『壹』 設計任務 皮帶輸送機傳動裝置——單級圓柱齒輪減速器 原始數據 1、滾筒軸功率 2.5 千瓦 2、滾筒軸轉速 1100
設計任務 皮帶輸送機傳動裝置——單級圓柱齒輪減速器
原始數據 1、滾筒軸功率 2.5 千瓦
2、滾筒軸轉速 1100 轉/分
設計條件
1、工作狀況:
a、輕微沖擊載荷,單向轉動,連續工作
b、輕微沖擊載荷,雙向轉動,連續工作
c、中等沖擊載荷,單向轉動,連續工作
d、中等沖擊載荷,雙向轉動,連續工作
e、載荷平穩,單向轉動,連續工作
f、載荷平穩,雙向轉動,連續工作
2、使用壽命:10年,每年按300天計算
3、傳動比誤差<=±3%
【圖】
電動機——皮帶傳動——減速器——聯軸器——工作機、滾筒
因為近期考試太過於扎堆 實在著急沒有時間考慮這個 希望哪位好心人幫幫忙啊 積分最多隻能選100嗎?本來打算拿出來800感謝的 哪位高人幫幫忙 感謝啊!問題補充:
有點小錯誤 應該是
原始數據 1、滾筒軸功率 2.5 千瓦
2、滾筒軸轉速 110 轉/分
設計條件
1、工作狀況:
輕微沖擊載荷,單向轉動,連續工作
2、使用壽命:10年,每年按300天計算
3、傳動比誤差<=±3%
『貳』 設計膠帶輸送機的傳動裝置
一、摩擦傳動理論
帶式輸送機所需的牽引力是通過驅動裝置中的驅動滾筒與輸送帶間的摩擦作用而傳遞的,因而稱為摩擦傳動。為確保作用力的傳遞和牽引構件不在驅動輪上打滑,必須滿足下列條件:
(1)牽引構件具有足夠的張力;
(2)牽引帶與驅動滾筒的接觸表面有一定的粗糙度;
(3)牽引帶在驅動輪上有足夠大的圍包角。
圖l—22為一台帶式輸送機的簡圖。當驅動滾筒按順時針方向轉動時,通過它與輸送帶間的摩擦力驅動輸送帶沿箭頭方向運動。
在輸送帶不工作時,帶子上各點張力是相等的。當輸送帶運動時,各點張力就不等了。其大小取決於張緊力P0、運輸機的生產率、輸送帶的速度、寬度、輸送機長度、傾角、托輥結構性能等等。故輸送帶的張力由l點到4點逐漸增加,而在繞經驅動滾筒的主動段,由4點到l點張力逐漸減小。必須使輸送帶在驅動滾筒上的趨入點張力Sn大於奔離點張力S1,方能克服運行阻力,使輸送帶運動。此兩點張力之差,即為驅動滾筒傳遞給輸送帶的牽引力W0。在數值上它等於輸送帶沿驅動滾筒圍包弧上摩擦力的總和,即
W0=Sn-S1 (1—1)
趨入點張力Sn隨輸送帶上負載的增加而增大,當負載過大時,致使(Sn-S1)之差值大於摩擦力,此時輸送帶在驅動滾筒上打滑而不能正常工作。該現象在選煤廠中可經常遇到。
Sn與S1應保持何種關系方能防止打滑,保證輸送帶正常工作,這是將要研究的問題。
在討論前,先作如下假設:
(1)假設輸送帶是理想的撓性體,可以任意彎曲,不受彎曲應力影響;
(2)假設繞經驅動滾筒上的輸送帶的重力和所受的離心力忽略不計(因與輸送帶上張力和摩擦力相比數值很小)。
如圖l—22b所示,在驅動滾筒上取一單元長為dl的輸送帶,對應的中心角即圍包角為dα。當滾筒回轉時,作用在這小段輸送帶兩端張力分別為S及S+dS。在極限狀態下,即摩擦力達到最大靜摩擦力時,dS應為正壓力dN與摩擦系數μ的乘積,即
dS=μdN
dN為滾筒給輸送帶以上的作用力總和。
列出該單元長度輸送帶受力平衡方程式為
由於dα很小,故sin(dα/2)≈(dα/2),cos(dα/2)≈1,上述方程組可簡化為
略去二次微量:dSdα,解上述方程組得 .
通過在這段單元長度上輸送帶的受力分析,可以得到,當摩擦力達到最大極限值時,欲保持輸送帶不打滑,各參數間的關系應滿足dS/S=μdα。以定積分方法解之,即可得出輸送帶在整個驅動滾筒圍包弧上,在不打滑的極限平衡狀態下,趨入點的Sn與奔離點的Sk之間的關系
解上式,得
式中 e——自然對數的底,e=2.718;
μ——驅動滾筒與輸送帶之間的摩擦系數;
——輸送帶在驅動滾筒上趨入點的最大張力;
S1一一輸送帶在驅動滾筒奔離點的張力;
α——輸送帶在驅動滾筒上的圍包角,弧度。
上式)即撓性體摩擦驅動的歐拉公式。根據歐拉公式可以繪出在驅動滾筒圍包弧上輸送帶張力變化的曲線,見圖l—23中的bca'。
從上述分析可知,歐拉公式只是表達了趨入點張力為最大極限值時的平衡狀態。而實際生產中載荷往往是不均衡的;而且,在歐拉公式討論中,將輸送帶看作是不變形的撓性體,實際上輸送帶(如橡膠帶)是一個彈性體,在張力作用下,要產生彈性伸長,其伸長量與張力值大小成正比。因此,輸送帶沿驅動滾筒圓周上的分布規律見圖1—23中bca曲線變化(而不是bca』)。在BC弧內,輸送帶張力按歐拉公式之規律變化;到c點後,張力達到Sn值,在CA弧內,Sn值保持不變。也就是說為了防止輸送帶在驅動滾筒上打滑,應使趨入點的實際張力Sn小於極限狀態下的最大張力值,即
既然輸送帶是彈性體,那麼,在受力後就要產生彈性伸長變形。這是彈性體與剛性體最本質的區別。受力愈大,變形也愈大,而輸送帶張力是由趨入點向奔離點逐漸減小,即在趨入點輸送帶被拉長的部分,在向奔離點運動過程中,隨著張力的減小而逐漸收縮,從而使輸送帶與滾筒問產生相對滑動,這種滑動稱為彈性滑動或彈性蠕動(它與打滑現象不同)。顯然,彈性滑動只發生於輸送帶在驅動滾筒圍包弧上有張力變化的一段弧內。產生彈性滑動的這一段圍包弧,稱為滑動弧,即圖l-23中的BC弧,滑動弧所對應的中心角稱為滑動角,即λ角;不產生彈性滑動的圍包弧,稱為靜止弧(圖中的CA弧),靜止弧所對應的中心角,稱為靜止角,即圖中γ角。滑動弧兩端的張力差,即為驅動滾筒傳遞給輸送帶的牽引力。由此可見,只有存在滑動弧,驅動滾筒才能通過摩擦將牽引力傳遞給輸送帶;在靜止弧內不傳遞牽引力,但它保證驅動裝置具有一定的備用牽引力。
當輸送機上負載增加時,趨入點張力Sn增大,滑動弧及對應的滑動角也相應均要增大,而靜止弧及靜止角則隨之減小。圖1—23中的C點向A點靠攏,當趨入點張力Sn增大至極限值Snmax時,則整個圍包弧BA弧都變成了滑動弧,即C點與A點重合,整個圍包角都變成了滑動角(λ=α,γ=0)。這時驅動滾筒上傳送的牽引力達到最大值的極限摩擦力:
(1—4)
若輸送機上的負荷再增加,即 ,這時.輸送帶將在驅動滾筒上打滑,輸送機則不能正常工作。
二、提高牽引力的途徑
根據庫擦傳動的理論及式(1—4)均可以看出,提高帶式輸送機的牽引力可以採用以下三種方法:
(1)增加奔離點的張力S1,以提高牽引力。具體的措施是通過張緊輸送機的拉緊裝置來實現。隨著S1的增大,輸送帶上的最大張力也相應增大,就要求提高輸送帶的強度,這種做法是不經濟的,在技術上也不合理。
(2)改善驅動滾筒表面的狀況,以得到較大的摩擦系數μ,由表1—29可知,膠面滾筒的摩擦系數比光面滾筒大,環境乾燥時比潮濕時大,所以,可以採用包膠、鑄塑,或者採用在膠面上壓制花紋的方法來提高摩擦系數。
(3)採用增加輸送帶在驅動滾筒上的圍包角來提高牽引力。其具體措施是增設改向滾筒(即增面輪)可使包角由180°增至210°-240°必要時採用雙滾筒驅動。
三、剛性聯系雙滾筒驅動牽引力及其分配比朗確定
剛性聯系雙滾筒和單滾筒相比,增加一個主動滾筒:當兩個滾筒的直徑相等時其角度是相同的(圖1—24)。從圖l—24中可以看出,輸送帶由滾筒②的C點到滾筒①的B點時,這兩點之間除了一小段(BC段)膠帶的臼重外,張力沒有任何變化,故B點可看作C點的繼續。因而剛性聯系的雙滾筒與單滾筒實質上是相同的,因為滑動弧隨著張力增大而增大這一規律對它同樣適用的。
S1及μ值在一定的情況下,而且μl=μ2,只有當滾筒②傳遞的牽引力達到極限值時,滾筒①才開始傳遞牽引力。設λ1、λ2、γ1、γ2、α1、α2分別為第①及第②滾筒的滑動角,靜止角及圍包角、則在λ2=α2,λ1=0的情況下,靜止弧僅存在於滾筒①上。當λ2=α2時,λ1=α1-γ1時,輸送帶在兩個主動滾筒上張力變化曲線如圖1—24所示。
滾筒②可能傳遞的最大牽引力為
滾筒①可能傳遞的最大牽引力為
式中 S』——兩滾筒間輸送帶上的張力。
驅動裝置可能傳遞總的最大牽引力為
式中 α——總圍包角
兩滾筒可能傳遞的最大牽引力之比為
在一般情況下: 因而
(1-5)
顯然,當第①滾筒上傳遞的牽引力未達到極限時,即 時,則兩驅動滾筒傳遞的牽引力之比為
由上式可知,當總的牽引力W0和張力S1一定時,若μ值增加,則第⑧個驅動滾筒傳遞的牽引力WII增大,而WI減小。反之,若μ值減小時,則WI增大(因W0=WI+WII為一定值)。
由此可以看出:剛性聯系的雙滾筒驅動裝置,其滾筒牽引力的分配比值隨摩擦系數的變化而改變。但由式(1-5)可知,驅動滾筒①可能傳遞的最大牽引力等於滾筒⑨的 倍這一比值是不變的。
剛性聯系的雙驅動滾筒缺點是已設計的牽引力分配比值,只適用於一定的荷載和一定的摩擦系數。當荷載變化,其比例也就被破壞了。此外,還由於大氣潮濕程度的變化,兩滾筒的表面清潔程度的不同,摩擦系數也發生了變化,其分配比實際上不可能保持定值。
『叄』 帶式傳輸機傳動裝置的設計
設計—用於帶式運輸機上的單級直齒圓柱減速器,已知條件:運輸帶的工作拉力F=1350 N,運輸帶的速度V=1.6 m/s捲筒直徑D=260 mm,兩班制工作(12小時),連續單向運轉,載荷平移,工作年限10年,每年300工作日,運輸帶速度允許誤差為±5%,捲筒效率0.96
一.傳動方案分析:
如圖所示減速傳動由帶傳動和單級圓柱齒輪傳動組成,帶傳動置於高速級具有緩沖吸振能力和過載保護作用,帶傳動依靠摩擦力工作,有利於減少傳動的結構尺寸,而圓柱齒輪傳動布置在低速級,有利於發揮其過載能力大的優勢
二.選擇電動機:
(1)電動機的類型和結構形式,按工作要求和工作條件,選用一般用途的Y系列三相非同步交流電動機。
(2)電動機容量:
①捲筒軸的輸出功率Pw=FV/1000=1350×1.6/1000=2.16 kw
②電動機輸出功率Pd=Pw/η
傳動系統的總效率:η=
式中……為從電動機至捲筒之間的各傳動機構和軸承的效率。
由表查得V帶傳動=0.96,滾動軸承=0.99,圓柱齒輪傳動
=0.97,彈性連軸器=0.99,捲筒軸滑動軸承=0.96
於是η=0.96××0.97×0.99×0.96≈0.88
故:
Pd= Pw/η=2.16/0.88≈2.45 kw
③ 電動機額定功率由表取得=3 kw
(3)電動機的轉速:由已知條件計算捲筒的轉速
即:
=60×1000V/πD=60×1000×1.6/3.14×260=118 r/min
V帶傳動常用傳動比范圍=2-4,單級圓柱齒輪的傳動比范圍=2-4
於是轉速可選范圍為 ==118×(2~4)×(2~4)
=472~1888 r/min
可見同步轉速為 500 r/min和2000 r/min的電動機均合適,為使傳動裝置的傳動比較小,結構尺寸緊湊,這里選用同步轉速為960 ×r/min的電動機
傳動系統總傳動比i= =≈2.04
根據V帶傳動的常用范圍=2-4取=4
於是單級圓柱齒輪減速器傳動比 ==≈2.04
『肆』 求帶式輸送機傳動裝置課程設計F=2300 v=1.5,滾筒直徑D=400,哪位大神以前有的 你能不能發給我
一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.
六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm
II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。
主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠
(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min
(1)已知nII=121.67(r/min)
兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠
二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠
七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。
『伍』 帶式輸送機傳動裝置的設計
一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.
六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm
II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N•m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N•m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危險截面C的強度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。
主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N•m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠
(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min
(1)已知nII=121.67(r/min)
兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠
二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠
七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。
八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.
放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:
:
(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20
(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2
(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3
D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.
九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。
十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。
十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版
『陸』 設計一皮帶輸送機的單級減速器,雙班制工作,單向運轉,傳動平穩輸送帶速度允許誤差為±5%
僅供參考啊一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N
『柒』 求帶式輸送機傳動裝置設計
課程設計說明書
一.電動機的選擇:
1.選擇電動機的類型:
按工作要求和條件,選用三機籠型電動機,封閉式結構,電壓380V,Y系列斜閉式自扇冷式鼠籠型三相非同步電動機。(手冊P167)
選擇電動機容量 :
滾筒轉速:
負載功率:
KW
電動機所需的功率為:
(其中: 為電動機功率, 為負載功率, 為總效率。)
2.電動機功率選擇:
折算到電動機的功率為:
3.確定電動機型號:
按指導書 表1推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍為: .取V帶傳動比 ,則總傳動比理論范圍為 ,故電動機轉速的可選范圍為
符合這一范圍的同步轉速有750,1000和1500
查手冊 表 的:選定電動機類型為:
其主要性能:額定功率: ,滿載轉速: ,額定轉速: ,質量:
二、確定傳動裝置的總傳動比和分配傳動比
1.減速器的總傳動比為:
2、分配傳動裝置傳動比:
按手冊 表1,取開式圓柱齒輪傳動比
因為 ,所以閉式圓錐齒輪的傳動比 .
三.運動參數及動力參數計算:
1.計算各軸的轉速:
I軸轉速:
2.各軸的輸入功率
電機軸:
I軸上齒輪的輸入功率:
II軸輸入功率:
III軸輸入功率:
3.各軸的轉矩
電動機的輸出轉矩:
四、傳動零件的設計計算
1.皮帶輪傳動的設計計算:
(1)選擇普通V帶
由課本 表5.5查得:工作情況系數:
計算功率:
小帶輪轉速為:
由課本 圖5.14可得:選用A型V帶:小帶輪直徑
(2)確定帶輪基準直徑,並驗算帶速
小帶輪直徑 ,參照課本 表5.6,取 ,
由課本 表5.6,取
實際從動輪轉速:
轉速誤差為:
滿足運輸帶速度允許誤差要求.
驗算帶速
在 范圍內,帶速合適.
(3)確定帶長和中心距
由課本 式5.18得:
查課本 表5.1,得:V帶高度:
得:
初步選取中心距:
由課本 式5.2得:
根據課本 表5.2選取V帶的基準長度:
則實際中心距:
(4)驗算小帶輪包角:
據課本 式5.1得: (適用)
(5)確定帶的根數:
查課本 表5.3,得: .查課本 表5.4,得:
查課本 表5.4,得: .查課本 表5.2,得:
由課本 式5.19得:
取 根.
(6)計算軸上壓力
查課本 表5.1,得:
由課本 式5.20,得:單根V帶合適的張緊力:
由課本 式5.21,得:作用在帶輪軸上的壓力為 :
2、齒輪傳動的設計計算:
(1)選擇齒輪材料及精度等級
初選大小齒輪的材料均為45鋼,經調質處理,硬度為
由課本表取齒輪等級精度為7級,初選
(2)計算高速級齒輪
<1>查課本 表6.2得:
取 ,
由課本 圖6.12取 ,由課本 表6.3,取 ,
齒數教少取 ,取 則 .
<2>接觸疲勞許用應力
由課本 圖6.14查得: .
由課本 表6.5,查得: ,
則應力循環次數:
查課本 圖6.16可得接觸疲勞的壽命系數: ,
.
<3>計算小齒輪最小直徑
計算工作轉矩:
由課本 表6.8,取: ,
<4>確定中心距:
為便於製造和測量,初定: .
<5>選定模數 齒數 和螺旋角
一般: ,初選: 則 .
由 得:
由課本 表6.1取標准模數: ,則:
取 ,則: .
取 , .
齒數比:
與 的要求比較,誤差為1.6%,可用.是:
滿足要求.
<6>計算齒輪分度圓直徑
小齒輪: ;
大齒輪:
<7>齒輪寬度
圓整得大齒輪寬度: ,取小齒輪寬度: .
<8>校核齒輪彎曲疲勞強度
查課本 圖6.15,得 ;
查課本 表6.5,得: ;
查課本 圖6.17得:彎曲強度壽命系數: ;
由課本 表6.4,得: ,
Z較大 ,取 ,
則: ,
所以兩齒輪齒根彎曲疲勞強度滿足要求,此種設計合理.
〈9〉齒輪的基本參數如下表所示:
名稱 符號 公式 齒1 齒2
齒數
19 112
分度圓直徑
58.015 341.985
齒頂高
3 3
齒根高
3.75 3.75
齒頂圓直徑
64.015 347.985
齒根圓直徑
50.515 334.485
中心距
200
孔徑 b
齒寬
80 75
五、軸的設計計算及校核:
1.計算軸的最小直徑
查課本 表11.3,取:
軸:
軸:
軸:
取最大轉矩軸進行計算,校核.
考慮有鍵槽,將直徑增大 ,則: .
2.軸的結構設計
選材45鋼,調質處理.
由課本 表11.1,查得: .
由課本 表11.4查得: , .
由課本 式10.1得:聯軸器的計算轉矩:
由課本 表10.1,查得: ,
按照計算轉矩應小於聯軸器公稱轉矩的條件,查手冊 表8-7,
選擇彈性柱銷聯軸器,型號為: 型聯軸器,其公稱轉矩為:
半聯軸器 的孔徑: ,故取: .
半聯軸器長度 ,半聯軸器與軸配合的轂孔長度為: .
(1)軸上零件的定位,固定和裝配
單級減速器中可以將齒輪安排在箱體中央,相對兩軸承對稱分布.齒輪左面由套筒定位,右面由軸肩定位,聯接以平鍵作為過渡配合固定,兩軸承均以軸肩定位.
(2)確定軸各段直徑和長度
<1> 段:為了滿足半聯軸器的軸向定位要求, 軸段右端需制出一軸肩,故取 段的直徑 ,左端用軸端擋圈定位,查手冊表按軸端去擋圈直徑 ,半聯軸器與軸配合的轂孔長度: ,為了保證軸端擋圈只壓在半聯軸器上而不壓在軸的端面上,故段的長度應比略短,取: .
<2>初步選擇滾動軸承,因軸承同時受有徑向力和軸向力的作用 ,故選用蛋列圓錐滾子軸承,參照工作要求並根據: .
由手冊 表 選取 型軸承,尺寸: ,軸肩
故 ,左端滾動軸承採用縐件進行軸向定位,右端滾動軸承採用套筒定位.
<3>取安裝齒輪處軸段 的直徑: ,齒輪右端與右軸承之間採用套筒定位,已知齒輪輪轂的寬度為 ,為了使套筒端面可靠地壓緊齒輪,此軸段應略短與輪轂寬度,故取: ,齒輪右端採用軸肩定位,軸肩高度 ,取 ,則軸環處的直徑: ,軸環寬度: ,取 , ,即軸肩處軸徑小於軸承內圈外徑,便於拆卸軸承.
<4>軸承端蓋的總寬度為: ,取: .
<5>取齒輪距箱體內壁距離為: .
, .
至此,已初步確定了軸的各段直徑和長度.
(3)軸上零件的周向定位
齒輪,半聯軸器與軸的周向定位均採用平鍵聯接
按 查手冊 表4-1,得:平鍵截面 ,鍵槽用鍵槽銑刀加工,長為: .
為了保證齒輪與軸配合有良好的對中性,故選擇齒輪輪轂與軸的配合為; ,半聯軸器與軸的聯接,選用平鍵為: ,半聯軸器與軸的配合為: .
滾動軸承與軸的周向定位是借過渡配合來保證的,此處選軸的直徑尺寸公差為: .
(4)確定軸上圓角和倒角尺寸,
參照課本 表11.2,取軸端倒角為: ,各軸肩處圓角半徑: 段左端取 ,其餘取 , 處軸肩定位軸承,軸承圓角半徑應大於過渡圓角半徑,由手冊 ,故取 段為 .
(5)求軸上的載荷
在確定軸承的支點位置時,查手冊 表6-7,軸承 型,取 因此,作為簡支梁的軸的支撐跨距 ,據軸的計算簡圖作出軸的彎矩圖,扭矩圖和計算彎矩圖,可看出截面處計算彎矩最大 ,是軸的危險截面.
(6)按彎扭合成應力校核軸的強度.
<1>作用在齒輪上的力
因已知低速級大齒輪的分度圓直徑為: ,
得: , , .
<2>求作用於軸上的支反力
水平面內支反力:
垂直面內支反力:
<3>作出彎矩圖
分別計算水平面和垂直面內各力產生的彎矩.
計算總彎矩:
<4>作出扭矩圖: .
<5>作出計算彎矩圖: ,
.
<6>校核軸的強度
對軸上承受最大計算彎矩的截面的強度進行校核.
由課本 式11.4,得: ,
由課本 表11.5,得: ,
由手冊 表4-1,取 ,計算得: ,
得: 故安全.
(7)精確校核軸的疲勞強度
校核該軸截面 左右兩側.
<1>截面 右側:由課本 表11.5,得:
抗彎截面模量: ,
抗扭截面模量: ,
截面 右側的彎矩: ,
截面 世上的扭矩為: ,
截面上的彎曲應力: ,
街面上行的扭轉切應力: .
截面上由於軸肩而形成的理論應力集中系數 及 ,
由課本 圖1.15,查得:
得:
由課本 圖1.16,查得:材料的敏性系數為:
故有效應力集中系數為:
由課本 圖1.17,取:尺寸系數 ;扭轉尺寸系數: .
按磨削加工,
由課本 圖1.19,取表面狀態系數: .
軸未經表面強化處理,即: .
計算綜合系數值為:
.
由課本第一章取材料特性系數: .
計算安全系數 :
由課本 式,得: ,
.
由課本 表11.6,取疲勞強度的許用安全系數: .
,故可知其安全.
<2>截面 左側
抗彎截面模量為: .
抗扭截面模量為: .
彎矩及彎曲應力為: ,
扭矩及扭轉切應力為: ,
過盈配合處的 值: ,由 ,得: .
軸按磨削加工,由課本 圖1.19,取表面狀態系數為: .
故得綜合系數為: ,
.
所以在截面 右側的安全系數為: ,
.
.
故該軸在截面右側的強度也是足夠的.
3. 確定輸入軸的各段直徑和長度
六. 軸承的選擇及計算
1.軸承的選擇:
軸承1:單列圓錐滾子軸承30211(GB/T 297-1994)
軸承2:單列圓錐滾子軸承30207(GB/T 297-1994)
2.校核軸承:
圓錐滾子軸承30211,查手冊:
由課本 表8.6,取
由課本 表8.5,查得:單列圓錐滾子軸承 時的 值為: .
由課本 表8.7,得:軸承的派生軸向力: , .
因 ,故1為松邊,
作用在軸承上的總的軸向力為: .
查手冊 表6-7,得:30211型 , .
由課本 表8.5,查得: ,
,得: .
計算當量動載荷: ,
.
計算軸承壽命,由課本 式8.2,得: 取: .
則: .
七.鍵的選擇和計算
1.輸入軸:鍵 , , 型.
2.大齒輪:鍵 , , 型.
3.輸出軸:鍵 , , 型.
查課本 表3.1, ,式3.1得強度條件: .
校核鍵1: ;
鍵2: ;
鍵3: .
所有鍵均符合要求.
八.聯軸器的選擇
選擇 軸與電動機聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
選擇 軸與 軸聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
九.減數器的潤滑方式和密封類型的選擇
1、 減數器的潤滑方式:飛濺潤滑方式
2、 選擇潤滑油:工業閉式齒輪油(GB5903-95)中的一種。
3、 密封類型的選擇:密封件:氈圈1 30 JB/ZQ4606-86
氈圈2 40 JB/ZQ4606-86
十.設計小節
對一級減速器的獨立設計計算及作圖,讓我們融會貫通了機械專業的各項知識,更為系統地認識了機械設計的全過程,增強了我們對機械行業的深入了解,同時也讓我們及時了解到自己的不足,在今後的學習中會更努力地探究.
十一.參考資料
1.「課本」:機械設計/楊明忠 朱家誠主編 編號 ISBN 7-5629-1725-6 武漢理工大學出版社 2004年6月第2次印刷.
2.「手冊」:機械設計課程設計手冊/吳宗澤,羅聖國主編 編號ISBN7-04-019303-5 北京高等教育出版社 2006年11月第3次印刷.
3「指導書」:機械設計課程設計指導書/龔桂義,羅聖國主編 編號ISBN 7-04-002728-3 北京高等教育出版社 2006年11月第24次印刷.
『捌』 如何 設計 帶式輸送機傳動裝置(急急急,謝謝大家了!!!)
一.已知條件:運輸帶工作拉力F=2000,運輸帶工賣舉作速度V=1.8m/s。滾筒直徑D=450mm,每日工作時速24T/h。傳動不逆轉,載荷平穩,工作年限5年。(啟動載荷為名義載態喚荷的1.25倍,輸送帶的速度允許誤差為5%)
二.應完成的工作
1.擬定、分析傳動裝置的設計方案
2.選擇電動機,計算傳動裝置的運動和動力系數。
3.設計說明書一份帆配凱。
『玖』 帶式輸送機傳動裝置設計
一、帶式輸送機傳動裝置,可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,不過增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
二、設計安裝調試:
1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。