1. 螺旋輸送機的工作原理是怎麼樣的
螺旋輸送機是利用旋轉的螺旋將被輸送的物料沿固定的機殼內推移而進行輸送工作,頭部及尾部軸承移至殼體外,吊軸承採用滑動軸承設有防塵密封裝置,軸瓦一般採用粉末冶金,輸送水泥採用毛氈軸瓦,吊軸和螺旋軸採用滑塊連接。 螺旋輸送機一般由輸送機本體、進出料口及驅動裝置三大部分組成;螺旋輸送機的螺旋葉片有實體螺旋面帶式螺旋面和葉片螺旋面三種形式,其中,葉片式螺旋面應用相對較少,主要用於輸送粘度較大和可壓縮性物料,這種螺懸面型,在完成輸送作業過程中,同時具有並完成對物料的攪拌、混合等功能。螺旋輸送機與其它輸送設備相比,具有整機截面尺寸小、密封性能好、運行平穩可靠、可中間多點裝料和 卸料及操作安全、維修簡便等優點。螺旋輸送機頭部及尾部軸承移至殼體外,吊軸承採用滑動軸承,設有防塵密封裝置,軸瓦一般採用粉末冶金,輸送水泥採用毛氈軸瓦 、吊軸和螺旋軸採用滑塊連接,拆卸螺旋時,不用移動驅動裝置,拆卸吊軸承時不用移動螺旋,不拆卸蓋板可以潤滑吊軸承,整機可靠性高,壽命長,適應性強,安裝維修方便。
這個吧
3. 無軸螺旋輸送機設計要點
無軸螺旋輸送機設計要點
U形截面:外形與LS系列螺旋輸送機基本相同。
無軸螺旋輸送機:螺旋體為較厚的帶狀螺旋,無軸螺旋,頭部與驅動軸相聯。結構上分單、雙葉片兩種,材質上分碳鋼、不銹鋼兩類,安螺距比有1:1和2:3兩種。
滑動襯板:無軸螺旋體中間、尾部工作支撐件,材質上分高強度工程塑料、不銹鋼、其它高耐磨材料三類。 WLSY無軸螺旋輸送機
工作部件:與WLS型工作部件基本相同、吸收採用LSY系列螺旋輸送機優秀成熟的技術,兼有WLS型螺旋輸送機的結構特點。
圓管機殼:密閉性能好,可達氣密級(0.02mpa)性能,可在正、負壓工況條件下工作。
4. WLS無軸螺旋輸送機原理、特點、結構、安裝調試運行等參數!詳細的介紹下!
WLS型無軸螺旋輸送機簡介:
WLS型無軸螺旋輸送機是我廠技術部門在設計生產各類螺旋輸送機豐富經驗的基礎上,參照國家同類產品,聯合有關科研部門而設計開發的新型輸送機產品.
WLS型無軸螺旋輸送機主要用於環保、造紙、化工、食品、醫葯、飲料等行業輸送站附性較強的物料,糊狀粘稠物料(如化工原料、廢紙漿、麥芽、污泥等)以及易纏繞物料(如生活垃圾),具有獨特優勢。所以無軸螺旋輸送機又稱防纏繞輸送機、垃圾處理輸送機.
WLS型無軸螺旋輸送機輸送原理
WLS型無軸螺旋輸送機在輸送原理上與一般螺旋輸送機基本相同:即如同一根旋轉的螺旋軸,帶動一個螺母沿其軸向移動一樣,無軸螺旋輸送機螺旋體相當於螺旋軸,物料相當於螺旋輸送機螺母,當螺旋體連續旋轉時則物料也連續輸送。無軸螺旋輸送機螺旋體為較厚的帶狀葉片,通過無軸螺旋輸送機驅動端驅動,中間無軸,螺旋體與機殼內壁底部襯板接觸(滑動).
WLS型無軸螺旋輸送機特點
無軸螺旋輸送機與傳統有軸螺旋輸送機相比,因為採用了無中心軸設計,使用具有一定柔性的整體鋼制螺旋推送物料,所以具有以下突出優點:
無軸螺旋輸送機抗纏繞性強:因為無中心軸干擾,對於輸送帶狀、粘稠物料、易纏繞物料有特殊的優越性,如用於污水處理廠輸送中細格柵,其柵條凈距50mm的除污機柵渣和壓濾機泥餅等物料,或者垃圾處理場所處理運輸垃圾,能防止阻塞引起的事故。
無軸螺旋輸送機環保性能好。無軸螺旋輸送機採用全封閉輸送和易清洗的螺旋表面,可保證環境衛生和所送物料不受污染、不泄漏。
無軸螺旋輸送機扭距大、能耗低。由於螺旋無軸,物料不易堵塞,排料口不堵塞,因而可以較低速度運轉,平穩傳動,降低能耗。扭距可4000N/m。
無軸螺旋輸送機輸送量大。無軸螺旋輸送機輸送量是相同直徑傳統有軸螺旋輸送機的1.5倍。
無軸螺旋輸送機輸送距離長。單機輸送長度可達60米。並可根據用戶需要,採用多級串聯式安裝,超長距離輸送物料。
無軸螺旋輸送機能機動工作。我公司開發生產的移動型無軸螺旋輸送機,能機動工作,一機多用。既可下方出料,又可端頭出料。採用特製襯板,該機可在高溫下工作。結構緊湊,節省空間,外型美觀,操作簡便,經濟耐用.
WLS無軸螺旋輸送機的結構
WLS無軸螺旋輸送機主要由動力裝置、頭部裝配、機殼、無軸螺旋體、耐磨襯板、進料口、出料口、機蓋(需要時)、底座等組成。
1、WLS無軸螺旋輸送機驅動裝置:採用擺線針輪輪減速機或軸裝式硬齒面齒輪減速機,設計時應盡可能將驅動裝置設在出料口端,使螺旋體在運轉時處在受拉狀態。
2、WLS無軸螺旋輸送機頭部裝配有推力軸承,可承受輸送物料時產生的軸向力。
3、WLS無軸螺旋輸送機機殼:機殼為U型,上部加機蓋(需要時),材質有不銹鋼或碳鋼或玻璃鋼。
4、WLS無軸螺旋輸送機無軸螺旋體:材質為不銹鋼或耐磨鋼。
5、WLS無軸螺旋輸送機耐磨襯板:耐磨的非金屬材料。
6、WLS無軸螺旋輸送機進、出料口:有方形和圓形兩種,用戶無要求時按方形的供貨
型號名稱 WLS150 WLS200 WLS250 WLS300 WLS400 WLS500
螺旋體直徑(mm) 150 184 237 284 365 470
外殼管直徑(mm) 180 219 273 351 402 500
允許工作角度(α) 0°~30° 0°~30° 0°~30° 0°~30° 0°~30° 0°~30°
最大輸送長度(m) 12 13 16 18 22 25
最大輸送能力(t/h) 2.4 7 9 13 18 28
電機 型號 L≤7 Y90L-4 Y100L1-4 Y100L2-4 Y132S-4 Y160M-4 Y160M-4
功率kW 1.5 2.2 3 5.5 11 11
型號 L>7 Y100L1-4 Y100L2-4 Y112M-4 Y132M-4 Y160L-4 Y160L-4
功率kW 2.2 3 4 7.5 15 15
WLS無軸螺旋輸送機安裝、調試及運行
1、WLS無軸螺旋輸送機設備安裝要求:
a、WLS無軸螺旋輸送機進、出料口現場安裝,應使進出料口的法蘭支撐面與螺旋機的本體軸線平行;與相連接的法蘭應緊密貼合不得有間隙。
b、WLS無軸螺旋輸送機裝好以後,應檢查減速機是否加足潤滑油、若未加則加足之,其後進行無負載試車;在進行連續半小時以上試運轉後,檢查WLS無軸螺旋輸送機裝配的正確性,發現問題應立即停機,處理後再運轉,直至處於良好運行狀態為止。
c、WLS無軸螺旋輸送機運轉應平穩可靠,緊固件無松動現象。減速器無滲油、無異常聲,電氣設備安全可靠。
2、WLS無軸螺旋輸送機使用要求:
a、WLS無軸螺旋輸送機應無負荷起動,即在機殼內沒有物料時起動,起動後方能向WLS無軸螺旋輸送機給料。
b、WLS無軸螺旋輸送機初始給料時,應逐步增加給料量直至達到額定輸送能力,給料應均勻,否則容易造成輸送物料的積塞,驅動裝置的過載,使整台WLS無軸螺旋輸送機損壞。
c、為了保證WLS無軸螺旋輸送機無負荷起動的要求,WLS無軸螺旋輸送機在停車前應停止加料,等WLS無軸螺旋輸送機機殼內物料完全輸送完畢後方可停止運轉。
d、被輸送物料內不得混入堅硬的大塊物料,避免螺旋卡死而造成WLS無軸螺旋輸送機的損壞。
e、在使用中經常檢測WLS無軸螺旋輸送機各部分的工作狀態、注意各緊固件是否松動,如果發現機件松動,則應立即擰緊螺釘,使之重新堅固。
f、WLS無軸螺旋輸送機的機蓋在機器運轉時不應該取下,以免發生事故
5. 機械設計 螺旋輸送機傳動裝置設計
一、傳動方案擬定
螺旋輸送機用減速器方案如下圖所示
FD
V
二、電動機的選擇
電動機的選擇:選用Y系列三相非同步電動機
1.帶式輸送機所需功率
2.初估電動機額定功率P=
V帶效率=0.96,一對滾動軸承效率=0.99,閉式齒輪傳動效率=0.97(8級精度),聯軸器
3.確定電動機轉速
選擇同步轉速為1500電動機,型號為
4.各尺寸及主要性能如下:
額定功率
同步轉速
滿載轉速
額定轉矩
最大轉矩
質量
(kg)
4.0
1500
1440
2.2
2.2
43
機座號
中心高
安裝尺寸
軸伸尺寸
平鍵尺寸
外形尺寸
112M
112
A
B
D
E
G
L
HD
AC
AD
190
140
28
60
24
400
265
230
190
三、分配各級傳動比
初取V帶傳動比3
則兩斜圓柱齒輪 取
綜上取傳動比
四、 計算運動和動力參數(傳動裝置運動和動力參數的計算)
1.各軸轉速
電動機軸
I軸
II軸
III軸
捲筒軸IV
2.各軸輸入功率
I軸
II軸
III軸
捲筒軸IV
3.各軸輸入轉矩
I軸
II軸
III軸
捲筒軸IV
五、 減速器外傳動零件的設計計算
一 V帶的設計計算
1:確定計算功率
由V帶的工作情況和工作時間長短等因素 取
2:選擇帶型
根據計算功率小帶輪的轉速,由表8-6,可選 SPZ型V帶
3:確定帶輪的基準直徑
1):由表8-7,8-3,初選
2):驗算帶速度:
故V帶選擇合適
3):計算從動輪的基準直徑
由表8-7,選取
4:確定中心距
初選,帶的基準長度
由表8-2取
5:驗算主動輪的包角
,
主動輪的包角符合要求
6:確定窄V帶根數z
由查表8-5c和8-5d得:
由表8-8得:
由表8-2得:
代入式(8-22)得:
故z取z=3
7:計算帶的預緊力
查表8-4得:
由於新帶容易鬆弛,所以安裝新帶時的預緊力為上述預緊力的1.5倍
8:計算壓緊力
9驗算 實際傳動比:
9:帶輪結構設計
基準寬度
基準線上槽深
基準線下槽深
槽間距
第一槽對稱面
至端面的距離
最小帶輪緣厚
帶輪寬
外徑
輪槽角
6. 設計已螺旋輸送機的驅動裝置設計說明書
計算內容 計算結果
一, 設計任務書
設計題目:傳送設備的傳動裝置
(一)方案設計要求:
具有過載保護性能(有帶傳動)
含有二級展開式圓柱齒輪減速器
傳送帶鼓輪方向與減速器輸出軸方向平行
(二)工作機原始數據:
傳送帶鼓輪直徑___ mm,傳送帶帶速___m/s
傳送帶主動軸所需扭矩T為___N.m
使用年限___年,___班制
工作載荷(平穩,微振,沖擊)
(三)數據:
鼓輪D 278mm,扭矩T 248N.m
帶速V 0.98m/s,年限 9年
班制 2 ,載荷 微振
二.電機的選擇計算
1. 選擇電機的轉速:
a. 計算傳動滾筒的轉速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.計算工作機功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作機的有效功率
a. 傳動裝置的總效率
帶傳動的效率η1= 0.96
彈性聯軸器的效率η2= 0.99
滾筒的轉速
nw=67.326 r/min
工作機功率
pw=1.748Kw
計算內容 計算結果
滾動軸承的效率 η3=0.99
滾筒效率 η4=0.96
齒輪嚙合效率 η5=0.97
總效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需電動機輸出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 選擇電動機的型號:
查參考文獻[10] 表16-1-28得 表1.1
方案
號 電機
型號 電機
質量
(Kg) 額定
功率
(Kw) 同步
轉速(r/min) 滿載
轉速
(r/min) 總傳
動比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根據以上兩種可行同步轉速電機對比可見,方案2傳動比小且質量價格也比較合理,所以選擇Y112M-6型電動機。
三.運動和動力參數的計算
1. 分配傳動比取i帶=2.5
總傳動比 i=13.962
i減=i/i帶=13.962/2.5=5.585
減速器高速級傳動比i1= =2.746
減速器低速級傳動比i2= i減/ i1=2.034
2. 運動和動力參數計算:
總效率
η=0.816
電動機輸出功率
Pr=2.142kw
選用三相非同步電動機Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸軸段D×E=28×60
i=13.962
i12=2.746
i23=2.034
P0=2.142Kw
計算內容 計算結果
0軸(電動機軸):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ軸(減速器高速軸):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ軸(減速器中間軸):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m
Ⅲ軸(減速器低速軸):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ軸(鼓輪軸):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.傳動零件的設計計算
(一)減速器以外的傳動零件
1.普通V帶的設計計算
(1) 工況系數取KA=1.2
確定dd1, dd2:設計功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m
p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m
小帶輪轉速n1= n0=940 r/min
選取A型V帶 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取標准值dd2=315mm
實際傳動i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(誤差為6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取標准值dd2=315mm
實際傳動比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(誤差為8% 允許)
所選V帶帶速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之間 所選V帶符合
(2)確定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)
308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取標准值:Ld=1800mm
④中心距:a=a0+ (LdLc)/2=550+(1800-1807.559)/2
計算內容 計算結果
=546.221mm
取a=547mm,a的調整范圍為:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm
(2)驗算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)確定根數:z≥pc/p0』
p0』=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
對於A型帶:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0』=0.948 (1.327+0.149+0.0142)=1.413 Kw
確定根數:z≥ ≤Zmax
z= = 取z=2
(4)確定初拉力F0
F0=500 =500×
=175.633KN
(5)帶對軸的壓力Q
Q=2 F0zsin =2 =690.768KN
(二)減速器以內的零件的設計計算
1.齒輪傳動設計
(1)高速級用斜齒輪
① 選擇材料
小齒輪選用40Cr鋼,調質處理,齒面硬度250~280HBS大齒輪選用ZG340~ 640,正火處理,齒面硬度170 ~ 220HBS
應力循環次數N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文獻[2]圖5-17得:ZN1=1.02 Z N2=1.11(允許有一點蝕)
由文獻[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齒面硬度250HBS和170HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
許用接觸應力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以計算中取[σH]= [σH]2 =459.540 Mpa
②按接觸強度確定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i1 =2.746,取Φa=0.4
端面壓力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圓螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
計算中心距a:
計算內容 計算結果
a≥
=
=111.178mm
取中心距 a=112mm
估算模數mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取標准模數mn=2
小齒輪齒數
實際傳動比: 傳動比誤差 在允許范圍之內
修正螺旋角β=
10°50′39〃
與初選β=12°相近,Zβ,ZH可不修正。
齒輪分度圓直徑
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
③驗算齒面接觸疲勞強度
按電機驅動,載荷平穩,由文獻[2]表5-3 取 KA=1.25
由文獻[2]圖5-4(b),按8級精度和
取KV=1.023
齒寬 ,取標准b=45mm
由文獻[2]圖5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文獻[2]表5-4,Kα=1.2
載荷系數K= KAKVKβKα=
計算重合度:
齒頂圓直徑
端面壓力角:
齒輪基圓直徑: mm
mm
端面齒頂壓力角:
高速級斜齒輪主要參數:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齒寬b2=b=
45mm
b1= b2+(5~10)=50mm
計算內容 計算結果
齒面接觸應力
安全
④驗算齒根彎曲疲勞強度
由文獻[2]圖5-18(b)得:
由文獻[2]圖5-19得:
由文獻[2]式5-23:
取
計算許用彎曲應力:
計算內容
計算結果
由文獻[2]圖5-14得:
由文獻[2]圖5-15得:
由文獻[2]式5-47得計算
由式5-48: 計算齒根彎曲應力:
均安全。
⑵低速級直齒輪的設計
①選擇材料
小齒輪材料選用40Cr鋼,齒面硬度250—280HBS,大齒輪材料選用ZG310-570,正火處理,齒面硬度162—185HBS
計算應力循環次數N:同高速級斜齒輪的計算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
計算內容
計算結果
查文獻[2]圖5-17得:ZN1=1.12 Z N2=1.14
按齒面硬度250HBS和162HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文獻[2]式5-28計算許用接觸應力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接觸強度確定中心距
小輪轉距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i23=2.034,取Φa=0.35
計算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模數m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取標准模數m=2
小齒輪齒數
齒輪分度圓直徑
齒輪齒頂圓直徑:
齒輪基圓直徑: mm
mm
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
按電機驅動,載荷平穩,而工作機載荷微振,由文獻[2]表5-3 取 KA=1.25
按8級精度和 取KV=1.02
齒寬 b= ,取標准b=53mm
由文獻[2]圖5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文獻[2]表5-4,Kα=1.1
載荷系數K= KAKVKβKα=
計算端面重合度:
安全。
③校核齒根彎曲疲勞強度
按z1=50, z2=100,由文獻[2]圖5-14得YFa1=2.36 ,YFa2=2.22
由文獻[2]圖5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文獻[2]圖5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文獻[2]圖5-19,YN1= YN2=1.0,因為m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
計算許用彎曲應力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
計算齒根彎曲應力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.軸的結構設計和軸承的選擇
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速軸,l----低速軸)
考慮相鄰齒輪沿軸向不發生干涉,計入尺寸s=10mm,考慮齒輪與箱體內壁沿軸向不發生干涉,計入尺寸k=10mm,為保證滾動軸承放入箱體軸承座孔內,計入尺寸c=5mm,初取軸承寬度分別為n1=20mm,n2=22,n3=22mm,3根軸的支撐跨距分別為:
計算內容
低速級直齒輪主要參數:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齒寬b2 =b=53mm
b1=b2+
(5~10)=60mm
計算結果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=
172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速軸的設計:
①選擇軸的材料及熱處理
由於高速軸小齒輪直徑較小,所以採用齒輪軸,選用40r鋼,
②軸的受力分析:
如圖1軸的受力分析:
lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 計算齒輪嚙合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面內支承反力,軸在水平面內和垂直面的受力簡圖如下圖:
RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力
彎矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
轉矩T= Ft1 d1/2=51686.987N.mm
計算內容
計算結果
d≥ ③軸的結構設計
按經驗公式,減速器輸入端軸徑A0 由文獻[2]表8-2,取A0=100
則d≥100 ,由於外伸端軸開一鍵槽,
d=17.557(1+5%)=18.435取d=20mm,由於da1<2d,用齒輪軸,根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
高速軸上軸承選擇:選擇軸承30205 GB/T297-94。
(2)中間軸(2軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 計算齒輪嚙合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面內和垂直面內的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
計算內容
計算結果
181.656N
RA=2073.191N, RB=2341.392N
③軸的結構設計
按經驗公式, d≥A0 由文獻[2]表8-2,取A0=110
則d≥110 ,取開鍵槽處d=35mm
根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
中間軸上軸承選擇:選擇軸承6206 GB/T276-94。
(3)低速軸(3軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
初估軸徑:
d≥A0 =110
聯接聯軸器的軸端有一鍵槽,dmin=33.5(1+3%)=34.351mm,取標准d=35mm
軸上危險截面軸徑計算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取標准
計算內容 計算結果
50mm
初選6207GB/T276-94軸承,其內徑,外徑,寬度為40×80×18
軸上各軸徑及長度初步安排如下圖:
③低速級軸及軸上軸承的強度校核
a、 低速級軸的強度校核
①按彎扭合成強度校核:
轉矩按脈動循環變化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
計算彎矩圖如下圖:
計算內容
計算結果
Ⅱ剖面直徑最小,而計算彎矩較大,Ⅷ剖面計算彎矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
對於45號綱,σB=637Mp,查文獻[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精確校核低速軸的疲勞強度
a、 判斷危險截面:
各個剖面均有可能有危險剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面為過度圓角引起應力集中,只算Ⅱ剖面即可。Ⅰ剖面與Ⅱ剖面比較,只是應力集中影響不同,可取應力集中系數較大者進行驗算。Ⅸ--Ⅹ面比較,它們直徑均相同,Ⅸ與Ⅹ剖面計算彎矩值小,Ⅷ剖面雖然計算彎矩值最大,但應力集中影響較小(過盈配合及鍵槽引起的應力集中均在兩端),所以Ⅵ與Ⅶ剖面危險,Ⅵ與Ⅶ剖面的距離較接近(可取5mm左右),承載情況也很接近,可取應力集中系數較大值進行驗算。
計算內容
計算結果
b.較核Ⅰ、Ⅱ剖面疲勞強度:Ⅰ剖面因鍵槽引
起的應力集中系數由文獻[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的應力集中系數由文獻[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因過渡圓角引起的應力集中系數查文獻[2]附表1-2(用插入法): (過渡圓角半徑根據D-d由文獻[1]表4.2-13查取) kτ=1.419,故應按過渡圓角引起的應力集中系數驗算Ⅱ剖面
Ⅱ剖面產生的扭應力、應力幅、平均應力為:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
絕對尺寸影響系數查文獻[2]附表1-4得:εσ =0.88,ετ =0.81,表面質量系數查文獻[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系數為:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的應力集中系數查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因過渡圓角引起的應力集中系數查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因鍵槽引起的應力集中系數查文獻[2]附表1-1得:kσ=1.82, kτ=1.62。故應按過渡圓角引起
計算內容
計算結果
的應力集中系數來驗算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面產生的正應力及其應力幅、平均應力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面產生的扭應力及其應力幅,平均應力為:
τmax =TⅥ/ WT=266133/0.2×50³
絕對尺寸影響系數由文獻[2]附表1-4得:εσ =0.84,ετ
=0.78
表面質量系數由文獻[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系數:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各個軸上鍵的選擇及校核
1.高速軸上鍵的選擇:
初選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp,σp= 滿足要求;
計算內容
高速軸上
選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中間軸
選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,
計算結果
2.中間軸鍵的選擇:
A處:初選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 滿足要求;
B處:初選A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 滿足要求.
3. 低速軸上鍵的選擇:
a.聯軸器處選A型普通平鍵
初選A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp
σp= 滿足要求.
b. 齒輪處初選A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 滿足要求.
七.聯軸器的選擇
根據設計題目的要求,減速器只有低速軸上放置一聯軸器。
查表取工作情況系數K=1.25~1.5 取K=1.5
計算轉矩 Tc=KT=1.5×266.133=399.200Mp
選用HL3型聯軸器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所選聯軸器合適。
低速軸
聯軸器處選A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速軸
齒輪處初選A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm
選用HL3型聯軸器:J40×84GB5014-85
參考資料:機械課程設計,理論力學
7. 螺旋輸送機
螺旋輸送機是一種不帶撓性牽引構件的連續輸送設備,主要用來輸送粉狀或粒狀物料。
螺旋輸送機構造簡單,橫截面尺寸小,製造成本低,密封性好,操作安全方便,而且便於改變加料和卸料位置。其缺點是輸送過程中物料易過粉碎,輸送機零部件磨損較快,動力消耗大,輸送長度較小(<40m),輸送能力較低,傾斜輸送時傾角小於20°。
一、構造和工作原理
螺旋輸送機主要由料槽、輸送螺旋和驅動裝置組成。當機長較長時應加中間吊掛軸承,如圖9-17所示。螺旋葉片固裝在軸上,螺旋軸縱向裝在料槽內。每節軸有一定長度,節與節之間聯結處裝有懸掛軸承。一般頭節的螺旋軸與驅動裝置連接,出料口設在頭節的槽底,進料口設在尾節的蓋上。物料由進料口裝入,當電動機驅動螺旋軸轉動時,物料由於自重及與槽壁間摩擦力的作用,不隨同螺旋一起旋轉,這樣由螺旋軸旋轉產生的軸向推動力就直接作用到物料上,使物料沿軸向滑動。輸送物料情況恰似被持住而不能旋轉的螺母沿著螺桿作平移一樣,朝著一個方向推進到卸料口處卸出。
圖9-17螺旋輸送機
1-驅動裝置;2-出料口;3-螺旋軸;4-中間軸承;5-殼體;6-進料口
螺旋輸送機的螺旋分為實體螺旋、帶式螺旋及葉片螺旋三種,如圖9-18所示。
實體螺旋構造簡單,效率高,適宜輸送鬆散、乾燥、無粘性的物料。帶式螺旋加工製造較麻煩,強度較低,主要用於磨損和腐蝕性強及粒度較大的物料的輸送。葉片式螺旋加工製造麻煩,效率低,主要用於物料輸送過程中伴隨攪拌及混合等工藝要求的場合。
圖9-18螺旋面形狀
(a)實體螺旋;(b)帶式螺旋;(c)葉片螺旋
二、主要參數的確定
1.輸送能力
非金屬礦產加工機械設備
式中D——螺旋直徑(m);
s——螺距(m),全葉式螺旋s=0.8D,帶式螺旋s=D;
n——螺旋轉速(r/min);
φ——物料填充系數,見表9-23;
表9-23螺旋輸送機的物料參數
Ps——物料堆積密度,見表9-23;
C——輸送機傾斜修正系數,見表9-24。
表9-24螺旋輸送機傾斜修正系數C值
2.螺旋轉速
螺旋轉速太低,則輸送量不大;若轉速過高,物料受過大的切向力而被拋起,輸送能力降低,而且磨損增加。因此,螺旋軸轉速不能超過某一極限。螺旋軸的極限轉速可按如下經驗公式計算:
非金屬礦產加工機械設備
式中KL為物料綜合特性系數,見表9-23;
由上式計算出的轉速,應圓整為下列轉速:20、30、35、45、60、75、90、120、150、190r/min。
3.螺旋直徑
已知輸送量及物料特性,則螺旋直徑可由式9-28導出整理求得:
非金屬礦產加工機械設備
式中K為物料綜合特性經驗系數,見表9-22。
如果輸送物料的塊度較大,螺旋直徑應根據下式進行校核:
對於篩分過的物料D≥(4~6)dmax;
對於篩分的物料D≡(8~12)dmax。
式中dmax為被輸送物料的極大直徑。
按上述求得的螺旋直徑,應圓整為下列標准螺旋直徑:150、200、250、300、400、500、600mm。
4.功率
螺旋輸送機所需功率用於克服以下阻力:物料對料槽以及螺旋的摩擦阻力;傾斜輸送時,提升物料的阻力;物料的攪拌及部分被破碎的阻力;傳動阻力等。上述各項阻力中,除了輸送和提升物料的阻力可以精確計算外,其他阻力要逐項精確計算是困難的。一般認為,螺旋輸送機的功率消耗與輸送量及機長成正比,而把所有損失歸入一個總系數內,即阻力系數ζ,因此螺旋軸所需功率可按下列計算:
非金屬礦產加工機械設備
式中Q——輸送機的輸送能力(t/h);
ζ——物料阻力系數,見表9-25;
L——輸送機長度(m)。
式中向上輸送時取「+」號;向下輸送時取「-」號。電動機所需功率則為:
非金屬礦產加工機械設備
式中K——功率儲備系數,一般為1.2~1.4;
η——總傳動效率,一般取0.9~0.94。
表9-25輸送物料的阻力系數ζ值
8. 螺旋輸送機詳細結構
一、根述
ls500螺旋輸送機是我公司結合了國內外各種螺旋輸送機經驗,設計研究開發而成的產品,該產品能滿足各攪拌站(樓)配料秤的要求,產品銷往全國各地,配套於各種混合機。並出口遠銷國外。
二、產品適用范圍
螺旋輸送機不僅適用於建築機械行業砼攪拌站輸送水泥、石灰、粉煤灰之用,螺旋輸送機也適用於冶金、化工、機械、輕工、建材、食品、糧食倉儲等行業,輸送松
散粉狀或小顆粒物料,如:煤粉、燒結礦粉、尿素、復合肥、干砂、麵粉、穀物等。
三、產品結構特點
1、ls500螺旋輸送機屬非基礎定式,螺旋輸送機由減速電機裝置與外殼管,螺旋總成依次相邊,結合成一台整套設備,移動、拆裝十分方便。
2、螺旋總成與軸端採用花鍵連接,裝拆方便,承載能力大,對中性好,安全可靠。
3、密封性能好,外殼采且無縫鋼管製作,各端部通過法蘭聯接,整機無粉塵泄露,既不浪費材料,以創造成了良好的工作環境,符合環保要求。
4、體積小、轉速高、變螺距、確保快速均勻輸送。
5、進料口可根據工作現場情況製成所需的傾斜角度,並可採用法蘭聯接,布袋連接和萬向節式法蘭連接,用戶可根據需要選用。(訂貨時說明)