪/旋轉氣爪自對中,內抓取或外抓取,182°擺角,位置感測 4.夾緊模塊 2010-6-2 4 5.氣囊式氣缸 6.無桿氣缸 7.膜片式氣缸 8.多位置氣缸 (二)常見的氣缸附件 2010-6-2 5 (三) 氣缸常見故障 . 由於安裝與使用不當氣缸也會產生故障. 故障 原因分析 排除方法 活塞桿安裝偏心 重新安裝調整,使活塞桿不受偏心和橫 外 泄 活塞桿端漏氣 潤滑油供應不足 向負荷. 檢查油霧器是否失靈. 漏 缸筒與缸蓋間漏氣 活塞密封圈磨損 緩沖調節處漏氣 活塞桿軸承配合面有雜質 更換密封圈. 活塞桿有傷痕 清洗除去雜質,安裝更換防塵罩. 更換活塞桿. 內 活塞密封圈損壞 更換密封 泄 潤滑不良 檢查油霧器是否失靈 漏 活塞兩端串氣 活塞被卡住,活塞配合面 重新安裝調整,使活塞桿不受偏心和橫 有缺陷. 向負荷. 雜質擠入密封面 除去雜質,採用凈化壓縮空氣. 潤滑不良 檢查油霧器是否失靈 輸出力不足 活塞或活塞桿卡住 重新安裝調整,消除偏心橫向負荷. 動作不平穩 供氣流量不足 加大連接或管接頭口徑 有冷凝水雜質 注意用凈化乾燥壓縮空氣, 防止水凝結. 緩沖密封圈磨損 更換密封圈 緩沖效果不良 調節螺釘損壞 更換調節螺釘 汽缸速度太快 注意緩沖機構是否適合 有偏心橫向負荷 消除偏心橫向負荷 損傷 活塞桿損壞 活塞桿受沖擊負荷 沖擊不能加在活塞桿上 氣缸的速度太快 設置緩沖裝置 缸蓋損壞 緩沖機構不起作用 在外部或迴路中設置緩沖機構

⑵ 電傳動內燃機車結構示意圖

內燃機車簡述

內燃機車是以內燃機作為原動力,通過傳動裝置驅動車輪的機車。根據機車所用內燃機的種類,可分為柴油機車和燃氣輪機車。在中國,內燃機車由於使用柴油機,所以在介紹內燃機車時一般都是指柴油機車(圖4.3_01電傳動內燃機車結構示意圖)。

當柴油機的燃料在汽缸內燃燒時,所產生的高壓高溫氣體在汽缸內膨脹,推動活塞往復運動,並通過曲軸將往復運動變為旋轉運動,這樣燃料的熱能就轉化為機械功。柴油機發出的動力傳輸給傳動裝置,通過對柴油機、傳動裝置的控制和調節,將適應機車運行工況的輸出轉速和轉矩再送到每個車軸齒輪箱驅動機車動輪,使機車運行,動輪產生的輪周牽引力傳送到車架,由車架端部的車鉤變為挽鉤牽引力來拖動或推送車輛。

從內燃機車工作原理可以看出,內燃機車的基本構造是由柴油機、傳動裝置、車體走行部、輔助裝置、制動設備、控制設備等部分組成的。

柴油機是內燃機車的動力裝置,現代內燃機車一般採用四沖程高速或中速柴油機。為滿足各種功率的需要,在製造柴油機時,便生產相同汽缸直徑和活塞沖程,不同汽缸數的系列產品。小功率的多為直列型,大功率的一般都是V型等。所謂直列型是指柴油機的汽缸垂直排列,而V型的汽缸成V型排列。各種柴油機都用一定的型號來表示,如16V240ZL型柴油機,表示16個汽缸V型排列,缸徑240mm,設有渦輪增壓器和中間冷卻器。

內燃機車的傳動裝置有電傳動和液力傳動兩種,二者在結構原理和運用維修上都有較大的區別。

內燃機車的走行部採用構架式轉向架的形式。轉向架主要承受機車上部重量,傳遞牽引力和制動力,以及緩和、吸收來自線路的各種沖擊和振動,保證機車安全平穩地運行。

輔助裝置的作用是保證柴油機、傳動裝置和走行部的正常工作和可靠運行。主要包括:燃油系統、冷卻系統、機油管路系統、空氣濾清器、壓縮空氣系統、輔助電氣設備等。

制動設備包括一套空氣制動機和手制動機。電傳動機車增設電阻制動裝置,液力傳動機車裝有液力制動裝置。

控制設備主要有機車速度控制器、換向控制器、自動控制閥和輔助制動閥。為了保證安全,還裝有機車信號和自動停車裝置。

內燃機車有較明顯的優點,如,機車效率較高、機車整備時間短,持續工作時間長,用水量少,適用於缺水地區。初期投資比電力機車少,機車乘務員勞動條件好,還便於多機牽引。但內燃機車機車最大的缺點是對大氣和環境有污染。

⑶ 迷你世界電梯怎麼造

迷你世界是一款深受廣大玩家喜愛的手游,我們可以進行各種創造。那麼你知道迷你世界電梯怎麼做嗎?一起來看看吧。
方法/步驟
1/8 分步閱讀
需要准備釉面磚、加號標記器、電能產生器、電石塊、機械臂、減號標記器、觸碰按鈕和滑動方塊。

2/8
底部放置一個加號標記器,並在上面放置六個釉面磚。

3/8
將減號標記器和滑動方塊按圖所示擺放。

4/8
在滑動方塊的下一格放置四個釉面磚,並放置機械臂、電石塊,注意電石塊不要放置在滑動方塊的後面。

5/8
將藍色電能線如圖所示連接。

6/8
並在頂部和底部加上釉面磚和按鈕。
7/8
在底部加號標記器這里弄一個電梯的樣子出來即可。
8/8
總結如圖。

⑷ 沖壓機構及送料機構設計

第一節 沖床沖壓機構、送料機構及傳動系統的設計
一、 設計題目
設計沖制薄壁零件沖床的沖壓機構、送料機構及其傳動系統。沖床的工藝動作如圖5—1a)所示,上模先以比較大的速度接近坯料,然後以勻速進行拉延成型工作,此後上模繼續下行將成品推出型腔,最後快速返回。上模退出下模以後,送料機構從側面將坯料送至待加工位置,完成一個工作循環。

(a) (b) (c)
圖5—1 沖床工藝動作與上模運動、受力情況
要求設計能使上模按上述運動要求加工零件的沖壓機構和從側面將坯料推送至下模上方的送料機構,以及沖床的傳動系統,並繪制減速器裝配圖。
二、 原始數據與設計要求
1.動力源是電動機,下模固定,上模作上下往復直線運動,其大致運動規律如圖b)所示,具有快速下沉、等速工作進給和快速返回的特性;
2.機構應具有較好的傳力性能,特別是工作段的壓力角應盡可能小;傳動角γ大於或等於許用傳動角[γ]=40o;
3.上模到達工作段之前,送料機構已將坯料送至待加工位置(下模上方);
4.生產率約每分鍾70件;
5.上模的工作段長度l=30~100mm,對應曲柄轉角0=(1/3~1/2)π;上模總行程長度必須大於工作段長度的兩倍以上;
6.上模在一個運動循環內的受力如圖c)所示,在工作段所受的阻力F0=5000N,在其他階段所受的阻力F1=50N;
7.行程速比系數K≥1.5;
8.送料距離H=60~250mm;
9.機器運轉不均勻系數δ不超過0.05。
若對機構進行運動和動力分析,為方便起見,其所需參數值建議如下選取:
1)設連桿機構中各構件均為等截面均質桿,其質心在桿長的中點,而曲柄的質心則與回轉軸線重合;
2)設各構件的質量按每米40kg計算,繞質心的轉動慣量按每米2kg·m2計算;
3)轉動滑塊的質量和轉動慣量忽略不計,移動滑塊的質量設為36kg;
6)傳動裝置的等效轉動慣量(以曲柄為等效構件)設為30kg·m2;
7) 機器運轉不均勻系數δ不超過0.05。
三、 傳動系統方案設計
沖床傳動系統如圖5-2所示。電動機轉速經帶傳動、齒輪傳動降低後驅動機器主軸運轉。原動機為三相交流非同步電動機,其同步轉速選為1500r/min,可選用如下型號:
電機型號 額定功率(kw) 額定轉速(r/min)
Y100L2—4 3.0 1420
Y112M—4 4.0 1440
Y132S—4 5.5 1440
由生產率可知主軸轉速約為70r/min,若電動機暫選為Y112M—4,則傳動系統總傳動比約為。取帶傳動的傳動比ib=2,則齒輪減速器的傳動比ig=10.285,故可選用兩級齒輪減速器。圖5—2 沖床傳動系統
四、 執行機構運動方案設計及討論
該沖壓機械包含兩個執行機構,即沖壓機構和送料機構。沖壓機構的主動件是曲柄,從動件(執行構件)為滑塊(上模),行程中有等速運動段(稱工作段),並具有急回特性;機構還應有較好的動力特性。要滿足這些要求,用單一的基本機構如偏置曲柄滑塊機構是難以實現的。因此,需要將幾個基本機構恰當地組合在一起來滿足上述要求。送料機構要求作間歇送進,比較簡單。實現上述要求的機構組合方案可以有許多種。下面介紹幾個較為合理的方案。
1.齒輪—連桿沖壓機構和凸輪—連桿送料機構
如圖5—3所示,沖壓機構採用了有兩個自由度的雙曲柄七桿機構,用齒輪副將其封閉為一個自由度。恰當地選擇點C的軌跡和確定構件尺寸,可保證機構具有急回運動和工作段近於勻速的特性,並使壓力角盡可能小。
送料機構是由凸輪機構和連桿機構串聯組成的,按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,使其能在預定時間將工件推送至待加工位置。設計時,若使lOG<lOH ,可減小凸輪尺寸。

圖5—3 沖床機構方案之一 圖5—4沖床機構方案之二
2.導桿—搖桿滑塊沖壓機構和凸輪送料機構
如圖5—4所示,沖壓機構是在導桿機構的基礎上,串聯一個搖桿滑塊機構組合而成的。導桿機構按給定的行程速比系數設計,它和搖桿滑塊機構組合可達到工作段近於勻速的要求。適當選擇導路位置,可使工作段壓力角較小。
送料機構的凸輪軸通過齒輪機構與曲柄軸相連。按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,則機構可在預定時間將工件送至待加工位置。
3.六連桿沖壓機構和凸輪—連桿送料機構
如圖5—5所示,沖壓機構是由鉸鏈四桿機構和搖桿滑塊機構串聯組合而成的。四桿機構可按行程速比系數用圖解法設計,然後選擇連桿長lEF及導路位置,按工作段近於勻速的要求確定鉸鏈點E的位置。若尺寸選擇適當,可使執行構件在工作段中運動時機構的傳動角γ滿足要求,壓力角較小。
凸輪送料機構的凸輪軸通過齒輪機構與曲柄軸相連,若按機構運動循環圖確定凸輪轉角及其從動件的運動規律,則機構可在預定時間將工件送至待加工位置。設計時,使lIH<lIR,則可減小凸輪尺寸。

圖5—5沖床機構方案之三 圖5—6沖床機構方案之四
4.凸輪—連桿沖壓機構和齒輪—連桿送料機構
如圖5—6所示,沖壓機構是由凸輪—連桿機構組合,依據滑塊D的運動要求,確定固定凸輪的輪廓曲線。
送料機構是由曲柄搖桿扇形齒輪與齒條機構串聯而成,若按機構運動循環圖確定曲柄搖桿機構的尺寸,則機構可在預定時間將工件送至待加工位置。
選擇方案時,應著重考慮下述幾個方面:
1)所選方案是否能滿足要求的性能指標;
2)結構是否簡單、緊湊;
3)製造是否方便,成本可否降低。
經過分析論證,方案1是四個方案中最為合理的方案,下面就對其進行設計。
五、 沖壓機構設計
由方案1圖5—3可知,沖壓機構是由七桿機構和齒輪機構組合而成。由組合機構的設計可知,為了使曲柄AB回轉一周,C點完成一個循環,兩齒輪齒數比Z1/Z2應等於1。這樣,沖壓機構設計就分解為七桿機構和齒輪機構的設計。
1.七桿機構的設計
設計七桿機構可用解析法。首先根據對執行構件(滑塊F)提出的運動特性和動力特性要求選定與滑塊相連的連桿長度CF,並選定能實現上述要求的點C的軌跡,然後按導向兩桿組法設計五連桿機構ABCDE的尺寸。
設計此七桿機構也可用實驗法,現說明如下。
如圖5—7所示,要求AB、DE均為曲柄,兩者轉速相同,轉向相反,而且曲柄在角度的范圍內轉動時,從動件滑塊在l=60mm范圍內等速移動,且其行程H=150mm。圖5—7 七桿機構的設計

1)任作一直線,作為滑塊導路,在其上取長為l的線段,並將其等分,得分點F1、F2、…、Fn(取n=5)。
2)選取lCF為半徑,以Fi各點為圓心作弧得K1、K2、…、K5。
3)選取lDE為半徑,在適當位置上作圓,在圓上取圓心角為的弧長,將其與l對應等分,得分點D1、D2、…、D5。
4)選取lDC為半徑,以Di為圓心作弧,與K1、K2、…、K5對應交於C1、C2、…、C5。
5)取lBC為半徑,以Ci為圓心作弧,得L1、L2、…、L5。
6)在透明白紙上作適量同心圓弧。由圓心引5條射線等分(射線間夾角為)。
7)將作好圖的透明紙覆在Li曲線族上移動,找出對應交點B1、B2、…、B5,便得曲柄長lAB及鉸鏈中心A的位置。
8)檢查是否存在曲柄及兩曲柄轉向是否相反。同樣,可以先選定lAB長度,確定lDE和鉸鏈中心E的位置。也可以先選定lAB、lDE和A、E點位置,其方法與上述相同。
用上述方法設計得機構尺寸如下:
lAB=lDE=100mm, lAE=200mm, lBC= lDC=283mm, lCF=430mm,A點與導路的垂直距離為162mm,E點與導路的垂直距離為223mm。
2.齒輪機構設計
此齒輪機構的中心距a=200mm,模數m=5mm,採用標準直齒圓柱齒輪傳動,Z1=Z2=40,ha*=1.0。
六、 七桿機構的運動和動力分析
用圖解法對此機構進行運動和動力分析。將曲柄AB的運動一周360o分為12等份,得分點B1、B2、…、B12,針對曲柄每一位置,求得C點的位置,從而得C點的軌跡,然後逐個位置分析滑塊F的速度和加速度,並畫出速度線圖,以分析是否滿足設計要求。
圖5—8是沖壓機構執行構件速度與C點軌跡的對應關系圖,顯然,滑塊在F4~F8這段近似等速,而這個速度值約為工作行程最大速度的40%。該機構的行程速比系數為

故此機構滿足運動要求。圖5-8 七桿機構的運動和動力分析
在進行機構動力分析時,先依據在工作段所受的阻力F0=5000N,並認為在工作段內為常數,然後求得加於曲柄AB的平衡力矩Mb,並與曲柄角速度相乘,獲得工作段的功率;計入各傳動的效率,求得所需電動機的功率為5.3KW,故所確定的電動機型號Y132S—4(額定功率為5.5KW)滿足要求。(動力分析具體過程及結果略)。
七、 機構運動循環圖
依據沖壓機構分析結果以及對送料機構的要求,可繪制機構運動循環圖(如圖5—9所示)。當主動件AB由初始位置(沖頭位於上極限點)轉過角(=90o)時,沖頭快速接近坯料;又當曲柄由轉到(=210o)時,沖頭近似等速向下沖壓坯料;當曲柄由轉到(=240o)時,沖頭繼續向下運動,將工件推出型腔;當曲柄由轉到(=285o)時,沖頭恰好退出下模,最後回到初始位置,完成一個循環。送料機構的送料動作,只能在沖頭退出下模到沖頭又一次接觸工件的范圍內進行。故送料凸輪在曲柄AB由300o轉到390o完成升程,而曲柄AB由390o轉到480o完成回程。

圖5-9 機構運動循環圖
七、送料機構設計
送料機構是由擺動從動件盤形凸輪機構與搖桿滑塊機構串聯而成,設計時,應先確定搖桿滑塊機構的尺寸,然後再設計凸輪機構。
1.四桿機構設計
依據滑塊的行程要求以及沖壓機構的尺寸限制,選取此機構尺寸如下:
LRH=100mm,LOH=240mm,O點到滑塊RK導路的垂直距離=300mm,送料距離取為250mm時,搖桿擺角應為45.24o。
2.凸輪機構設計
為了縮小凸輪尺寸,擺桿的行程應小AB,故取,最大擺角為22.62o。因凸輪速度不高,故升程和回程皆選等速運動規律。因凸輪與齒輪2固聯,故其等速轉動。用作圖法設計凸輪輪廓,取基圓半徑r0=50mm,滾子半徑rT=15mm。
八、調速飛輪設計
等效驅動力矩Md、等效阻力矩Mr和等效轉動慣量皆為曲柄轉角的函數,畫出三者的變化曲線,然後用圖解法求出飛輪轉動慣量JF。
九、帶傳動設計
採用普通V帶傳動。已知:動力機為Y132S-4非同步電動機,電動機額定功率P=5.5KW ,滿載轉速n1=1440rpm ,傳動比i=2, 兩班制工作。
(1)計算設計功率Pd
由[6]中的表6-6查得工作情況系數KA =1.4

(2)選擇帶型 由[6]中的圖6-10初步選用A型帶
(3)選取帶輪基準直徑 由[6]中的表6-7選取小帶輪基準直徑
由[6]中的表6-8取直徑系列值取大帶輪基準直徑:
(4)驗算帶速V
在(5~25m/s) 范圍內,帶速合適。
(5)確定中心a和帶的基準長度
在 范圍內初選中心距
初定帶長
查[6]中的表6-2 選取A型帶的標准基準長度
求實際中心距
取中心距為500mm。
(6)驗算小帶輪包角
包角合適
(7)確定帶的根數Z
查表得
取Z=3根
(8)確定初拉力
單根普通V帶的初拉力
(9)計算帶輪軸所受壓力


(10)帶傳動的結構設計(略)
十、齒輪傳動設計
齒輪減速器的傳動比為ig=10.285,採用標准得雙級圓柱齒輪減速器,其代號為
ZLY-112-10-1。


第二節 棒料校直機執行機構與傳動系統設計
一、設計題目
棒料校直是機械零件加工前的一道准備工序。若棒料彎曲,就要用大棒料才能加工出一個小零件,如圖5-10所示,材料利用率不高,經濟性差。故在加工零件前需將棒料校直。現要求設計一短棒料校直機。確定機構運動方案並進行執行機構與傳動系統的設計。

圖5-10 待校直的彎曲棒料
二、設計數據與要求
需校直的棒料材料為45鋼,棒料校直機其他原始設計數據如表5-1所示。
表5-1 棒料校直機原始設計數據
參數

分組 直徑d2
(mm) 長度L
(mm) 校直前最大麴率半徑ρ
(mm) 最大校直力
(KN) 棒料在校直時轉數
(轉) 生產率
(根/分)
1 15 100 500 1.0 5 150
2 18 100 400 1.2 4 120
3 22 100 300 1.4 3 100
4 25 100 200 1.5 2 80
註:室內工作,希望沖擊振動小;原動機為三相交流電動機,使用期限為10年,每年工作300天,每天工作16小時,每半年作一次保養,大修期為3年。

三、工作原理的確定
1) 用平面壓板搓滾棒料校直(圖5-11)。此方法的優點是簡單易行,缺點是因材料的回彈,材料校得不很直。
2) 用槽壓板搓滾棒料校直。考慮到「糾枉必須過正」,故將靜搓板作成帶槽的形狀,動、靜搓板的橫截面作成圖5-12所示形狀。用這種方法既可能將彎的棒料校直,但也可能將直的棒料弄彎了,不很理想。
3) 用壓桿校直。設計一個類似於圖5-13所示的機械裝置,通過一電動機,一方面讓棒料回轉,另一方面通過凸輪使壓桿的壓下量逐漸減小,以達到校直的目的。其優點是可將棒料校得很直;缺點是生產率低,裝卸棒料需停車。
4) 用斜槽壓板搓滾校直。靜搓板的縱截面形狀如圖5-14所示,其槽深是由深變淺而最後消失。其工作原理與上一方案使壓下量逐漸減小是相同的,故也能將棒料校得很直。其缺點是動搓板作往復運動,有空程,生產效率不夠高。雖可利用如圖所示的偏置曲柄滑塊機構的急回作用,來減少空程損失,但因動搓板質量大,又作往復運動,其所產生的慣性力不易平衡,限制了機器運轉速度的提高,故生產率仍不理想。
5) 行星式搓滾校直。如圖5-15所示,其動搓板變成了滾子1,作連續回轉運動,靜搓板變成弧形構件3,其上開的槽也是由深變淺而最後消失。這種方案不僅能將棒料校得很直,而且自動化程度和生產率高,所以最後確定採用此工作原理。圖5-11平面壓板搓滾棒料校直 圖5-12 槽壓板搓滾棒料校直

圖5-13 壓桿校直

圖5-14 斜槽壓板搓滾校直 圖5-15 行星式搓滾校直

四、執行機構運動方案的擬定
行星式棒料校直機有兩個執行構件,即動搓板滾子和送料滑塊。動搓板滾子的運動為單方向等速連續轉動,可將其直接裝在機器主軸上。送料滑塊的運動為往復移動。圖5-16給出了兩種送料機構方案,其中圖a)為曲柄搖桿機構與齒輪、齒條機構組合,圖b)為擺動推桿盤形凸輪機構與導桿滑塊機構的組合,曲柄(或凸輪)每轉一周送出一根棒料。由於凸輪機構能使送料機構的動作和搓板滾子的運動能更好的協調,故圖b)的執行機構運動方案優於圖a),下面設計計算針對圖b)方案進行。


a) b)
圖5-16 行星式棒料校直機執行機構運動方案

五、傳動系統運動方案的擬定
初步擬定的傳動方案如圖5-17所示。驅使動搓板滾子1轉動的為主傳動鏈,為提高其傳動效率,主傳動鏈應盡可能簡短,而且還要求沖擊振動小,故圖中採用了一級帶傳動和一級齒輪傳動。傳動鏈的第一級採用帶傳動有下列優點:電動機的布置較自由,電動機的安裝精度要求較低,帶傳動有緩沖減振和過載保安作用。
圖5-17 行星式棒料校直機傳動方案

六、執行機構設計
由於動搓板滾子1直接裝在機器主軸上,只有執行構件,沒有執行機構,故只需對送料機構進行設計。對於圖5-16b)所示得運動方案,送料機構的設計,實際上就是擺動推桿盤狀凸輪機構的設計。
凸輪軸的轉動是由滾子軸(傳動主軸)的轉動經過齒輪機構傳動減速而得到的。下面來討論滾子軸與凸輪軸間的傳動比應如何確定。
應注意在校直棒料時,不允許兩根棒料同時進入校直區,否則將因兩根棒料的相互干擾,可能一根棒料也未被校直。所以一定要待前一根棒料退出落下後,後一根棒料才能進入校直區。
設滾子1的直徑,棒料的直徑為,校直區的工作角為,從棒料進入到退出工作區,滾子1的轉角為。因在棒料校直時的運動狀態跟行星輪系傳動一樣,弧形搓板相當於固定的內齒輪,其內經為,角相當於行星架的轉角,根據周轉輪系的計算式,即可求得滾子1的相應轉角,即


設已確定為了校直棒料,棒料需在校直區轉過的轉數為,校直區的工作角為,則滾子1的直徑,可由下式確定:

為了保證不出現兩根棒料同時在校直區的現象,應在滾子1轉過角度時,送料凸輪4才轉一轉,由此可定出齒輪的傳動比為

圖中採用了一級齒輪減速(輪為過輪,用它主要是為了協調中心距)。若一級齒輪減速不能滿足要求時,可考慮用二級或三級齒輪減速。
對於第一組數據,並設校直區的工作角為=1200,則由上面公式可求得滾子1的直徑=240mm,滾子1的轉角為=2550,故取1=2600,從而求得齒輪的傳動比為ig=0.722。故取Zc=26,Za=36。
送料滑塊應將棒料推送到A點,設推送距離對應的圓心角為300,則可求得滑塊行程約為120mm,若取擺桿長lCF=400mm,則其擺角為17.25o。
確定推桿運動規律,設計凸輪輪廓曲線(略)。
七、傳動系統設計
原動機選為Y100L2-4非同步電動機,電動機額定功率P=3KW ,滿載轉速n=1420rpm,則傳動系統的總傳動比為i=n/n1,其中n1為滾子1的轉速。對於第一組數據,n1=2600×150/3600 =108.3,總傳動比為i=13.11,若取帶傳動的傳動比為ib=3.0,則齒輪減速器的傳動比為ig=13.11/3.0=4.3,故採用單級斜齒圓柱齒輪減速器。
帶傳動和單級斜齒圓柱齒輪減速器的設計(略)。

⑸ 在《迷你世界》中如何製作簡易電梯

迷你世界電梯還是比較容易做的,首先在地面挖1格深坑,大小任意。然後在坑中填入方塊,然後在某個角放置+號標記器。然後在+號標記器上方放置一列方塊,最上方放置-號標記器,挨著-號標記器放置滑動方塊,這里需要注意的是滑動方塊不是隨便放的,它的+號面一定要和-號標記器的-號面貼合,否則電梯是不會運行的。在如下圖所示位置放置4格方塊,這個用文字描述可能講得不清楚,看下圖二就明白了。方塊兩側放置推拉機械臂(平爪),兩機械臂相對。離軸心位置較遠的那個機械臂旁邊放置電石塊。用電線連接機械臂然後將電線連到某個方塊上,最後給方塊安裝按鈕。另外一個推拉機械臂後面安一排方塊,用電線連接通電,同樣再安一個按鈕。

閱讀全文

與推送裝置機械簡圖相關的資料

熱點內容
液氨儲罐自動切斷裝置 瀏覽:652
汽車製冷劑怎麼灌裝 瀏覽:370
什麼車型儀表盤最漂亮 瀏覽:461
海天機床的保險在什麼位置 瀏覽:875
佛山市眾聯誠五金製品有限公司 瀏覽:916
什麼設備能玩怪物獵人 瀏覽:411
自動滅火裝置在什麼情況下會 瀏覽:635
軸承用熱油煮需要多少度 瀏覽:469
遙控器上面顯示的是製冷怎麼沒有雪花的圖案 瀏覽:41
蘋果賬號如何查看設備號 瀏覽:625
鎖暖氣閥門鎖 瀏覽:245
鑄造鐵包砂英文怎麼說 瀏覽:68
如何更改電腦設備序列號 瀏覽:966
全自動硅降壓裝置 瀏覽:817
工具箱弧形卡扣 瀏覽:366
擰螺絲的電動工具怎麼使用 瀏覽:48
大眾高爾2014款儀表盤的表怎麼調 瀏覽:581
熱水器出水的閥門漏水怎麼辦 瀏覽:586
儀器鋼管架子叫什麼 瀏覽:895
北京科利醫療設備發展有限公司怎麼樣 瀏覽:88