① 減速機是什麼有哪幾種類型
減速器是一種由封閉在剛性殼體內的齒輪傳動、蝸桿傳動、齒輪-蝸桿傳動所組成的獨立部件,常用作原動件與工作機之間的減速傳動裝置。在原動機和工作機或執行機構之間起匹配轉速和傳遞轉矩的作用,在現代機械中應用極為廣泛。
分類:
減速器的種類繁多,按照傳動類型可分為齒輪減速器、蝸桿減速器和行星齒輪減速器;按照傳動級數不同可分為單級和多級減速器;按照齒輪形狀可分為圓柱齒輪減速器、圓錐齒輪減速器和圓錐-圓柱齒輪減速器;按照傳動的布置形式又可分為展開式減速器、分流式減速器和同軸式減速器。
減速機應用領域:
減速機是國民經濟諸多領域的機械傳動裝置,行業涉及的產品類別包括了各類齒輪減速機、行星齒輪減速機及蝸桿減速機,也包括了各種專用傳動裝置,如增速裝置、調速裝置、以及包括柔性傳動裝置在內的各類復合傳動裝置等。
產品服務領域涉及冶金、有色、煤炭、建材、船舶、水利、電力、工程機械及石化等行業。
以上內容參考:網路——減速機
② 減速傳動系統設計
參考資料:www.mxbgw.com一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N
③ 低速大扭矩傳動裝置---請教
我覺得3樓的建議也挺好的。上海東方和國內許多液壓件廠都能生產低轉速高扭矩液壓馬達,並且廠家還能在液壓馬達上直接配形星減速機。實現轉速0.1--10轉/分,扭矩高達100000NM。
④ 二級減速器的工作原理分析 急求
原理:利用各級齒輪傳動來達到降速的目的。
把電動機、內燃機或其它高內速運轉的動力通過減速機的輸入容軸上的齒數少的齒輪嚙合輸出軸上的大齒輪來達到減速的目的,普通的減速機也會有幾對相同原理齒輪達到理想的減速效果。
減速機在原動機和工作機或執行機構之間起匹配轉速和傳遞轉矩的作用,是一種相對精密的機械。
(4)低速傳動裝置擴展閱讀
1、特點:具有反向自鎖功能,可以有較大的減速比,輸入軸和輸出軸不在同一軸線上,也不在同一平面上。
2、作用:減速機一般用於低轉速大扭矩的傳動設備,降速同時提高輸出扭矩,扭矩輸出比例按電機輸出乘減速比,但要注意不能超出減速機額定扭矩。
3、應用:減速機行業涉及的產品類別包括了各類齒輪減速機、行星齒輪減速機及蝸桿減速機,也包括了各種專用傳動裝置,如增速裝置、調速裝置、以及包括柔性傳動裝置在內的各類復合傳動裝置等。
⑤ 各種傳動裝置(帶傳動,齒輪傳動,鏈傳動等)的特點及組合應用分析
帶傳動:基本都用在電機和被驅動設備之間,線速度5-25米/秒,低速時丟版轉多最好不用,精確定比例權傳動
時不用,用齒形帶。軸間距離過短包角不夠,過長產生震動。
齒輪傳動:分開式和有機箱兩種,開式只適於低速,模數要往大了選一些。有機箱的,速度范圍很寬。和皮
帶比雜訊大。適用絕大多數場合。硬齒面比軟齒面整體積小些,加工難些。
鏈傳動:傳動距離較齒輪遠,一般用於低速長距離傳動,比齒輪齒形帶都便宜。潤滑好的時候(油池),不
大於15米/秒的場合也適用,比如拔絲機中。
⑥ 簡述減速器的結構及原理
減速器是原動機和工作機之間的獨立的閉式傳動裝置,用來降低轉速和增大轉矩,以滿足工作需要。減速器結構緊湊,效率較高,傳遞運動准確可靠,使用維護方便,可以成批生產,因此應用非常廣泛。
減速器的工作原理
減速器一般用於低轉速大扭矩的傳動設備,把電動機、內燃機或其它高速運轉的動力通過減速機的輸入軸上的齒數少的齒輪嚙合輸出軸上的大齒輪來達到減速的目的,普通的減速機也會有幾對相同原理齒輪達到理想的減速效果,大小齒輪的齒數之比,就是傳動比。
減速器的基本構造:
減速器主要由傳動零件(齒輪或蝸桿)、軸、軸承、箱體及其附件所組成。其基本結構有三大部分:(1)齒輪、軸及軸承組合;(2)箱體;(3)減速器附件;
齒輪、軸及軸承組合小齒輪與軸製成一體,稱齒輪軸,這種結構用於齒輪直徑與軸的直徑相關不大的情況下,如果軸的直徑為d,齒輪齒根圓的直徑為df,則當df-d≤6~7mn時,應採用這種結構。而當df-d>6~7mn時,採用齒輪與軸分開為兩個零件的結構,如低速軸與大齒輪。此時齒輪與軸的周向固定平鍵聯接,軸上零件利用軸肩、軸套和軸承蓋作軸向固定。
箱體是減速器的重要組成部件,它是傳動零件的基座,應具有足夠的強度和剛度。箱體通常用灰鑄鐵製造,對於重載或有沖擊載荷的減速器也可以採用鑄鋼箱體。
減速器附件
為了保證減速器的正常工作,除了對齒輪、軸、軸承組合和箱體的結構設計給予足夠的重視外,還應考慮到為減速器潤滑油池注油、排油、檢查油麵高度、加工及拆裝檢修時箱蓋與箱座的精確定位、吊裝等輔助零件和部件的合理選擇和設計。
大多數減速器的箱體採用中等強度的鑄鐵鑄造而成,重型減速器則採用高強度鑄鐵和鑄鋼,單件少量生產時也可用鋼板焊接而成。減速器箱體的外形要求形狀簡單、表面平整。為了便於安裝,箱體常製成剖分式,剖分面常與軸線平面重合。
常用減速器的特點
▲一級斜齒圓柱齒輪減速器
▲一級圓柱蝸桿減速器
▲二級斜齒圓柱齒輪減速器
▲二級圓柱齒輪電動機減速器(同軸式)
減速器裝配一般步驟
安裝底座→輸入軸軸部裝配→中間軸軸部裝配→輸出軸軸部裝配→安裝各軸→嚙合旋轉→上蓋部裝裝配→上蓋裝配→螺栓裝配→端蓋裝配 ;
二、變速器
變速器是用來改變來自發動機的轉速和轉矩的機構,它能固定或分檔改變輸出軸和輸入軸傳動比,又稱變速箱。變速器由變速傳動機構和操縱機構組成,有些汽車還有動力輸出機構。傳動機構大多用普通齒輪傳動,也有的用行星齒輪傳動。如果變速器輸出軸的轉速可以連續變化,則稱為無級變速器,否則稱為有級變速器。
變速器的工作原理
機械式變速箱主要應用了齒輪傳動的降速原理。簡單的說,變速箱內有多組傳動比不同的齒輪副,而汽車行駛時的換檔行為,也就是通過操縱機構使變速箱內不同的齒輪副工作。如在低速時,讓傳動比大的齒輪副工作
⑦ 傳動裝置都有哪些分類
傳動裝置是指把動力源的運動和動力傳遞給執行機構的裝置,介於動力源和執行機構之間,可以改變運動速度,運動方式和力或轉矩的大小。
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。