⑴ 大氣采樣器原理及組成是什麼
徐州錦程儀器廠家小編來回復大氣采樣器的原理是採集大氣污染物或受污染空氣的儀器或裝置。其種類很多,按採集對象可分為氣體采樣器和顆粒物采樣器;按使用場所可分為環境采樣器、室內采樣器和污染源采樣器。此外,還有特殊用途的大氣采樣器,如同時採集氣體和顆粒物質的采樣器。氣體采樣器一般由收集器、流量計和抽氣動力系統三部分組成。
⑵ 有線充電采樣電路的設計是什麼意思
采樣電路
四階段充電策略解析:
激活充電:充電器開始工作後單片機採集採集蓄電池端電壓檢測,若電壓過低說明曾過度放電,為避免充電電流過大,實行小電流激活。
恆流充電:恆流充電為10A.
恆壓充電:恆壓充電電壓為59V.
涓流浮充:當充電電流下降到恆流下的0.1倍式,即1A時,採用涓流浮充。
四階段充電策略保證充電初期能激活修復蓄電池,使蓄電池更經久耐用,末期不過充,又能達到充滿的目的。
電源系統抗干擾
硬體抗干擾技術
電源EMC設計:整流二極體採用肖特基二級管做整流管,開關管迴路加RCD網路,輸入端加EMI濾波電路,優化變壓器設計。
優化PCB板布局和走線。
軟體抗干擾技術
採用程序模塊間遠程攔截技術。
⑶ 采樣機的設備分類
車廂(汽車、火車)取樣裝置
用途:汽(火)車入廠煤采樣機是針對運煤汽車、火車采樣而設計的機械化采樣設備。該設備集采樣、破碎、縮分、集樣於一體、結構合理、運行可靠、操作方便。采樣制樣工藝過程符合GB19494(對於煤炭)國家標准。適用於電廠、煤礦、煤碼頭等進行煤質檢驗采樣的場合。
工作原理:汽車入廠煤采樣機主要由采樣頭(螺旋鑽取式采樣機)、給料機、破碎機、縮分集樣器、余煤處理系統組成。首先由鑽取式螺旋采樣機提取煤樣,通過密閉式給料送入破碎機,破碎後進入縮分集樣器,通過縮分的煤樣進入集樣器,多餘的煤樣由余煤處理系統返排回汽車或直接排回煤場。
管道采樣機
一般安裝在管道側壁用於從管道中採取一定量的流動的物料作為樣品。有螺旋式、活塞式、插管式等等。常用語小顆粒物料或者粉料、漿液的取樣。
皮帶取樣裝置
適用性:由中部(頭部)采樣機、給料皮帶機、破碎機、縮分器、樣品收集器、棄料返回系統、控制系統組成。皮帶中部、頭部自動采樣機完全滿足國標要求。對所採煤樣的水分、粒度無特殊要求;采樣間隔(時間、質量)可由定時控制器或程序設定。為安全起見,皮帶中部采樣機一般用於物料堆比重1.6t/m3以下的散裝物料。
工作原理:采樣裝置按設定的時間從皮帶上做全斷面刮掃,採取的子樣通過溜槽進入初級送料皮帶機,同時把樣品均勻送入破碎機破碎到一定的粒度(一般6~13mm),再通過次級皮帶及縮分器分成留樣和棄料,留樣被自動收集在儲料罐中,棄料被斗式提升機返回到皮帶。
⑷ 旋轉式側壁取樣技術
這種取樣方法多在油氣鑽井領域應用,由於科學鑽探所需的很多鑽探器械和鑽探方法都是從石油鑽井領域借鑒改進而來的,因此,這種側壁取樣方法也很值得科學鑽探超深孔側壁取樣研究借鑒。
旋轉式井壁取心技術方法最早出現於20世紀40年代,當時是用鑽桿下放到井內。這種取心方法可以從井壁上取得少量岩心,但仍然需要起下鑽具,操作比較復雜,費時費事而且成本較高,作用比較有限。為了提高井壁取心效率,後來就發展成為使用電纜起下井的旋轉式井壁取心器。近幾十年來,這種類型的取心器又經過不斷改進,得到了越來越多的應用。
圖4.10 西安石油勘探儀器廠連續切割式側壁取樣示意圖
這種取樣系統採用多芯電纜升降取心器具,並通過電纜給井下裝置提供動力,在地表有專門的控製表盤進行操作控制,井下取樣裝置主要由電動機、推靠定位裝置、鑽進取心機構、岩心卡斷機構、取樣筒轉移機構、密封裝置、岩心儲納裝置等組成,結構比較復雜,外徑通常較大,一般要在大於170mm的孔徑才能使用。這種取樣方法具有自己獨特的優點,單顆岩心取樣時間短,一次下井能在多點進行取心。而且這種取樣裝置鑽進岩心使用的是電動機或液壓馬達帶動金剛石鑽頭高速旋轉,能夠在較硬岩石中使用,鑽取的岩樣直徑及長度雖然較小,但多為圓柱形,比較規則且質量較高,能滿足地質多種分析的需要。近些年來,世界幾大石油服務公司對該種類型取樣器進行了大量的研究改進工作,取得了許多新型專利。前蘇聯也有自己一系列這種類型的取心器,德國KTB主孔取心計劃中也將這種取心器作為應用於6000~10000m超深孔孔段的側壁補心器具進行研究改進。表4.4是旋轉式井壁取心技術的綜合調查表。下面,對這種類型的取心器,選擇具有代表性的一些例子進行介紹。
4.5.1 Schlumberger公司的MSCT(Mechanical Sidewall Coring Tool)
Schlumberger公司是全球最早研製水平鑽進取樣器的公司,它在1947年就推出了自己研製的旋轉式井壁取心器。但是由於當時的儀器設備復雜、操作需要高超的技術沒有能夠被廣泛使用,大約在1955年停止使用(王世圻,1998)。1985年Schlumberger公司又研製了一種新研製的硬岩側壁取樣裝置和方法———「Apparatus for Hard RockSidewallCoringinaBorehole」。這種取樣器綜合了各種旋轉式取樣器的特點,採用了先進的液壓技術,自動化程度比較高。圖4.11是Schlumberger公司在其網站上公布的最新的MSCT的圖片。
表4.4 旋轉式井壁取心技術調查表
圖4.11 MSCT 示意圖
據Schlumberger公司公布的MSCT的參數如下:
一次下井取心數量:標准配置50顆,可選20~75顆;
岩心尺寸:直徑23.4mm,長度可選38.1mm~44.4mm;取心效率:3~5min/顆;
耐溫:177℃,最高可達218℃;
耐壓:138MPa,最高可達172MPa;
儀器外徑:136.5mm;
儀器長度:9.54m;
儀器質量:340kg;
適用井徑:158.7~482.6mm,通過更換配件,最小可在127mm井內使用。
4.5.2 Halliburton公司的RSCTTM(Rotary Sidewall Coring Tool)
美國的Halliburton公司也是為石油及天然氣行業提供產品及服務的供應商之一。該公司擁有RSCTTM技術,這種技術最早是由Gearhart公司研製成功的。Halliburton公司於1988年收購了Gearhart公司。這種技術也就劃歸Halliburton公司名下。在德國進行KTB主孔6000~10000m孔段的取心設計時,曾將這種技術列為進行孔壁取心系統科研和開發的項目之一。圖4.12是這種系統的示意圖。圖4.13是Halliburton公司網站公布的RSCTTM側壁取心鑽頭部分的圖片。
圖4.12 RSCT側壁取心鑽頭部分圖片
圖4.13 RSCT側壁取心鑽頭部分圖片
RSCT使用金剛石鑽頭垂直於鑽孔側壁進行鑽進,在鑽進的過程中時刻進行監控。在用伽馬射線進行深度定位之後,一個推靠臂延伸出來,將鑽具牢牢地固定在所要取心的地層上。一個以2000r/min進行旋轉的金剛石鑽頭從地層上切割下來一塊直徑為23.8mm,長度為45mm的岩樣。通過控制施加於鑽頭的鑽壓通過地面控制來使鑽進最優化。
當岩樣被切割下來之後,通過鑽頭一個輕微的垂直運動將岩樣從井壁上折斷取下來。然後,包含岩樣的鑽頭收縮回鑽具內部,岩樣被捅出,落到一個用來盛岩心的岩心筒裡面。指示器顯示出取心成功與否和所取岩心的深度。鑽具隨後准備進行下一個岩心點的取樣工作。
RSCT鑽具用來在密實地層進行取心,一個帶有金剛石切削刃的管狀鑽頭用來切割岩心,補取的岩心呈圓柱狀。圖4.14是RSCT獲取的井壁岩心照片。
這套系統在測井工程車或墊木上獨立於其他系統之外進行工作。它只需要交流電源。同時,還需要一個用來記錄γ射線相關數據的記錄儀器。這套井下裝置通過使用地面的控制面板進行控制。圖4.15是RSCT地面控制面板的照片。
圖4.14 RSCT獲取的井壁岩心照片
圖4.15 RSCT地面控制面板照片
RSCT鑽具有以下幾個特徵:
1)一個回次能夠鑽取30個或者更多個岩心;
2)能夠在大斜度測井系統或者撓性管測井系統上進行工作來獲取斜井、分支井和水平井中的岩心;
3)設計有岩心長度指示器,避免了在取心中靠猜測確定岩心的長度;
4)這套獨立的鑽具可以在第三方測井單元上工作。
Halliburton公司網站公布的RSCT的部分技術參數如表4.5所示。
表4.5 RSCT的技術參數表
4.5.3 Weatherford公司的RSCT(Rotary Sidewall Coring Tool)
Weatherford(威德福)公司也是一家著名的提供油氣鑽井及相關技術服務的跨國公司,它也提供有旋轉式井壁取心技術產品Rotary Sidewall Coring Tool(RSCT),其產品的結構示意圖如圖4.16所示。其取得的岩心圖片如圖4.17所示。
其部分技術參數如下:
鑽頭類型:金剛石鑽頭;
鑽頭轉速:2000r/min;
單次下井取心數量:25;
適用鑽孔直徑:152~324mm;
儀器直徑:124mm;
儀器長度:5.1m;
適用最高溫度:149℃;
適用最高壓力:138MPa;
儀器質量:159kg;
岩心尺寸:直徑24mm,長度44mm。
圖4.16 Weatherford公司旋轉式井壁取心器(RSCT)示意圖
圖4.17 Weatherford公司旋轉式井壁取心器取心照片
4.5.4 前蘇聯的旋轉式側壁取樣技術
前蘇聯是研製旋轉式井壁取樣器最早的國家,尤其經過近幾十年來的努力,不斷改進提高,在沉積岩鑽井中現已進入實用階段。以下為全蘇ВНИИТИ(研究所)推出的系列井壁取樣器具。
(1)СКО-8-9型取樣器
該取樣器是前蘇聯首次在油氣勘探井中獲得廣泛使用的側壁取樣器。它可與普通的測井設備儀器使用,並由КТБ-6三芯鎧裝電纜放入鑽孔內。
СКО-8-9取樣器可供在孔深達3500m的無套管鑽孔內進行側壁取心。如圖4.18所示,整套設備包括控制台1、操縱台2、升壓變壓器3、絞車4、測井電纜5,以及放入孔內的側鑽式取樣器。
圖4.18 СКО-8-9型多次取樣器設備連接圖
取樣器的工作順序是:將它下放到孔內的取樣孔段,由地表操縱台經測井電纜提供三相交流電,從而使取樣器的功能件起動,由此將取樣器壓緊在孔壁上,然後開始鑽進岩樣;當鑽具充分退出後(從操縱台可觀察到),使取樣器及其與之相連的功能件反轉,因此帶有岩心的鑽具及壓桿(推靠臂)退回;隨後停止供應電能,並將取樣器移到新的取樣孔段上。
СКО-8-9側鑽式取樣器如圖4.19所示,電能經測井電纜及電纜頭13供給,岩樣由鑲入鑽具6端部的鑽頭8來鑽出,電動機18經錐齒輪和正齒輪裝置來實現鑽具的回轉。在鑽進岩樣的過程中,藉助於壓桿19將取樣器壓在孔壁上,壓桿由活塞11推動。活塞泵3產生的液壓壓力使活塞在汽缸內運動,活塞泵也由電動機18帶動,也正是這個壓力作用在活塞與鑽具上,從而給回轉的鑽頭提供一個鑽進所必需的軸向力。軸向力的大小可藉助於給進調節器改變壓力的大小來調節,給進調節器的減壓閥通過微電機實現回轉。
在鑽進過程中,藉助於沖洗泵9由充滿在鑽孔內的液體將鑽屑沖洗出去,沖洗泵由取樣器的液壓系統啟動。整個取樣器及液壓系統均充滿變壓器油。取樣器內部的壓力由活塞或孔內壓力補償器14來補償。為了防止孔內液體進入取樣器的內部(如果任一密封元件密封失效時),補償器的彈簧便在取樣器內形成一個相對於鑽孔的過剩壓力。取樣器鑽進岩心的速度可在操縱台上通過改變變阻器20的阻力大小來控制,變阻器的滑塊與鑽具的活塞相連。
當鑽頭充分地鑽進孔壁之後,使電動機逆轉,並且改變液壓泵的回轉方向及液壓系統中液體的運動方向,從而使鑽具向後退出,並由岩心提斷器將岩心卡斷。岩心提斷器卡斷岩心是通過在加速-沖擊機構內產生的沖擊扭矩扭轉岩樣,同時拉緊鑽具來實現的。
在這種取樣器中,還包括一個備用的裝置,以便當鑽進過程中取樣器不能工作時能剪切鑽入孔壁內的一段鑽具,以及由彈簧10來拉緊壓桿(拉力為8~9kN)。
圖4.19 СКО-8-9型取樣器
圖4.19中的虛線代表取樣器的液壓迴路。在鑽具向前鑽進時,泵3通過閥1將液體壓入,並由干線16輸送到壓緊裝置的汽缸及沖洗泵9內,並且經給進調節器的活塞沿干線17輸送到鑽具6的活塞。電動機逆轉時,改變液體的流動方向,經干線4輸送到鑽具活塞和壓緊汽缸,液壓系統的壓力由閥2來調節。
(2)СКМ-8-9多次取樣器
СКО-8-9取樣器的使用表明,當保持最佳的鑽進規程參數,並且使用АСК-35/22金剛石鑽頭時,它可採集直徑為22mm,長度大於20mm的岩心。但是,隨著鑽孔深度的增加(>4000m),СКО-8-9的使用效率急劇下降,因為每個回次採集的岩樣數量少(最多為3個岩心),而且由於測井電纜的導線阻力增加,供給電動機的功率下降。因此研製了一種新型的СКМ-8-9取樣器,它能保證在一個回次中取到更多的樣品。
圖4.20 СКМ-8-9取樣器
圖4.20為СКМ-8-9取樣器的總圖。岩樣由鑽具6端部的鑽頭鑽進,動力電動機4經減速器5、16帶動鑽具回轉。在鑽進岩樣之前,藉助於壓桿17和活塞9將取樣器壓向孔壁,活塞是在液壓泵3形成的壓力作用下移動的,而液壓泵由電動機4轉動。鑽具的給進以及在卡斷岩心之後返回是藉助於活塞15並經作用在桿7上的拉桿11來實現的。鑽出的岩心彼此壓出,並落入盒8中,鑽進岩心時所需的軸向荷載由扼流型遙控調節器來調節,其大小取決岩層的性能。鑽屑通過沖洗泵的活塞12往復運動來實現沖洗,沖洗泵的上腔通道與鑽具的內腔相連。活塞口在液壓系統壓力的作用下周期性地移動,液壓系統先對動力活塞起作用。在鑽進過程中,根據鑽具鑽進感測器14阻力的變化來控制鑽具6的鑽進速度。取樣器內工作液體的壓力藉助於活塞式壓力補償器1來補償。為了處理取樣器內的事故,採用彈簧10來拉緊壓桿17。
使用表明,與СКО-8-9相比,СКМ-8-9取樣器具有下述優點:
1)一個回次中能進行多次采樣;
2)電動機的液壓保護較好;
3)改進了鑽具的沖洗系統和鑽進過程,岩樣的質量好;
4)簡化了取樣器的操作。
(3)СКТ-1耐熱型取樣器
隨著鑽孔深度的增加,孔內的溫度也會增加,當溫度高於100℃時就不宜使用СКМ8 9型取樣器。為此,研製了一種可在孔深達5000m,溫度為150℃的條件下使用的耐熱型取樣器,這種取樣器中各功能件採用機械驅動,並且採用獨立的沖洗裝置。
圖4.21為СКТ-1耐熱型取樣器。電纜頭接入輸入端密封的發光橋;補償器2用來平衡取樣器內部工作液體的壓力和孔內壓力;與驅動件相連的電動機3實現功能件的回轉及移動(將取樣器壓向孔壁,鑽具的回轉、給進和沖洗);驅動件與外殼相連,外殼內布置有所有的執行機構。
萬向軸6將回轉傳遞給鑽進部件15,鑽進部件可引導桿14軸向移動。鑽具的內部有岩心提斷器,鑽頭擰入岩心提斷器的端部。鑽具在橡皮填料盒內回轉,這樣可密封外殼內部的腔體。在鑽具15的外殼上具有銷16,以固定與取樣器的軸線傾斜的仿形尺12。螺母7與仿形尺相連,而螺母可與驅動件4的導動螺桿13相互作用。仿形尺12還與沖洗活塞21相連。在外殼的下部布置有礦泥收集器22,收集器的腔體經旁道20與鑽具的內腔相連。為了存放鑽出的岩樣,使用岩心接收盒,並固定在可拆式蓋24上。
壓桿裝置23鉸接式地固定在外殼上,並通過操作把11和安全銷10將它與螺母9的卡爪相連,螺母與驅動件的絲桿8相互作用。鑽具15中具有岩心卡斷機構17、18、19和制動機構5,岩心卡斷機構在向前鑽進到達端點時起動。
СКТ-1取樣器的工作原理是:當取樣器固定在給定的取樣位置後,開動電動機3以驅動驅動件4,萬向軸6,導動螺桿13和絲桿8同時轉動。絲桿8帶動螺母9運動,從而使壓桿23以一定的壓力將取樣器壓緊在孔壁上,此後,絲桿8停止轉動。同時,螺母7與螺母9一起沿軸向移動,從而使仿形尺移動。仿形尺的移動實現了鑽具的回轉及鑽頭的給進,並使鑽具沖洗系統的活塞21移動。
在鑽具行程的終點,開動岩心卡斷機構17、18、19以及取樣器的制動機構5。制動機構是一對圓錐形摩擦式離合器,它作用在中心軸及電力拖動上(當仿形尺的端部與制動套筒相互作用時)。
圖4.21 СКТ-1耐熱型取樣器
當取樣器停止之後(可從操縱台上觀察到,因為這時電流急劇增加),使電力拖動逆動,並拉緊壓桿及鑽具。當執行機構恢復到原位時,安裝在驅動件內的棘輪機構使中心萬向軸停止轉動,因此,在不回轉鑽頭時拉緊鑽具,這樣排除了鑽頭的擰出,制動系統的圓錐體也不會妨礙起動(電動機逆動時)。驅動件實現鑽具的快速拉緊,給定的仿形尺形狀能保證先拉緊活塞,然後拉緊鑽具這一順序,這樣才能由沖洗液將鑽出的岩樣吸入岩心接收盒。
試驗表明,與СКМ-8-9取樣器相比,尤其是在深度大,溫度高的鑽孔內使用時,СКТ-1取樣器具有以下優點:
1)由於沒有齒輪泵(幾乎消耗電動機的一半功率),大大提高了取樣器的驅動效率;2)由於沒有調節閥、減壓閥、滑閥分配器,以及大量的液壓干線和密封元件,因此提高了取樣器在深孔中工作的可靠性;
3)採用了獨立的沖洗系統,改進了岩心鑽進過程;
4)由於採用強制性的岩心卡斷機構,並用液壓方式將岩心送入接受盆中,因而提高了岩樣的採取率;
5)降低了由於鑽頭擰下而使取樣器無法采樣的次數;
6)減輕了取樣器的操作、預檢及修理工作。
表4.6列出了前蘇聯系列側壁取樣器的部分技術參數。
表4.6 前蘇聯側壁取樣器技術參數表
4.5.5 國產旋轉式井壁取心技術
我國旋轉式井壁取心技術研製起步較晚,剛開始主要是從國外油服公司引進同類儀器,但是實際應用效果不太理想。1986年,河南油田測井公司與北京航天自動控制研究所(航天一院12所)歷經8年科技攻關,研製出了HH-1型旋轉式井壁取心器(田學信,2000),見圖4.22。
圖4.22 HH-1旋轉式井壁取心器
該裝置基本上是對Halliburton公司RSCT取心器的仿製,主要改進是在Halliburton公司產品一個推靠臂的基礎上又增加了兩個推靠臂,增加的兩個推靠臂為輔助推靠臂,但在實際使用中,發現兩個輔助推靠臂所起的作用不是太大,因此,這種井壁取心器的實際使用效果也不是十分理想。
由於HH-1旋轉式井壁取心器的使用效果不是很理想,國內一些公司在它的基礎上又進行了一些研發和改進,保留了HH-1型的內部執行機構,改進後的使用效果仍然不是十分滿意。在眾多改進中,北京華能通達能源科技公司的工作相對比較突出。該公司生產的井壁取心器命名為FCT(Formation Coring Tool)旋轉式井壁取心器(圖4.23)。該儀器部分技術參數如下:
長度6.8m;重量180kg;最大直徑127mm;一次下井可取岩心數量25顆;岩樣尺寸直徑25mm,長度50mm;耐溫150℃;耐壓100MPa。
目前,國內還能提供旋轉式井壁取心技術服務的公司還有中海油田(COSL)和中油測井(CNLC)兩家公司。這兩家公司的取心器主要是引進國外的同類產品或者是對國外產品的仿製。
圖4.23 FCT旋轉式井壁取心器
⑸ 採集要求及方法
(一)大氣樣
大氣樣品的採集方法可歸納為直接采樣法和富集采樣法兩類。
1.直接采樣法
適用於大氣中被測組分濃度較高或監測方法靈敏度高的情況,這時不必濃縮,只需用儀器直接採集少量樣品進行分析測定即可。此法測得的結果為瞬時濃度或短時間內的平均濃度。
常用容器有注射器、塑料袋、采氣管、真空瓶等。
1)注射器采樣;常用100mL注射器採集有機蒸汽樣品。采樣時,先用現場氣體抽洗2~3次,然後抽取100mL,密封進氣口,帶回實驗室分析。樣品存放時間不宜長,一般當天分析完。氣相色譜分析法常採用此法取樣。取樣後,應將注射器進氣口朝下,垂直放置,以使注射器內壓略大於外壓。
2)塑料袋采樣:應選不吸附、不滲漏,也不與樣氣中污染組分發生化學反應的塑料袋,如聚四氟乙烯袋、聚乙烯袋、聚氯乙烯袋和聚酯袋等,還有用金屬薄膜作襯里(如襯銀,襯鋁)的塑料袋。采樣時,先用二聯球打進現場氣體沖洗2~3次,再充滿樣氣,夾封進氣口,帶回實驗室盡快分析。
3)采氣管采樣:采氣管容積一般為100~1000mL。采樣時,打開兩端旋塞,用二聯球或抽氣泵接在管的一端,迅速抽進為采氣管容積6~10倍的欲采氣體,使采氣管中原有氣體被完全置換出,關上旋塞,采氣管體積即為采氣體積。
4)真空瓶采樣:真空瓶是一種具有活塞的耐壓玻璃瓶,容積一般為500~1000m L。采樣前,先用抽真空裝置把采氣瓶內氣體抽走,使瓶內真空度達到1.33KPa,之後,便可打開旋塞采樣,采完即關閉旋塞,則采樣體積即為真空瓶體積。
2.富集采樣法
富集采樣法:原理是使大量的樣氣通過吸收液或固體吸收劑得到吸收或阻留,使原來濃度較小的污染物質得到濃縮,以利於分析測定。
適用於大氣中污染物質濃度較低的情況。采樣時間一般較長,測得結果可代表采樣時段的平均濃度,更能反映大氣污染的真實情況。
具體采樣方法包括溶液吸收法、固體阻留法、液體冷凝法、自然積集法等。
(1)溶液吸收法
該法是採集大氣中氣態、蒸汽態及某些氣溶膠態污染物質的常用方法。
采樣時,用抽氣裝置將欲測空氣以一定流量抽入裝有吸收液的吸收管,使被測物質的分子阻留在吸收液中,以達到濃縮的目的。采樣結束後,倒出吸收液進行測定,根據測得的結果及采樣體積計算大氣中污染物的濃度。
吸收效率主要決定於吸收速度和樣氣與吸收液的接觸面積。
吸收液的選擇原則:
1)與被採集的物質發生不可逆化學反應快或對其溶解度大;
2)污染物質被吸收液吸收後,要有足夠的穩定時間,以滿足分析測定所需時間的要求;
3)污染物質被吸收後,應有利於下一步分析測定,最好能直接用於測定;
4)吸收液毒性小,價格低,易於購買,並盡可能回收利用。
常用吸收管有氣泡式吸收管、沖擊式吸收管和多孔篩板吸收管(瓶)等。
(2)填充柱阻留法
填充柱是用一根6~10cm長,內徑3~5mm的玻璃管或塑料管,內裝顆粒狀填充劑製成。采樣時,讓氣樣以一定流速通過填充柱,則欲測組分因吸附、溶解或化學反應而被阻留在填充劑上,達到濃縮采樣的目的。采樣後,通過加熱解吸,吹氣或溶劑洗脫,使被測組分從填充劑上釋放出來測定。
根據填充劑阻留作用的原理,可分為吸附型、分配型和反應型三種類型。
1)吸附型填充柱:所用填充劑為顆粒狀固體吸附劑,如活性炭、硅膠、分子篩、氧化鋁、素燒陶瓷、高分子多孔微球等多孔性物質,對氣體和蒸氣吸附力強。
2)分配型填充劑:所用填充劑為表面塗有高沸點有機溶劑的惰性多孔顆粒物,適於對蒸氣和氣溶膠態物質的採集。氣樣通過采樣管時,分配系數大的或溶解度大的組分阻留在填充柱表面的固定液上。
3)反應型填充柱:其填充柱是由惰性多孔顆粒物或纖維狀物表面塗漬能與被測組分發生化學反應的試劑製成。也可用能與被測組分發生化學反應的純金屬(如金、銀、銅等)絲毛或細粒作填充劑。采樣後,將反應產物用適宜溶劑洗脫或加熱吹氣解吸下來進行分析。
(3)濾料阻留法
將過濾材料放在采樣夾上,用抽氣裝置抽氣,則空氣中的顆粒物被阻留在過濾材料上,稱量過濾材料上富集的顆粒物質量,根據采樣體積,即可計算出空氣中顆粒物的濃度。常用濾料:①纖維狀濾料:如定量濾紙、玻璃纖維濾膜、氯乙烯濾膜等;②篩孔狀濾料:如微孔濾膜、核孔濾膜、銀薄膜等。各種濾料由不同的材料製成,性能不同,適用的氣體范圍也不同。
(4)低溫冷凝法
借製冷劑的製冷作用使空氣中某些低沸點氣態物質被冷凝成液態物質,以達到濃縮的目的。適用於大氣中某些沸點較低的氣態污染物質,如烯烴類灌類等。
常用製冷劑:冰、乾冰、冰-食鹽、液氯-甲醇、乾冰-二氯乙烯、乾冰乙醇等。
(5)自然積集法
利用物質的自然重力、空氣動力和濃差擴散作用採集大氣中的被測物質,如自然降塵量、硫酸鹽化速率、氟化物等大氣樣品的採集。
(二)水中溶解氣體
1.逸出氣體樣品的採取
水中逸出氣體樣品的採取,一般用排水集氣原理,如圖7-3所示。將連接在集氣管2上的玻璃漏斗沉入水中,待水面升到彈簧夾5以上時關閉彈簧夾5;再將注滿水的下口瓶3提升,使水注入集氣管2中。待集氣管2充滿水後(不得留有氣泡),關閉彈簧夾4和6;再將下口瓶3注滿水,並置於低於集氣管2的位置:將漏斗1移至水底氣體逸出處,打開彈簧夾4和5,氣體即沿漏斗1進入集氣管2內;待集氣管2中的水被排盡後,關閉彈簧夾4和5。這樣,集氣管中便收集好待測氣體,即可送實驗室分析。
圖7-5 真空法分離溶解氣樣採集方法
1—橡皮球膽;2—玻璃瓶;3—橡皮塞;4、10、13、14—橡皮管;5、6—彈簧夾;7—橡皮管接頭;8、9—紫銅管;11—集氣管;12—下口瓶;15、16 集氣管旋塞
(三)土壤氣體
土壤氣體的測量主要指標為土壤CO2通量的測量。
首先在試驗地中選定具有代表性的地點,把CO2採集鑽鑽至土壤中所要測定的深處,取出土鑽,棄去填滿土鑽中的土壤,再將土鑽插入孔中,然後將鑽筒往上提兩轉,使鑽頭與鑽孔間形成孔隙,然後壓緊土鑽周圍的土壤(在測定之前,需先抽取土壤空氣,以使橡皮管及鑽桿中都充滿土壤空氣)。
然後用皮管將深層CO2抽氣鑽與CO2氣體吸收器相連接,用壓力抽氣瓶將土壤空氣抽入採集袋。
用墨水筆在現場填寫《氣體樣品采樣交接記錄表》,字跡應端正、清晰、各欄內容填寫齊全。
采樣結束前,應核對采樣計劃、采樣記錄與樣品,如有錯誤或者漏采,應立即重采或補采。
⑹ 土壤取樣器有哪些
邯鄲清勝電子專用土鑽
技術參數:
.土鑽長度:1070mm
.鑽頭長度:163mm
.鑽頭外徑:63mm
.鑽頭內徑:58mm
功能及特點:
.體型小巧,使用方便
.可拆卸,攜帶方便
.結構設計合理,長久耐用
適用范圍:
.可廣泛配套用於土壤墒情監測系統、溫室大棚土壤濕度測量、地質情況勘探等場所或領域。