『壹』 帶式輸送機傳動裝置的設計
一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.
六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm
II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N•m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N•m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危險截面C的強度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。
主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N•m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠
(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min
(1)已知nII=121.67(r/min)
兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠
二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠
七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。
八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.
放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:
:
(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20
(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2
(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3
D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.
九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。
十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。
十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版
『貳』 如何 設計 帶式輸送機傳動裝置(急急急,謝謝大家了!!!)
一.已知條件:運輸帶工作拉力F=2000,運輸帶工賣舉作速度V=1.8m/s。滾筒直徑D=450mm,每日工作時速24T/h。傳動不逆轉,載荷平穩,工作年限5年。(啟動載荷為名義載態喚荷的1.25倍,輸送帶的速度允許誤差為5%)
二.應完成的工作
1.擬定、分析傳動裝置的設計方案
2.選擇電動機,計算傳動裝置的運動和動力系數。
3.設計說明書一份帆配凱。
『叄』 帶式運輸機傳動裝置設計
1根據捲筒直徑和帶速計算出捲筒轉速,根據捲筒直徑和帶拉力計算出捲筒轉矩。
2算出功率。
3根據功率及工作條件選擇電機
4根據電機和捲筒的轉速,轉矩,工作條件設計齒輪副
5計算和設計軸,軸連接方式,殼體……
6整理計算過程成文,畫圖
『肆』 帶式輸送機傳動裝置設計
一、帶式輸送機傳動裝置,可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,不過增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
二、設計安裝調試:
1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。
『伍』 求帶式輸送機傳動裝置設計
課程設計說明書
一.電動機的選擇:
1.選擇電動機的類型:
按工作要求和條件,選用三機籠型電動機,封閉式結構,電壓380V,Y系列斜閉式自扇冷式鼠籠型三相非同步電動機。(手冊P167)
選擇電動機容量 :
滾筒轉速:
負載功率:
KW
電動機所需的功率為:
(其中: 為電動機功率, 為負載功率, 為總效率。)
2.電動機功率選擇:
折算到電動機的功率為:
3.確定電動機型號:
按指導書 表1推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍為: .取V帶傳動比 ,則總傳動比理論范圍為 ,故電動機轉速的可選范圍為
符合這一范圍的同步轉速有750,1000和1500
查手冊 表 的:選定電動機類型為:
其主要性能:額定功率: ,滿載轉速: ,額定轉速: ,質量:
二、確定傳動裝置的總傳動比和分配傳動比
1.減速器的總傳動比為:
2、分配傳動裝置傳動比:
按手冊 表1,取開式圓柱齒輪傳動比
因為 ,所以閉式圓錐齒輪的傳動比 .
三.運動參數及動力參數計算:
1.計算各軸的轉速:
I軸轉速:
2.各軸的輸入功率
電機軸:
I軸上齒輪的輸入功率:
II軸輸入功率:
III軸輸入功率:
3.各軸的轉矩
電動機的輸出轉矩:
四、傳動零件的設計計算
1.皮帶輪傳動的設計計算:
(1)選擇普通V帶
由課本 表5.5查得:工作情況系數:
計算功率:
小帶輪轉速為:
由課本 圖5.14可得:選用A型V帶:小帶輪直徑
(2)確定帶輪基準直徑,並驗算帶速
小帶輪直徑 ,參照課本 表5.6,取 ,
由課本 表5.6,取
實際從動輪轉速:
轉速誤差為:
滿足運輸帶速度允許誤差要求.
驗算帶速
在 范圍內,帶速合適.
(3)確定帶長和中心距
由課本 式5.18得:
查課本 表5.1,得:V帶高度:
得:
初步選取中心距:
由課本 式5.2得:
根據課本 表5.2選取V帶的基準長度:
則實際中心距:
(4)驗算小帶輪包角:
據課本 式5.1得: (適用)
(5)確定帶的根數:
查課本 表5.3,得: .查課本 表5.4,得:
查課本 表5.4,得: .查課本 表5.2,得:
由課本 式5.19得:
取 根.
(6)計算軸上壓力
查課本 表5.1,得:
由課本 式5.20,得:單根V帶合適的張緊力:
由課本 式5.21,得:作用在帶輪軸上的壓力為 :
2、齒輪傳動的設計計算:
(1)選擇齒輪材料及精度等級
初選大小齒輪的材料均為45鋼,經調質處理,硬度為
由課本表取齒輪等級精度為7級,初選
(2)計算高速級齒輪
<1>查課本 表6.2得:
取 ,
由課本 圖6.12取 ,由課本 表6.3,取 ,
齒數教少取 ,取 則 .
<2>接觸疲勞許用應力
由課本 圖6.14查得: .
由課本 表6.5,查得: ,
則應力循環次數:
查課本 圖6.16可得接觸疲勞的壽命系數: ,
.
<3>計算小齒輪最小直徑
計算工作轉矩:
由課本 表6.8,取: ,
<4>確定中心距:
為便於製造和測量,初定: .
<5>選定模數 齒數 和螺旋角
一般: ,初選: 則 .
由 得:
由課本 表6.1取標准模數: ,則:
取 ,則: .
取 , .
齒數比:
與 的要求比較,誤差為1.6%,可用.是:
滿足要求.
<6>計算齒輪分度圓直徑
小齒輪: ;
大齒輪:
<7>齒輪寬度
圓整得大齒輪寬度: ,取小齒輪寬度: .
<8>校核齒輪彎曲疲勞強度
查課本 圖6.15,得 ;
查課本 表6.5,得: ;
查課本 圖6.17得:彎曲強度壽命系數: ;
由課本 表6.4,得: ,
Z較大 ,取 ,
則: ,
所以兩齒輪齒根彎曲疲勞強度滿足要求,此種設計合理.
〈9〉齒輪的基本參數如下表所示:
名稱 符號 公式 齒1 齒2
齒數
19 112
分度圓直徑
58.015 341.985
齒頂高
3 3
齒根高
3.75 3.75
齒頂圓直徑
64.015 347.985
齒根圓直徑
50.515 334.485
中心距
200
孔徑 b
齒寬
80 75
五、軸的設計計算及校核:
1.計算軸的最小直徑
查課本 表11.3,取:
軸:
軸:
軸:
取最大轉矩軸進行計算,校核.
考慮有鍵槽,將直徑增大 ,則: .
2.軸的結構設計
選材45鋼,調質處理.
由課本 表11.1,查得: .
由課本 表11.4查得: , .
由課本 式10.1得:聯軸器的計算轉矩:
由課本 表10.1,查得: ,
按照計算轉矩應小於聯軸器公稱轉矩的條件,查手冊 表8-7,
選擇彈性柱銷聯軸器,型號為: 型聯軸器,其公稱轉矩為:
半聯軸器 的孔徑: ,故取: .
半聯軸器長度 ,半聯軸器與軸配合的轂孔長度為: .
(1)軸上零件的定位,固定和裝配
單級減速器中可以將齒輪安排在箱體中央,相對兩軸承對稱分布.齒輪左面由套筒定位,右面由軸肩定位,聯接以平鍵作為過渡配合固定,兩軸承均以軸肩定位.
(2)確定軸各段直徑和長度
<1> 段:為了滿足半聯軸器的軸向定位要求, 軸段右端需制出一軸肩,故取 段的直徑 ,左端用軸端擋圈定位,查手冊表按軸端去擋圈直徑 ,半聯軸器與軸配合的轂孔長度: ,為了保證軸端擋圈只壓在半聯軸器上而不壓在軸的端面上,故段的長度應比略短,取: .
<2>初步選擇滾動軸承,因軸承同時受有徑向力和軸向力的作用 ,故選用蛋列圓錐滾子軸承,參照工作要求並根據: .
由手冊 表 選取 型軸承,尺寸: ,軸肩
故 ,左端滾動軸承採用縐件進行軸向定位,右端滾動軸承採用套筒定位.
<3>取安裝齒輪處軸段 的直徑: ,齒輪右端與右軸承之間採用套筒定位,已知齒輪輪轂的寬度為 ,為了使套筒端面可靠地壓緊齒輪,此軸段應略短與輪轂寬度,故取: ,齒輪右端採用軸肩定位,軸肩高度 ,取 ,則軸環處的直徑: ,軸環寬度: ,取 , ,即軸肩處軸徑小於軸承內圈外徑,便於拆卸軸承.
<4>軸承端蓋的總寬度為: ,取: .
<5>取齒輪距箱體內壁距離為: .
, .
至此,已初步確定了軸的各段直徑和長度.
(3)軸上零件的周向定位
齒輪,半聯軸器與軸的周向定位均採用平鍵聯接
按 查手冊 表4-1,得:平鍵截面 ,鍵槽用鍵槽銑刀加工,長為: .
為了保證齒輪與軸配合有良好的對中性,故選擇齒輪輪轂與軸的配合為; ,半聯軸器與軸的聯接,選用平鍵為: ,半聯軸器與軸的配合為: .
滾動軸承與軸的周向定位是借過渡配合來保證的,此處選軸的直徑尺寸公差為: .
(4)確定軸上圓角和倒角尺寸,
參照課本 表11.2,取軸端倒角為: ,各軸肩處圓角半徑: 段左端取 ,其餘取 , 處軸肩定位軸承,軸承圓角半徑應大於過渡圓角半徑,由手冊 ,故取 段為 .
(5)求軸上的載荷
在確定軸承的支點位置時,查手冊 表6-7,軸承 型,取 因此,作為簡支梁的軸的支撐跨距 ,據軸的計算簡圖作出軸的彎矩圖,扭矩圖和計算彎矩圖,可看出截面處計算彎矩最大 ,是軸的危險截面.
(6)按彎扭合成應力校核軸的強度.
<1>作用在齒輪上的力
因已知低速級大齒輪的分度圓直徑為: ,
得: , , .
<2>求作用於軸上的支反力
水平面內支反力:
垂直面內支反力:
<3>作出彎矩圖
分別計算水平面和垂直面內各力產生的彎矩.
計算總彎矩:
<4>作出扭矩圖: .
<5>作出計算彎矩圖: ,
.
<6>校核軸的強度
對軸上承受最大計算彎矩的截面的強度進行校核.
由課本 式11.4,得: ,
由課本 表11.5,得: ,
由手冊 表4-1,取 ,計算得: ,
得: 故安全.
(7)精確校核軸的疲勞強度
校核該軸截面 左右兩側.
<1>截面 右側:由課本 表11.5,得:
抗彎截面模量: ,
抗扭截面模量: ,
截面 右側的彎矩: ,
截面 世上的扭矩為: ,
截面上的彎曲應力: ,
街面上行的扭轉切應力: .
截面上由於軸肩而形成的理論應力集中系數 及 ,
由課本 圖1.15,查得:
得:
由課本 圖1.16,查得:材料的敏性系數為:
故有效應力集中系數為:
由課本 圖1.17,取:尺寸系數 ;扭轉尺寸系數: .
按磨削加工,
由課本 圖1.19,取表面狀態系數: .
軸未經表面強化處理,即: .
計算綜合系數值為:
.
由課本第一章取材料特性系數: .
計算安全系數 :
由課本 式,得: ,
.
由課本 表11.6,取疲勞強度的許用安全系數: .
,故可知其安全.
<2>截面 左側
抗彎截面模量為: .
抗扭截面模量為: .
彎矩及彎曲應力為: ,
扭矩及扭轉切應力為: ,
過盈配合處的 值: ,由 ,得: .
軸按磨削加工,由課本 圖1.19,取表面狀態系數為: .
故得綜合系數為: ,
.
所以在截面 右側的安全系數為: ,
.
.
故該軸在截面右側的強度也是足夠的.
3. 確定輸入軸的各段直徑和長度
六. 軸承的選擇及計算
1.軸承的選擇:
軸承1:單列圓錐滾子軸承30211(GB/T 297-1994)
軸承2:單列圓錐滾子軸承30207(GB/T 297-1994)
2.校核軸承:
圓錐滾子軸承30211,查手冊:
由課本 表8.6,取
由課本 表8.5,查得:單列圓錐滾子軸承 時的 值為: .
由課本 表8.7,得:軸承的派生軸向力: , .
因 ,故1為松邊,
作用在軸承上的總的軸向力為: .
查手冊 表6-7,得:30211型 , .
由課本 表8.5,查得: ,
,得: .
計算當量動載荷: ,
.
計算軸承壽命,由課本 式8.2,得: 取: .
則: .
七.鍵的選擇和計算
1.輸入軸:鍵 , , 型.
2.大齒輪:鍵 , , 型.
3.輸出軸:鍵 , , 型.
查課本 表3.1, ,式3.1得強度條件: .
校核鍵1: ;
鍵2: ;
鍵3: .
所有鍵均符合要求.
八.聯軸器的選擇
選擇 軸與電動機聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
選擇 軸與 軸聯軸器為彈性柱銷聯軸器
型號為: 型聯軸器:
公稱轉矩: 許用轉速: 質量: .
九.減數器的潤滑方式和密封類型的選擇
1、 減數器的潤滑方式:飛濺潤滑方式
2、 選擇潤滑油:工業閉式齒輪油(GB5903-95)中的一種。
3、 密封類型的選擇:密封件:氈圈1 30 JB/ZQ4606-86
氈圈2 40 JB/ZQ4606-86
十.設計小節
對一級減速器的獨立設計計算及作圖,讓我們融會貫通了機械專業的各項知識,更為系統地認識了機械設計的全過程,增強了我們對機械行業的深入了解,同時也讓我們及時了解到自己的不足,在今後的學習中會更努力地探究.
十一.參考資料
1.「課本」:機械設計/楊明忠 朱家誠主編 編號 ISBN 7-5629-1725-6 武漢理工大學出版社 2004年6月第2次印刷.
2.「手冊」:機械設計課程設計手冊/吳宗澤,羅聖國主編 編號ISBN7-04-019303-5 北京高等教育出版社 2006年11月第3次印刷.
3「指導書」:機械設計課程設計指導書/龔桂義,羅聖國主編 編號ISBN 7-04-002728-3 北京高等教育出版社 2006年11月第24次印刷.
『陸』 設計帶式運輸機傳動裝置
目 錄一、 傳動方案擬定-------------------------二、 電動機的選擇-------------------------三、 各軸運動的總傳動比並分配各級傳動比---四、 運動參數及動力參數計算----------------五、 V帶傳動設計---------------------------六、 齒輪傳動設計-------------------------七、 軸的設計-----------------------------八、 滾動軸承的選擇及校核計算-------------九、 鍵的校核計算--------------------- 十、 聯軸器的選擇--------------------------十一、 潤滑與密封 ---------------------------十二、 減速器附件的選擇及簡要說明----------------十三、 箱體主要結構尺寸的計算--------------------十四 參考文獻一、傳動方案擬定第四個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器1、 工作條件:使用年限5年,每年按300天計算,兩班制工作,單向運轉,載荷平穩。2、 原始數據:滾筒圓周力F=2.5KN;帶速V=1.5m/s;滾筒直徑D=300mm。 運動簡圖 二、電動機的選擇1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。2、確定電動機的功率:(1)傳動裝置的總效率:η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒=0.96×0.992×0.97×0.98×0.96=0.859(2)電機所需的工作功率:Pd=FV/1000η總=2500×1.5/(1000×0.859) =4.37KW(3)選用電動機查JB/T9616 1999選用Y132M2-6三相非同步電動機,主要參數如下表1-2: 型 號額定功率KW轉速r/min電流A效率%功率因數堵轉電流額定電流堵轉扭矩額定轉矩最大轉矩額定轉矩Y132M2-6 5.5 960 12.6 85.3 0.78 6.5 2.0 2.2三、各軸運動的總傳動比並分配各級傳動比1、總傳動比:工作機的轉速 n筒=60×1000V/(πD)=60×1000×1.5/(4.14×300)=95.49r/mini總=n電動/n筒=960/95.49=10.052、分配各級傳動比(1) 取i帶=2.5(2) ∵i總=i齒×i 帶∴i齒=i總/i帶=10.05/2.5=4.02 四、運動參數及動力參數計算1、計算各軸轉速(r/min)n電=960(r/min) nI=n電/i帶=960/2.5=384(r/min)nII=nI/i齒=384/4.02=95.52(r/min)n筒=nII=95.52 (r/min)2、 計算各軸的功率(KW) P電= Pd=4.37KWPI=Pd×η帶=4.73×0.96=4.20KW PII=PI×η軸承×η齒輪=4.2×0.99×0.97=4.03KWP筒=PI×η軸承×η聯軸器=4.03×0.99×0.98=3.91KW3、 計算各軸轉矩T電=9.55Pd/nm=9550×4.73/960=43.47N·mTI=9.55 PI /n1 =9550×4.2/384=104.45N·mTII =9.55 PII /n2=9550×4.03/95.52=402.92N·m T筒=9.55 P筒/n筒=9550×3.91/95.52=390.92 N·m將上述數據列表如下: 軸名參數 電動機I軸II軸滾筒軸轉速n(r/min)96038495.5295.52功率p(kw)4.374.204.033.91轉矩T(N·m)43.47104.45402.92390.92傳動比i2.54.021.00效率η0.960.960.98 五、V帶傳動設計1、 選擇普通V帶截型由課本[1]表15-8得:kA=1.2 P電=4.37KWPC=KAP電=1.2×4.37=5.24KW據PC=5.24KW和n電=960r/min由[1]圖15-8得:選用A型V帶2、 確定小帶輪基準直徑由課本[1]表15-8,表15-4,表15-6,取dd1=112mm3、 確定大帶輪基準直徑 dd2=i帶=2.5×112=280 mm4、驗算帶速帶速V:V=πdd1n1/(60×1000)=π×112×960/(60×1000) =5.63m/s在5~25m/s范圍內,帶速合適5、初定中心距a0 0.7(dd1+ dd2)≤ a0 ≤ 2(dd1+ dd2)得 274.4≤a0≤784取a0=530 mm6、確定帶的基準長L0=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0=2×530+3.14(112+280)+(280-112)2/(4×530)=1689mm根據課本[1]表15-2選取相近的Ld=1800mm7、確定實際中心距aa≈a0+(Ld-Ld0)/2=530+(1800-1689)/2=585.5mm8、驗算小帶輪包角α1=180°-57.3° ×(dd2-dd1)/a=180°-57.3°×(280-112)/585.5=163.33°>120°(適用)9、確定帶的根數單根V帶傳遞的額定功率.據dd1和n1,查課本[1]表15-7得 P0=1.16KWi≠1時單根V帶的額定功率增量.據帶型及i查[1]表15-9得 △P0=0.11KW查[1]表15-10,得Kα=0.957;查[1]表15-12得 KL=1.01Z=PC/[(P1+△P1)KαKL]=5.24/[(1.16+0.11) ×0.957×1.01]=4.27 取Z=5根10、計算軸上壓力由課本[1]表15-1查得q=0.11kg/m,單根V帶的初拉力:F0=500PC/ZV(2.5/Kα-1)+qV2=500x5.24/5x5.63(2.5/0.957-1)+0.11x5.632 =153.55kN則作用在軸承的壓力FQFQ=2ZF0sin(α1/2)=2×5×153.55sin(163.55°/2)=1519.7N11、計算帶輪的寬度BB=(Z-1)e+2f=(5-1)×15+2×10=80 mm六、齒輪傳動設計(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常齒輪採用軟齒面。選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度229-286HBW;大齒輪材料也為45鋼,正火處理,硬度為169-217HBW;精度等級:運輸機是一般機器,速度不高,故選8級精度(2)按齒面接觸疲勞強度設計該傳動為閉式軟齒面,主要失效形式為疲勞點蝕,故按齒面接觸疲勞強度設計,再按齒根彎曲疲勞強度校核。設計公式為:d1≥ [(2k TI (u+1)(ZhZe)2/(φ[σH]2)]1/3①載荷系數K 查課本[1]表13-8 K=1.2 ②轉矩TI TI=104450N·mm ③解除疲勞許用應力[σH] =σHlim ZN/SH按齒面硬度中間值查[1]圖13-32 σHlim1=600Mpa σHlim2=550Mpa接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算N1=60×384×5×300×16=5.53x108N2=N1/i齒=5.53x109 /4.02=1.38×108查[1]課本圖13-34中曲線1,得 ZN1=1.05 ZN2=1.1按一般可靠度要求選取安全系數SH=1.0[σH]1=σHlim1ZN1/Shmin=600x1.05/1=630 Mpa[σH]2=σHlim2ZN2/Shmin=550x1.1/1=605Mpa故得:[σH]= 605Mpa④計算小齒輪分度圓直徑d1由[1]課本表13-9 按齒輪相對軸承對稱布置,取 φd=1.0 ZH=2.5由[1]課本表13-10得ZE=189.8(N/mm2)1/2將上述參數代入下式d1≥ [(2k TI (u+1)(ZHZE)2/φ[σH]2)]1/3=[(2×1.2×104450 × (4.02+1)×(2.5×189.8)2/(1×4.02×6052)]1/3=57.5mm 取d1=60 mm⑤計算圓周速度V= nIπd1/(60×1000)=384×3.14×60/(60×1000)=1.21m/sV<6m/s 故取8級精度合適(3)確定主要參數①齒數 取Z1=24 Z2=Z1×i齒=24×4.02≈96.48=97②模數 m=d1/Z1=60/24=2.5 符合標准模數第一系列③分度圓直徑d2=Z2 m=24×2.5=60mm d2=Z2 m=97×2.5=242.5 mm④中心距a=(d1+ d2)/2=(60+242.5)/2=151.25mm⑤齒寬 b=φdd1=1.0×60=60mm 取b2=60mm b1=b2+5 mm=65 mm(4)校核齒根彎曲疲勞強度①齒形因數Yfs 查[1]課本圖13-30 Yfs1=4.26 Yfs2=3.97 ②許用彎曲應力[σF] [σF]=σFlim YN/SF 由課本[1]圖13-31 按齒面硬度中間值得σFlim1=240Mpa σFlim2 =220Mpa 由課本[1]圖13-33 得彎曲疲勞壽命系數YN:YN1=1 YN2=1 按一般可靠性要求,取彎曲疲勞安全系數SF=1 計算得彎曲疲勞許用應力為[σF1]=σFlim1 YN1/SF=240×1/1=240Mpa[σF2]= σFlim2 YN2/SF =220×1/1=220Mpa校核計算 σF1=2kT1YFS1/ (b1md1)=2×1.2×104450×4.26/(60×2.5×60)=118.66Mpa< [σF1]σF2=2kT1YFS2/ (b2md1)=118.66×3.97/4.26=110.58Mpa< [σF2]故輪齒齒根彎曲疲勞強度足夠(5)齒輪的幾何尺寸計算 齒頂圓直徑dada1 =d1+2ha=60+5=65mmda2=d2+ ha=242.5+5=247.5mm 齒全高h h=(2 ha*+c*)m=(2+0.25)×2.5=5.625 mm 齒根高hf=(ha*+c*)m=1.25×2.5=3.125mm 齒頂高ha= ha*m = 1×2.5=2.5mm 齒根圓直徑dfdf1=d1-2hf=60-6.25=53.75mmdf2=d2-2hf=242.5-6.25=236.25mm (6)齒輪的結構設計小齒輪採用齒輪軸結構,大齒輪採用鍛造毛坯的腹板式結構。大齒輪的有關尺寸計算如下:軸孔直徑d=60mm輪轂直徑D1=1.6d=60×1.6=96mm輪轂長度L=1.2d=1.2×60=72mm輪緣厚度δ0=(3-4)m=7.5-10mm 取δ0=10mm輪緣內徑D2=da2-2h-2δ0=247.5-2×5.625-20=216.25 mm 取D2 =216mm腹板厚度C=(0.2-0.3)b=12-18mm取C=18mm腹板中心孔直徑D0=0.5(D1+D2)=0.5(96+216)=156mm腹板孔直徑d0=15-25mm 取d0=20mm齒輪倒角取C2七、軸的設計 從動軸設計 1、選擇軸的材料 確定許用應力 選軸的材料為45號鋼,調質處理。查[1]表19-14可知:σb=600Mpa,查[1]表19-17可知:[σb] -1=55Mpa 2、按扭矩估算軸的最小直徑 單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,從結構要求考慮,輸出端軸徑應最小,最小直徑為: d≥A(PⅡ/nⅡ)1/3 查[1]表19-16 A=115 則d≥115×(4.03/95.52)1/3mm=40mm 考慮鍵槽的影響,故應將軸徑增大5%即d=40×1.05=42mm 要選聯軸器的轉矩Tc Tc=KTⅡ=1.5×402920=6.0438×105N·mm (查[1]表20-1 工況系數K=1.5) 查[2]附錄6 選用連軸器型號為YLD10考慮聯軸器孔徑系列標准 故取d=45mm 3、軸的結構設計 軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。 1)聯軸器的選擇 聯軸器的型號為YLD10聯軸器:45×112 (2)確定軸上零件的位置與固定方式 單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置。在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠軸環和擋油環實現軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸承靠擋油環和端軸承蓋實現軸向定位,靠過盈配合實現周向固定,聯軸器靠軸肩平鍵和過盈配合分別實現軸向定位和周向定位。 (3)確定各段軸的直徑將估算軸d=45mm作為外伸端直徑d1與聯軸器相配(如圖),考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=50mm,齒輪和右端軸承從右側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=55mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=60mm。齒輪左端用軸環固定,右端用擋油環定位,軸環直徑d5滿足齒輪定位的同時,還應滿足左側軸承的安裝要求,d5=68mm,根據選定軸承型號確定.左端軸承型號與左端軸承相同,取d6=55mm. (4)選擇軸承型號由[2]附表5-1初選深溝球軸承,代號為6211,軸承寬度B=21。 (5)確定軸各段直徑和長度由草繪圖得Ⅰ段:d1=45mm 長度L1=110mmII段:d2=50mm 長度L2=60mmIII段:d3=55mm 長度L3=43mmⅣ段:d4=60mm 長度L4=70mmⅤ段:d5=68mm 長度L5=6mmⅦ段:d4=55mm 長度L6=35mm由上述軸各段長度可算得軸支承跨距L=133mm4、按彎矩復合強度校核(1)齒輪上作用力的計算 齒輪所受的轉矩:T=TⅡ=402.92N·m 齒輪作用力: 圓周力:Ft=2000T/d=2000×402.92/242.5=3323.1N 徑向力:Fr=Fttan200=3323.1×tan200=1209.5N(2)因為該軸兩軸承對稱,所以:LA=LB=66.5mm(3)繪制軸受力簡圖(如圖a)(4)計算支承反力 FHA=FHB=Fr/2=1209.5/2=604.8NFVA=FVB=Ft/2=3323.1/2=1661.5N (5)繪制彎矩圖由兩邊對稱,知截面C的彎矩也對稱。截面C在水平面彎矩(如圖b)為MHC=FHAL/2=604.8×133÷2000=40.22N?m截面C在豎直面上彎矩(如圖c)為:MVC=FVAL/2=1661.5×133÷2000=110.49N?m(6)繪制合彎矩圖(如圖d)MC=(MHC 2+ MVC 2)1/2=(40.222+110.492)1/2=117.58N?m(7)繪制扭矩圖(如圖e)轉矩:T=TⅡ=402.92N·m(8)校核軸的強度轉矩產生的扭剪可認為按脈動循環變化,取α=0.6,截面C處的當量彎矩:Mec=[MC2+(αT)2]1/2=[117.582+(0.6×402.92)2]1/2=268.8N·m(9)校核危險截面C所需的直徑de=[Me /(0.1[σb] -1)]1/3=[268.8 /(0.1×55)]1/3=36.6mm考慮鍵槽的影響,故應將軸徑增大5%de=36.6×1.05=38.4mm<60mm結論:該軸強度足夠。
『柒』 帶式傳輸機傳動裝置的設計
設計—用於帶式運輸機上的單級直齒圓柱減速器,已知條件:運輸帶的工作拉力F=1350 N,運輸帶的速度V=1.6 m/s捲筒直徑D=260 mm,兩班制工作(12小時),連續單向運轉,載荷平移,工作年限10年,每年300工作日,運輸帶速度允許誤差為±5%,捲筒效率0.96
一.傳動方案分析:
如圖所示減速傳動由帶傳動和單級圓柱齒輪傳動組成,帶傳動置於高速級具有緩沖吸振能力和過載保護作用,帶傳動依靠摩擦力工作,有利於減少傳動的結構尺寸,而圓柱齒輪傳動布置在低速級,有利於發揮其過載能力大的優勢
二.選擇電動機:
(1)電動機的類型和結構形式,按工作要求和工作條件,選用一般用途的Y系列三相非同步交流電動機。
(2)電動機容量:
①捲筒軸的輸出功率Pw=FV/1000=1350×1.6/1000=2.16 kw
②電動機輸出功率Pd=Pw/η
傳動系統的總效率:η=
式中……為從電動機至捲筒之間的各傳動機構和軸承的效率。
由表查得V帶傳動=0.96,滾動軸承=0.99,圓柱齒輪傳動
=0.97,彈性連軸器=0.99,捲筒軸滑動軸承=0.96
於是η=0.96××0.97×0.99×0.96≈0.88
故:
Pd= Pw/η=2.16/0.88≈2.45 kw
③ 電動機額定功率由表取得=3 kw
(3)電動機的轉速:由已知條件計算捲筒的轉速
即:
=60×1000V/πD=60×1000×1.6/3.14×260=118 r/min
V帶傳動常用傳動比范圍=2-4,單級圓柱齒輪的傳動比范圍=2-4
於是轉速可選范圍為 ==118×(2~4)×(2~4)
=472~1888 r/min
可見同步轉速為 500 r/min和2000 r/min的電動機均合適,為使傳動裝置的傳動比較小,結構尺寸緊湊,這里選用同步轉速為960 ×r/min的電動機
傳動系統總傳動比i= =≈2.04
根據V帶傳動的常用范圍=2-4取=4
於是單級圓柱齒輪減速器傳動比 ==≈2.04
『捌』 機械設計課程設計---設計帶式輸送機傳動裝置
參考:
可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,它與普通膠帶輸送機相比增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
結構概述
伸縮膠帶輸送機分為固定部分和非固定部分兩大部分。固定部分由機頭傳動裝置、儲帶裝置、收放膠帶裝置等組成;非固定部分由無螺栓連接的快速可拆支架、機尾等組成。
1、 機頭傳動裝置由傳動捲筒、減速器、液力聯軸器、機架、卸載滾筒、清掃器組成。
n 機頭傳動裝置是整個輸送機的驅動部分,兩台電機通過液力聯軸器、減速器分別傳遞轉距給兩個傳動滾筒(也可以用兩個齒輪串聯起來傳動)。用齒輪傳動時,應卸下一組電機、液力聯軸器和減速器。
n 液力聯軸器為YL-400型,它由泵輪、透平輪、外殼、從動軸等構成,其特點是泵輪側有一輔助室,電機啟動後,液流透過小孔進入工作室,因而能使負載比較平衡地啟動而電機則按近於堅載啟動,工作時殼體內加20號機械油,充油量為14m3,減速器採用上級齒輪減速,第一級為圓弧錐齒輪,第二、第三級為斜齒和直齒圓柱齒輪,總傳動比為25.564,與SGW-620/40T型刮板輸送機可通用互換,減速器用螺栓直接與機架連接。
n 傳動捲筒為焊接結構,外徑為Φ500毫米,捲筒表面有特製的硫化膠層,因此對提高膠帶與滾筒的eua值,防止打滑、減少初張力,具有較好的效果。
n 卸載端和頭部清掃器,帶式逆止器,便於卸載,機頭最前部有外伸的卸載臂,由卸載滾筒和伸出架組成,滾筒安裝在伸出架上,其軸線位置可通過軸承兩側的螺栓進行調節,以調整膠帶在機頭部的跑偏,在卸載滾筒的下部裝有兩道清掃器,由於清掃器刮板緊壓在膠帶上,故可除去粘附著的碎煤,帶式逆止器以防止停車時膠帶倒轉。
n 機架為焊接結構,用螺栓組裝,機頭傳動裝置所有的零部件均安裝在機架上。電動機和減速器可根據具體情況安裝在機架的左側或右側。
2、 儲帶裝置包括儲帶轉向架、儲帶倉架、換向滾筒、托輥小車、游動小車、張緊裝置、張緊絞車等。
n 儲帶裝置的骨架由框架和支架用螺栓連接而成,在機頭傳動裝置兩具轉框架上裝有三個固定換向滾筒與游動小車上的兩個換向滾筒一起供膠帶在儲帶裝置中往復導向,架子上面安裝固定槽形托輥和平托輥,以支撐膠帶,架子內側有軌道,供托輥不畫和游動小車行走。
n 固定換向滾筒為定軸式,用於儲帶裝置進行儲帶時,用以主承膠帶,使其懸垂度不致過大,托輥小車隨游動小車位置的變動,需要用人力拉出或退回。
n 游動小車由車架、換向滾筒、滑輪組、車輪等組成,滑輪組裝在車身後都與另一滑輪組相適應,其位置可保證受力時車身不被抬起,這樣,對保持車身穩定,防止換向滾筒上的膠帶跑偏效果較好,車身下部還裝著止爬鉤,用以防止車輪脫軌掉道。
n 游動小車向左側移動時,膠帶放出,機身伸長,游動小車向右側移動時,膠帶儲存,機身縮短,通過鋼絲繩拉緊游動小車可使膠帶得到適當的張緊度。
n 在儲帶裝置的後部,設有張緊絞車,膠帶張力指示器和張力緩沖器,張力緩沖器的作用是使輸送機(在起動時讓膠帶始終保持一定的張力,以減少空載膠帶的不適度和膠帶層間的拍打)。
3、 收放膠帶裝置位於張緊絞車的後部,它由機架、調心托輥、減速器、電動機、旋桿等組成,其作用是將膠帶增補到輸送機機身上或從輸送機機身取下,機架的兩端和後端,各裝一旋桿,當增加或減少膠帶時用以夾緊主膠帶,調心托輥組供捲筒收放膠帶時導向,工作時將捲筒推進機架的一端用尾架頂起,另一端頂在減速器出軸的頂尖上,開動電動機通過減速器出軸的撥盤帶動捲筒,收卷膠帶,放出膠帶,放出膠帶時不開電機由外拖動捲筒反轉,在不工作時活動軌可用插銷掛在機架上,以縮小寬度,在活動軌上方應設置起重裝置懸弔捲筒,巷道寬度可視具體情況適當拓寬,以利膠帶收入時操作。
4、 中間架由無螺栓連接的快速可拆支架,由H型支架、鋼管、平托輥和掛鉤式槽形托輥、「V」型托輥等組成,是機器的非固定部分,鋼管可作為拆卸的機身,用柱銷固裝在鋼管上,用小錘可以打動,掛鉤式槽形托輥膠接式,槽形角30°,用掛鉤掛在鋼管的柱銷上,掛鉤上制動的圓弧齒槽,托輥就是通過齒槽掛在柱銷上的,可向前向後移動,以調節托輥位置控制膠帶跑偏。
5、 上料裝置、下料裝置;上料裝置安裝在收放裝置後邊,由轉向轉導向接上料段,運送的物料從此段裝上運至下料段,下料裝置由下料段一組斜托輥將物料卸下,下料段直接極為,機尾由導軌(Ⅰ、Ⅱ、Ⅲ)和機尾滾筒座組成,導軌一端用螺栓固定在中支座上,並與另一導軌的前端用柱銷膠接,藉以適應底板的不平,機尾滾筒與儲帶裝置中的滾筒結構相同,能互換,其軸線位置可用螺栓調節,以調整膠帶中在機尾的跑偏,機尾滾筒前端設有刮煤板,可使滾筒表面的碎煤或粉煤刮下,並收集泥槽中,用特製的拉泥板取出,機尾加上裝有緩沖托輥組,受料時,可降低塊煤對膠帶的沖擊,有利於提高膠帶壽命