Ⅰ 螺旋千斤頂的設計
一、設計任務書
設計帶式輸送機的傳動裝置。
工作條件:帶式輸送機連續單向運轉,工作平穩無過載,空載起動,輸送帶速度允許誤差±5% ;兩班制工作(每班按8小時計算),使用期限10年,小批量生產。
具體的設計任務包括:
(1)傳動方案的分析和擬定;
(2)電動機的選擇,傳動裝置的運動和動力參數的計算;
(3)傳動零件的設計(帶傳動、單級齒輪傳動);
(4)軸和軸承組合設計(軸的結構設計,軸承組合設計,低速軸彎、扭組合強度校核,低速軸上軸承壽命計算);
(5)鍵的選擇及強度校核(低速軸上鍵的校核);
(6)聯軸器的選擇;
(7)減速器的潤滑與密封;
(8)減速器裝配草圖俯視圖設計(箱體、附件設計等);
二、傳動方案的擬定及電動機的選擇
已知條件:運輸帶的有效拉力 F=3000N,傳送帶的速度為 v=2m/s,滾筒直徑為 D=300mm。連續單向運轉,工作平穩無過載。
1、 傳動方案的擬定
採用V帶傳動及單級圓柱齒輪傳動。
(1)、類型:採用Y系列三相非同步電動機
(2)、容量選取:工作機有效功率:
Pw=FV/1000=3000 2/1000=6KW
設 :V型帶效率
:滾動軸承效率
:閉式齒輪傳動(設齒輪精度為8級)效率
:彈性聯軸器效率
:捲筒軸效率
ŋ6: 滾筒效率
查表得 ŋ2=0.99 ŋ3=0.97 ŋ4=0.97 ŋ5=0.98
ŋ6=0.96
傳動裝置總效率為:
ŋ總= ŋ1 ŋ 2^2 ŋ3 ŋ4 ŋ5 ŋ6
=0.96×0.99^2×0.97×0.97×0.98×0.96=0.83
電動機所需功率為:
Pd=FV/1000×0.83=7.23KW
查《機械設計基礎課程設計》附錄二, 選取電動機的額定功率 Pe=7.5kW
(3)、確定電動機轉速
滾筒轉速為:
=60×1000V/πD
=60×1000×2/π×300=127.4r/min
因帶傳動的傳動比2-4為宜,齒輪傳動的傳動比3-5為宜,則
最大適宜傳動比為
最小適宜傳動比為
則電動機轉速可選范圍為:
nd=i =127.4×(6~20)=764.4~2548 r/min
可選的同步轉速有
1000r/min 1500r/min 3000r/min
三種,三種方案的總傳動比分別為:
i =7.61 i =11.3 =22.76
考慮到電動機轉速越高,價格越低,尺寸越小,結構更緊湊,故選用同步轉速為 的電動機。
查《機械設計基礎課程設計》附錄二,得此電動機的型號為 Y132M-4。
電動機型號:Y132M-4
額定功率 :7.5
滿載轉速 :1440
啟動轉矩 :2.2
最大轉矩 :2.2
由電動機具體尺寸參數 ,得
中心高: 132mm
外型尺寸 : 515*(270/2+210)315
底腳安裝尺寸 :216 178
地腳螺孔直徑 :12
軸外伸尺寸 :38 80
裝鍵部位尺寸 :10 33 38
2、 計算傳動裝置的總傳動比並分配傳動比
(1)、總傳動比: i總=11.3
(2)、分配傳動比:取帶傳動比 i帶=2.8,則減速器傳動比 i齒=11.3/2.8=4。
三、 傳動裝置的運動和動力參數計算
1、各軸轉速計算
nⅠ= /i帶=1440/2.8=514.286 r/min
nⅡ=nⅠ/i齒=514.286/4.0=127.4 r/min
滾筒n筒=nⅡ=127.4 r/min
2、各軸輸入功率計算
PⅠ= Pd ŋ帶=7.23×0.96=6.94kw
PⅡ=PⅠŋ2=6.94×096=6.66 kw
3、 各軸輸入轉矩計算
Td=9550×Pd/nⅠ=9550×7.23/1440=47.95Nm
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87Nm
TⅡ=9550×PⅡ/nⅡ=9550×6.66/172.4=499.286Nm
四、傳動零件的設計計算
(一)、V帶及帶輪的設計
已知條件:電動機型號為 Y132M-4 中心高132mm,電動機的輸出功率為 7.5kw。滿載轉速為 1440r/min。每天運轉時間為16小時(八小時每班,兩班制),I軸轉速為 514.286 r/min
齒輪傳動傳動比:
i=nⅠ/nⅡ=4
(1) 、確定計算功率 每天運轉時間為16小時的帶式輸送機的工況系數 =1.2。則 = Pe=1.2×7.5=9 kw
(2)、 選擇V帶型號
查表知選A型帶
並考慮結構緊湊性等因素,初選用窄V帶SPA型。
(3)、確定帶輪的基準直徑 和
I、初選小帶輪直徑
一般取 ,並取標准值。查表取小帶輪直徑為125m m。機中心高為 H=132mm,由 ,故滿足要求。
II、驗算帶速
V=пd1n1/60×1000=3.14×125×1440/60×1000
=9.42m/s
一般應使 ,故符合要求。
III、計算大帶輪直徑
要求傳動比較精確,考慮滑動率 ,取 =0.01
有 =(1- )i帶 =(1-0.01)×125×2.825=346.959mm
取標准值 =350mm
則傳動比 i=2.8
對減速器的傳動比進行修正,得減速器的傳動比 i=4
從動輪轉速為 n2=127.4r/min
IV、確定中心距和帶長
【1】 由式 ,可
得332.5 mm≤a≤950 mm
取初步中心距 =750mm
(需使 a》700)
【2】 初算帶長
Dm=(D1+D2)/2=237.5 mm
Δ=(D2-D1)/2=112.5mm
L= +2a+Δ /2=2402mm
選取相近的標准長度 Ld=2500mm
【3】 確定中心距
實際中心距
a≈ +(Ld-L) /2=750+(2500-2402)/2
=800mm
V、驗算小輪包角
【1】計算單根V帶的許用功率
由SPA帶的 =125mm, n=1440r/min
i帶=2.8
得 =1.93kw
又根據SPA帶 Δ =0.17kw
又由 Ld=2500mm
查表,長度系數
=180°-Δ×60°/a=164.7°
同時由 =164.7°得包角系數 Ka=0.964
【2】、計算帶的根數z
Z=Pc/(P0+ΔP0)Kl Ka=4.079
取z=5
SPA帶推薦槽數為1-6,故符合要求。
VI、 確定初拉力
單位長度質量 q=0.1kg/m
單根帶適宜拉力為:=161.1N
VII、 計算壓軸力
壓軸力為:
FQ=2z sin( a1/2)= 1596.66N
VIII、張緊裝置
此處的傳動近似為水平的傳動,故可用調節中心距的方案張緊。
VIIII、帶輪的結構設計
已知大帶輪的直徑da2=350mm,小帶輪的直徑為 da1=125mm。對於小帶輪,由於其與電動機輸出轉軸直接相連,故轉速較高,宜採用鑄鋼材料,
又因其直徑小,故用實心結構。
對於大帶輪,由於其轉速不甚高,可採用鑄鐵材料,牌號一般為HT150或HT200,
又因其直徑大,故用腹板式結構。
(二)、齒輪設計
已知條件:已知輸入功率P1=6.94kw ,轉速為 n1=514.286 r/min,齒數比 u=4,單向運轉,載荷平穩,每天工作時間為16小時,預計壽命為10年。
(1)、選定齒輪類型、材料、熱處理方式及精度等級
A、採用直齒圓柱齒輪傳動。
B、帶式輸送機為一般機械,速度不高,選用8級精度。
C、查表 小齒輪材料為45鋼,調質處理,平均齒面硬度為250HBS。
大齒輪材料為45鋼,正火處理,平均齒面硬度為200 HBS。
(2)、初步計算齒輪參數
因為是閉式齒面齒輪傳動,故先按齒面接觸疲勞強度設計,按齒根彎曲疲勞強度校核。
小齒輪分度圓的直徑為
A、 Ad==85
B、 計算齒輪轉矩
TⅠ=9550×PⅠ/nⅠ= 9550×6.94/514.286=128.87 Nm
C、 取齒寬系數
齒數比為u=4
D、 取 ,則大齒輪的齒數: =84
E、 接觸疲勞極限
[σH]lim =610MPa, [σH]lim =500MPa
應力循環次數
N1=60×514.286×10×300×16=1.48×10
N2=N1/u=3.7×10
查圖得接觸疲勞壽命極限系數為 =1, =1.1
取安全系數SH=1
則接觸應力:
[σ ] =[σ ]lim1ZN1/SH=610×1/1=610MPa
[σ ] =[σ ]lim2ZN2/SH=550MPa
取 [σ ]=550 MPa
則 =85
>=66mm 取d1=70mm
(3)、確定傳動尺寸
1、計算圓周速度
v=pd1n1/60*1000=1.77m/s
2、計算載荷系數
查表得使用系數
由 v=1.77 ,8級精度,查圖得動載系數
查表得齒間載荷分配系數
查表得齒向載荷分布系數 (非對稱布置,軸剛性小)
得
3、 確定模數: m=d1/z1=70/21=3.33mm,取標准模數為 .5
4、計算中心距:
a=m(z1+z2)/2=183.75mm
圓整為a=185mm
5、精算分度圓直徑
d1=mz1=3.5×21=73.5mm
d2=mz2=3.5×84=294mm
6、計算齒寬
b1= d1=1.1×73.5=80mm
取 b2=80mm, b1=85mm
7、計算兩齒輪的齒頂圓直徑、齒根圓直徑
小齒輪:
齒頂圓直徑:
da1=m(z1+ha*)=3.5×(21+1)=77mm
齒根圓直徑:
df1=m(z1-2ha*-2c)=3.5×(21-2×1-2×0.25)=64.75mm
大齒輪:
齒頂圓直徑:
da2=297.5mm
齒根圓直徑:
df2=285.25mm
(4)、校核齒根彎曲強度
由
式中各參數的含義
1、 的值同前
2、查表齒形系數 Ya1=2.8 Ya2=2.23
應力校核系數 Ysa1=1.55 Ysa2=1.77
4、許用彎曲應力
查圖6-15(d)、(c)的彎曲疲勞強度系數為
=1
查圖得彎曲疲勞壽命系數
,取安全系數 ,故有KFN1=0.85 KFN2=0.8
滿足齒根彎曲強度。
(5)結構設計
小齒輪的分度圓直徑為 ,故可採用實心結構
大齒輪的分度圓直徑為 ,故應採用腹板式結構
(6)、速度誤差計算
經過帶輪和齒輪設計後,
滾筒的實際轉速n= /i= =127.57r/min
滾筒理論要求轉速為 127.4r/min
則誤差為
故符合要求。
五、軸的設計計算
(一)、低速軸的設計校核
低速軸的設計
已知:輸出軸功率為 =6.66KW,輸出軸轉矩為 =499.286Nm,輸出軸轉速為 =127.4r/min,壽命為10年。
齒輪參數: z1=21, z2=84,m=3.5,
1、 選擇軸的材料
該軸無特殊要求,因而選用調質處理的45鋼,查得
2、 求輸入軸的功率,轉速及扭矩
已求得 ,PI=6.94KW , TI=128.872Nm, nI= 514.286r/min
3、 初步估算最小軸徑
最小軸徑
當選取軸的材料為45鋼,C取110
=
輸出軸的最小直徑顯然是安裝聯軸器處軸的直徑 。
考慮到軸上開有鍵槽對軸強度的影響,軸徑需增大5%。
d=(1+5%)41.3=43.4mm
則d=45mm
為使所選直徑 與聯軸器的孔徑相適應,故需同時選擇聯軸器。
聯軸器的扭矩 ,查表得 ,又TII=499.286Nm,則有
Tc=kT=1.5 499.286Nm=748.9Nm
理論上該聯軸器的計算轉矩應小於聯軸器的公稱轉矩。
從《機械設計基礎課程設計》 查得採用 型彈性套柱聯軸器。
該聯軸器所傳遞的公稱轉矩
取與該軸配合的半聯軸器孔徑為 d=50mm,故軸徑為d1=45mm
半聯軸器長 ,與軸配合部分長度 L1=84mm。
軸的結構設計
裝聯軸器軸段I-II:
=45mm,因半聯軸器與軸配合部分的長度為 ,為保證軸端擋板壓緊聯軸器,而不會壓在軸的端面上,故 略小於 ,取 =81mm。
(2)、裝左軸承端蓋軸段II-III:
聯軸器右端用軸肩定位,取 =50mm,
軸段II-III的長度由軸承端蓋的寬度及其固定螺釘的范圍(拆裝空間而定),可取 =45mm.
(3)、裝左軸承軸段III-VI:
由於圓柱斜齒輪沒有軸向力及 =55,初選深溝球軸承,型號為6211,其尺寸為
D×d×B=100×55×21,故 =55。
軸段III-VI的長度由滾動軸承的寬度B=21mm,軸承與箱體內壁的距離s=5~10(取 =10),箱體內壁與齒輪距離a=10~20mm(一般取 )以及大齒輪輪轂與裝配軸段的長度差(此處取4)等尺寸決定:
L3=B+s+a+4=21+10+14+4=49mm
取L3=49mm。
(4)、裝齒輪軸段IV-V:
考慮齒輪裝拆方便,應使d4>d3=55mm, 軸段IV-V的長度由齒輪輪轂寬度 =80mm決定,取 =77mm。
(5)、軸環段V-VI:
考慮齒輪右端用軸環進行軸向定位,取d5=70mm。
軸環寬度一般為軸肩高度的1.4倍,即
=1.4h=10mm。
(6)、自由段VI-VII:
考慮右軸承用軸肩定位,由6211軸承查得軸肩處安裝尺寸為da=64mm,取d6=60mm。
軸段VI-VII的長度由軸承距箱體內壁距離 ,軸環距箱體內壁距離 決定,則 =19mm。
(7)、右軸承安裝段VII-VIII:
選用6211型軸承,d7=55mm,軸段VII-VIII的長度由滾動軸承寬度B=21mm和軸承與箱體內壁距離決定,取 。
軸總長為312mm。
3軸上零件的定位
齒輪、半聯軸器與軸的周向定位均用平鍵連接。
按 =45mm,由手冊查得平鍵剖面 ,鍵槽用鍵槽銑刀加工,長為70mm。
半聯軸器與軸的配合代號為
同理由 =60mm,選用平鍵為10×8×70,為保證良好的對中性,齒輪輪轂與軸的配合代號為 ,滾動軸承與軸的周向定位是靠過盈配合來保證的,此處選 。
4考慮軸的結構工藝性
軸端倒角取 .為便於加工,齒輪、半聯軸器處的鍵槽分布在同一母線上。
5、軸的強度驗算
先作出軸的受力計算簡圖,如圖所示,取集中載荷作用在齒輪的中點,
並找出圓錐滾子軸承的支反力作用點。由表查得代號為6211軸承 ,B=21mm。則
L1=41.5+45+21/2=97mm
L2=49+77/2-21/2=77mm
L3=77/2+10+19+31-21/2=88mm
(1)、計算齒輪上的作用力
輸出軸大齒輪的分度圓直徑為
d2=294mm,
則圓周力
徑向力
軸向力
Fa=Ft tan =Ft tan 0°=0
(2)、計算軸承的支反力
【1】、水平面上支反力
R =Ft L3/(L2+L3)=
R =FtL2/(L2+L3)=
【2】、垂直面上支反力
【3】、畫彎矩圖
截面C處的彎矩
a、 水平面上的彎矩
b、 垂直面上的彎矩
c、 合成彎矩M
d、 扭矩
T=T =499286Nmm
e、 畫計算彎矩
因單向運轉,視扭矩為脈動循環, ,則截面B、C處的當量彎矩為
=299939Nmm
f、 按彎扭組合成應力校核軸的強度可見截面C的當量彎矩最大,故校核該截面的強度
查表得 ,因 ,故安全。
A截面直徑最小,故校核其強度
查表得 ,因 ,故安全。
g、 判斷危險截面
剖面A、B、II、III只受扭矩,雖有鍵槽、軸肩及過渡配合等所引起的應力集中均將削弱軸的疲勞強度,但由於軸的最小直徑是按扭轉強度較為寬裕地確定的,所以剖面A、B、II、III均無需校核。
從應力集中對軸的疲勞強度的影響來看,剖面IV和V處過盈配合所引起的應力集中最嚴重;從受載的情況看,剖面C處 最大。剖面V的應力集中的影響和剖面IV的相近,但剖面V不受扭矩作用,同時軸徑也比較大,故不必作強度校核。剖面C上雖然 最大,但應力集中不大(過盈配合及鍵槽引起的應力集中均在兩端),而且這里軸的直徑最大,故剖面C也不必校核。剖面VI顯然更不必校核,又由於鍵槽的應力集中系數比過盈配合的小,因而該軸只須校核IV既可。
(二)、高速軸的設計校核
高速軸的設計
已知:輸入軸功率為PⅠ=6.94 kw ,輸入軸轉矩為TⅠ= 128.87Nm
,輸入軸轉速為nⅠ=514.286 r/min,壽命為10年。
齒輪參數: z1=21,z2=84,m=3.5, 。
1、選擇軸的材料
該軸無特殊要求,因而選用調質處理的45鋼,由表查得
1、 求輸出軸的功率 ,轉速 及扭矩 。
已求得 =127.4 r/min
=6.66kw
=499.286Nm
初步估算最小軸徑
最小軸徑 d min=
由表可知,當選取軸的材料為45鋼,C取110
d min=26.2 mm
此最小直徑顯然是安裝大帶輪處軸的直徑 。
考慮到軸上開有鍵槽對軸強度的影響,軸徑需增大5%。
則 d min=1.05 26.2=27.5mm,取 =28 mm
2、 軸的結構設計
(1)、裝帶輪軸段I-II:
=28 mm,軸段I-II的長度根據大帶輪的輪轂寬度B決定,已知 =60mm,為保證軸端擋板壓緊帶輪,而不會壓在軸的端面上,故 略小於 ,故取 =57mm。
(2)、裝左軸承端蓋軸段II-III:
聯軸器右端用軸肩定位,取 ,軸段II-III的長度由軸承端蓋的寬度及其固定螺釘的范圍(拆裝空間而定),可取
(3)、裝左軸承軸段III-IV:
由於圓柱直齒輪無軸向力及 ,初選深溝球軸承,型號6207,其尺寸為 , 。
軸段III-VI的長度由滾動軸承的寬度,滾動軸承與箱體內壁距離 ,等尺寸決定: 。
(4)、間隙處IV-V:
高速軸小齒輪右緣與箱體內壁的距離 。
取 ,
(5)、裝齒輪軸段V-VI:
考慮齒輪裝拆方便,應使 ,取 ,軸段V-VI的長度由齒輪輪轂寬度B=80mm決定,取 。
(6)、軸段VI-VII:
與軸段IV-V同。 。
(7)、右軸承安裝段VII-VIII:
選用6207型軸承, B=17mm ,軸VII-VIII的長度取
軸總長為263mm。
3、 軸上零件的定位
小齒輪、帶輪與軸的周向定位均用平鍵連接。
按 =28mm,由手冊查得平鍵剖面 ,鍵槽用鍵槽銑刀加工,長為45mm。
帶輪與軸的配合代號為 。同理由 ,選用平鍵為 ,為保證良好的對中性,齒輪輪轂與軸的配合代號為 ,滾動軸承與軸的周向定位是靠過盈配合來保證的,此處選 。
4、 考慮軸的結構工藝性
軸端倒角取 。
為便於加工,齒輪、帶輪處的鍵槽分布在同一母線上。
7、軸的強度驗算
先作出軸的受力計算簡圖,如圖所示,取集中載荷作用在齒輪的中點,並找出圓錐滾子軸承的支反力作用點。查《機械設計課程設計指導書》得代號為6207的深溝球軸承 a=17mm,則
L1=57/2+50+17/2=87mm
L2=17/2+12+10+80/2=70.5mm
L3=17/2+12+10+80/2=70.5mm
(1)、計算齒輪上的作用力
輸出軸小齒輪的分度圓直徑為
d1=mz1=3.5 21=73.5mm
則圓周力
徑向力
軸向力 Fa=0
(2)、計算軸承的支反力
【1】、水平面上支反力
RHA=FtL3/(L2+L3)=1/2Ft=1753.4N
RHB=FtL2/(L2+L3)= 1/2Ft=1753.4N
【2】、垂直面上支反力
RVA=3220N
RVB= =347N
【3】、截面C處的彎矩
1、 水平面上的彎矩
2、 垂直面上的彎矩
3、 合成彎矩M
4、 扭矩
T= TⅠ= 128.87Nm
5、 計算彎矩
因單向運轉,視扭矩為脈動循環, ,則截面C、A、D處的當量彎矩為
6 、 按彎扭組合成應力校核軸的強度
可見截面A的當量彎矩最大,故校核該截面的強度
查表得 ,因 ,故安全。
截面D的直徑最小,故校核該截面的強度
因 ,故安全。
5、 判斷危險截面
剖面A、B、II、III只受扭矩,雖有鍵槽、軸肩及過渡配合等所引起的應力集中均將削弱軸的疲勞強度,但由於軸的最小直徑是按扭轉強度較為寬裕地確定的,所以剖面A、B、II、III均無需校核。
從應力集中對軸的疲勞強度的影響來看,剖面IV和V處過盈配合所引起的應力集中最嚴重;從受載的情況看,剖面C處 最大。剖面V的應力集中的影響和剖面IV的相近,但剖面V不受扭矩作用,同時軸徑也比較大,故不必作強度校核。剖面C上雖然 最大,但應力集中不大(過盈配合及鍵槽引起的應力集中均在兩端),而且這里軸的直徑最大,故剖面C也不必校核。剖面VI顯然更不必校核,又由於鍵槽的應力集中系數比過盈配合的小,因而該軸只須校核IV既可。
六、鍵連接的校核計算
鍵連接設計
I、 帶輪與輸入軸間鍵連接設計
軸徑 ,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為 。
現校核其強度:
, , 。
查手冊得 ,因為 ,故滿足要求。
II、 小齒輪與輸入軸間鍵連接設計
軸徑 d=50mm,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為 .
現校核其強度:
TI=128872Nmm, , 。
查手冊得 ,因為 ,故滿足要求。
鍵連接設計
III、 大齒輪與輸出軸間鍵連接設計
軸徑d=60mm,輪轂長度為 ,查手冊,選用A型平鍵,其尺寸為
現校核其強度:
TII=499.286 Nm, , 。
查手冊得 ,因為 ,故滿足要求。
IV、 半聯軸器與輸出軸間鍵連接設計
軸徑 ,半聯軸器的長度為 ,查手冊,選用A型平鍵,其尺寸為 .
現校核其強度:
, , 。
查手冊得 ,因為 ,故滿足要求。
七、 滾動軸承的選擇及壽命計算
滾動軸承的組合設計及低速軸上軸承的壽命計算
已知條件:
採用的軸承為深溝球軸承。
一、滾動軸承的組合設計
1、滾動軸承的支承結構
輸出軸和輸入軸上的兩軸承跨距為H1=155mm,H2=150mm ,都小於350mm。且工作狀態溫度不甚高,故採用兩端固定式支承結構。
2、滾動軸承的軸向固定
軸承內圈在軸上的定位以軸肩固定一端位置,另一端用彈性擋圈固定。
軸承外圈在座孔中的軸向位置採用軸承蓋固定。
3、滾動軸承的配合
軸承內圈與軸的配合採用基孔制,採用過盈配合,為 。
軸承外圈與座孔的配合採用基軸制。
4、滾動軸承的裝拆
裝拆軸承的作用力應加在緊配合套圈端面上,不允許通過滾動體傳遞裝拆壓力。
裝入時可用軟錘直接打入,拆卸時藉助於壓力機或其他拆卸工具。
5、滾動軸承的潤滑
對於輸出軸承,內徑為d=55mm,轉速為n=127.4 ,則
,查表可知其潤滑的方式可為潤滑脂、油浴潤滑、滴油潤滑、循環油潤滑以及噴霧潤滑等。
同理,對於輸入軸承,內徑為35,轉速為514.286 r/min
,查表可知其潤滑的方式可為潤滑脂、油 浴潤滑、滴油潤滑、循環油潤滑以及噴霧潤滑等
6、滾動軸承的密封
對於輸出軸承,其接觸處軸的圓周速度
故可採用圈密封。
二、低速軸上軸承壽命的計算
已知條件:
1軸承 ,
2軸承
軸上的軸向載荷為0徑向載荷為
查表得 ,則軸承軸向分力
Fs1=Fr1/2Y=567N
Fs2=Fr2/2Y=496N
易知此時
Fs1 > Fs2
則軸承2的軸向載荷
軸承1軸向載荷為
.
且低速軸的轉速為127.4
預計壽命 =16 57600h
I、計算軸承1壽命
6、 確定 值
查《機械設計基礎課程設計》表,得6207基本動荷 ,基本額定靜載荷 。
7、 確定e值
對於深溝球軸承,則可得 e=0.44
8、 計算當量動載荷P
由
<e
由表查得 ,則
9、 計算軸承壽命
由 =
查可得 ,取 ;查表可得 (常溫下工作);6207軸承為深溝球軸承,壽命指數為 ,則
>
故滿足要求。
II、計算軸承2壽命
1、確定 值
查《機械設計基礎設計》,得6211型軸承基本額定動載荷 ,基本額定靜載荷 。
2、 確定e值
對於深溝球軸承6200取,則可得e=0.44
4、 計算當量動載荷P
由
由表10-5查得 ,則
P=Fr2=1687N
5、 計算軸承壽命
由
查表10-7,可得 ,取 ;查表10-6可得 (常溫下工作);深溝球軸承軸承,壽命指數為 ,則
> ,故滿足要求。
八、 聯軸器的選擇
與低速軸軸端相連的半聯軸器為彈性套柱銷聯軸器,型號為 ,其公稱轉矩為 ,而計算轉矩值為:
,故其強度滿足要求。
九、箱體結構設計
箱體採用灰鑄鐵鑄造而成,採用剖分式結構,由箱座和箱蓋兩部分組
成,取軸的中心線所在平面為剖分面。
箱體的強度、剛度保證
在軸承座孔處設置加強肋,做在箱體外部。外輪廓為長方形。
機體內零件的密封、潤滑
低速軸上齒輪的圓周速度為:
由於速度較小,故採用油池浸油潤滑,浸油深度為:
高速軸上的小齒輪採用濺油輪來潤滑,利用濺油輪將油濺入齒輪嚙合處進行潤滑。
3、機體結構有良好的工藝性.
鑄件壁厚為8mm,圓角半徑為R=5。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到傳動零件嚙合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M8螺釘緊固。
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 定位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
F 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
總結:機箱尺寸
名稱 符號 結構尺寸/mm
箱座壁厚
8
箱蓋壁厚
8
箱座凸緣厚度
12
箱蓋凸緣厚度
12
箱底座凸緣厚度
20
箱座上的肋厚
7
箱蓋上的肋厚
7
軸承旁凸台的高度
39
軸承旁凸台的半徑
23
軸承蓋的外徑
140/112
地
腳
螺
釘 直徑
M16
數目
4
通孔直徑
20
沉頭座直徑
32
底座凸緣尺寸
22
20
連
接
螺
栓 軸承旁連接螺栓直徑
M12
箱座的連接螺栓直徑
M8
連接螺栓直徑
M18
通孔直徑
9
沉頭座直徑
26
凸緣尺寸 15
12
定位銷直徑
6
軸承蓋螺釘直徑
M8A
視孔蓋螺釘直徑
M6
吊環螺釘直徑
M8
箱體內壁至軸承座端面距離
55
大齒輪頂圓與箱體內壁的距離
12
齒輪端面與箱體內壁的距離
15
十、潤滑與密封
滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定
十一、設計小結
十二、參考資料
1《畫法幾何及工程制圖 第六版》朱輝、陳大復等編 上海科學技術出版社
2、《機械設計基礎課程設計》 陳立德主編 高等教育出版社
3、《機械設計計算手冊 第一版》王三民主編 化學工業出版社
4、《機械設計 第四版》邱宣懷主編 高等教育出版社
我的設計作業F=3000N V=2m/s D=300mm
Ⅱ 恆定張力離不開提升機張緊裝置
為了保證提升機輸送帶有恆定的張力,故而設置了張緊裝置。張緊裝置多數設置在斗式提升機外部罩殼下方的位置上。張緊裝置是為了保證輸送帶和滾筒之間能夠產生足夠的摩擦力而存在的。張緊裝置在一定程度上可以限制輸送帶在提升機各個之城之間的垂直度,保障提升機的正常運轉。
提升機所使用的張緊裝置最為常見的是螺桿式和重錘式兩種。螺桿式的張緊裝置是把滾筒軸承固定在了螺旋拉緊裝置的滑板之上,滑板則安裝在下半部分區段的導軌當中。滑板藉助於U型鋼板內部安裝的調整螺母,在調整螺桿的旋轉作用之下,沿著提升機的下半部分區段來做上下的調整。
螺旋式張緊裝置的結構緊湊、安裝簡單,佔用空間比較小,相對的,張力和行程也比較小,且其行程和張緊力也不能自行調整,所以,只在輸送長度短、功率低的設備上使用。張金德行程不會超過提升高度的百分之一。
重錘式張緊裝置是使用張緊裝置自身的重力來實現長進作用的,可以保證足夠的恆定張力,比較適合用在功率大的設備上。
Ⅲ 拉緊裝置的張緊絞車分為手搖式和有幾種
,常見的拉緊裝置有螺旋拉緊裝置、重力拉緊裝置、固定絞車拉緊裝置、自動拉緊裝置,各有各的優點和缺點,可以把它們分別應用於不用的不同的皮帶輸送機上。
螺旋拉緊裝置結構簡朴,拉緊行程太小,只合用於短間隔輸送機,一般機長小於80m時才選用,缺點是當膠帶自行伸長後,不能自動拉緊。
重力拉緊裝置是結構最簡朴,應用最廣泛的一種拉緊裝置。它是利用重錘來自動拉緊,因為重錘靠自重拉緊,所以它能保證拉緊力在各種工況下保持恆定不變,能自動補償膠帶的伸長。重力拉緊裝置的特點是拉緊力不變,拉緊位移可變,它合用於固定式長間隔運輸機,長處是安全可靠性高,缺點是拉緊力不能調節,空間要求大,在空間受限制的地方,無法使用。
固定絞車拉緊裝置是利用小型絞車來拉緊,絞車一般用蝸輪蝸桿減速器帶動捲筒來環繞糾纏鋼繩,從而拉緊膠帶。這種拉緊裝置的長處是體積小,拉力大,所以被廣泛應用於井下帶式輸送機中。缺點是它只能根據所需要的拉緊力調定後產生固定的拉緊力,拉緊力不能自動調節,當絞車和控制系統泛起題目時,對膠帶機不能產生恆定的拉緊力或拉緊力失效,安全可靠性相對降低。
自動拉緊裝置不但能根據主動滾筒的牽引力來自動調整拉緊力,而且還能補償膠帶的伸長。自動拉緊裝置由電機、制動器、減速器、鋼絲繩 滾筒等組成,採用大拉力張緊裝置張緊輸送帶,同時配備張力感測器,測定輸送帶的張力,當輸送帶張力發生變化,超過輸送機正常運行的范圍時,自動張緊裝置迅 速動作,調整輸送帶張力,保證輸送機正常運行。自動張緊裝置與自移機尾配合使用,可實現在輸送機不停機的前提下,實現輸送機機尾的移動和輸送帶的伸縮,大大進步了輸送機的輸送效率。自動絞車拉緊裝置由壓力感測器根據膠帶輸送機運行工況的需要自動控制拉緊力的大小,液壓拉緊裝置由液壓站產生的液壓力通過油缸對皮帶輸送機施加拉緊力,可根據膠帶機運行工況的需要調節拉緊力的大小。
Ⅳ 夾緊裝置的基本類型有哪幾種比較各類的優缺點
1、楔塊夾緊裝置
楔塊夾緊裝置是最基本的夾緊裝置形式之一,其他夾緊裝置均是它的變形。它主要用於增大夾緊力或改變夾緊力方向。
2、螺旋夾緊裝置
螺旋夾緊裝置是從楔塊夾緊裝置轉化而來的,相當於吧楔塊繞在圓柱體上,轉動螺旋時即可夾緊工作。
3、偏心夾緊裝置
偏心夾緊裝置也是由楔塊夾緊裝的一種變形。
4、定心夾緊結構
定心夾緊結構是一種利用定位夾緊元件等速移動或彈性變形來保證工件准確定心或對中的裝置,使工件的定位和夾緊過程同時完成,而定位元件與夾緊元件合二為一。
Ⅳ 如何避免皮帶輸送機皮帶跑偏!
輸送帶跑偏是皮帶機作業過程中最為常見的故障,其危害性極大,從實際運行情況來看,跑偏對皮帶機運行以至生產的影響主要有以下幾個方面:
a.巳跑偏引起系統故障停機影響生產作業效率。當皮帶跑偏達到一定程度時,皮帶會觸發用於防偏的急停裝置,造成作業系統停機,影響生產進程。
b.造成設備主要部件的非正常損壞。首先,皮帶跑偏使滾筒、托輥承受的軸向力增加,引起滾筒竄軸、托輥軸承損壞;其次,皮帶跑偏造成物料灑落到回程皮帶上,引起皮帶與滾筒非正常磨損,縮短了滾筒和皮帶的使用壽命;另外,跑偏皮帶在運行時與支架發生非正常摩擦,導致皮帶邊緣磨損,影響了其使用壽命。
c.容易形成安全隱患。由於皮帶嚴重跑偏,造成皮帶翻卷物料,致使皮帶單側受力超過皮帶縱向拉斷力,從而引起皮帶橫向撕裂等安全隱患。
d.污染環境,影響輸送物料質量。物料在灑落及清理過程中常常引起煤炭揚塵,對環境造成污染;同時,物料灑落也對輸送貨物質量造成影響。
由此可見,在實際運行過程中,皮帶跑偏不僅對皮帶機本身損壞極大,而且存在安全隱患、影響生產效率、輸送貨物質量\污染環境等問題o
1皮帶機跑偏的原因分析
皮帶機跑偏的直接原因有兩個:其一,輸送帶兩側所受的驅動力不平衡;其二,托輥或滾筒對輸送帶產生側向力。
1.1輸送帶兩側所受驅動力不平衡
如圖1所示,輸送帶兩側受到的驅動力大小不一致,A側受驅動力為F1,B側受驅動力為F2,F1比F2,則輸送帶會跑偏向A側。
導致皮帶兩側受力不平衡的因素很多:
a,皮帶機的張緊裝置安裝誤差導致輸送帶兩側所受張力不一致引起輸送帶跑偏,張緊裝置安裝或調節不當是導致皮帶兩側受力不一致的最基本的原因。
b.輸送帶接頭不平直引起的跑偏。皮帶硫化接頭接偏或皮帶本身不直,造成皮帶兩邊張力不均勻,皮帶往張緊力大的一邊跑偏,在皮帶接頭或皮帶不直處跑偏最嚴重。
c.輸送帶鬆弛引起的跑偏。輸送帶在運行一段時間後,由於拉伸使皮帶產生永久變形或老化,會使皮帶的張緊力下降皮帶鬆弛,造成皮帶內部應力分布不均勻,也會引起皮帶不同程度的跑偏現象乃
d.物料分布不均勻引起的跑偏。如果皮帶空轉時不跑偏,重負荷運轉就跑偏,說明物料在皮帶兩邊分布不均勻。這種跑偏是皮帶機實際使用過程中最常見的,物料分布不均主要是物料下落方向和位置不正確引起的,如果礦料偏到左側,則皮帶向右跑偏;反之亦然。
e.滾筒、托輥對皮帶兩側摩擦力不平衡,導料槽兩側的橡膠板壓力不均勻造成皮帶兩邊運行的驅動力和阻力不一致,引起皮帶跑偏o
f.滾筒、托輥粘料引起的跑偏。皮帶機在運行一段時間後,由於物料具有一定的粘性,部分會粘沾在滾筒和托輥上,使得滾筒或托輥局部筒徑變大,引起皮帶兩側張緊力不均勻,造成皮帶跑偏。此因素引起的跑偏一般發生在短距離的皮帶輸送中。
1.2輸送帶受到側向力
輸送帶受到托輥或滾筒產生的側向力F致使跑偏。
滾筒、托輥安裝位置不正,皮帶在運行時會受到側向力,如圖2所示。承載托輥安裝位置與輸送機中心線的垂直度誤差較大,或滾筒軸線與皮帶機中心線垂直度誤差過大,導致皮帶在承載段向一側跑偏。在改向滾筒、托輥安裝位置處跑偏最嚴重,且不論承載段還是回程段越往前跑偏越輕。但是驅動滾筒傾斜引起的跑偏將使得跑偏越來越嚴重。
機架變形引起的跑偏。機架歪斜包括機架中心線歪斜和機架兩邊高低傾斜,這兩種情況都會使皮帶受到側向力,從而造成嚴重跑偏,並且很難調整。
另外,皮帶機在運行時的機械振動是不可避免的,在皮帶運行速度越快時,振動越大,造成的皮帶跑偏也越大。在皮帶機中,托輥的徑向跳動引起的振動對皮帶跑偏影響最大。
2皮帶機跑偏的常見處理方式
對於皮帶機的跑偏現象,需採取相應的對策來進行調整,關鍵在於消除輸送帶兩側所受的驅動力不平衡及皮帶受到側向力等因素。對安裝誤差引起的跑偏,首先要消除安裝誤差;對皮帶接頭該重接的重接;對變形機架進行整形,嚴重的必須重新安裝。對運行中的跑偏,具體調整方法如下:
2.1調整托輥組
皮帶機的輸送帶在整個皮帶運輸機中部跑偏時,採取調整托輥組的位置來調整跑偏,為了方便調整,托輥支架兩側安裝孔加工成長孔。具體方法如圖3所示,輸送帶偏向A側,則A側的托輥組朝皮帶運行方向前移,或B側的托輥組後移。這種方法可消除由於機架歪斜、礦料分布不均\振動等引起的皮帶機跑偏。
2.2調整驅動滾筒與改向滾筒位置
滾筒的調整是皮帶機跑偏調整的重要環節。皮帶運輸機中所有滾筒的安裝位置軸線必須垂直於皮帶機長度方向的中心線,若偏斜過大必然發生跑偏。對於皮帶機頭部的滾筒,若輸送帶向滾筒的A側跑偏,則A側的軸承座應當向前移動或B側的軸承座向後移動,實現輸送帶A側放鬆或B側張緊。尾部滾筒的調整方法與頭部滾筒剛好相反。由於傳動滾筒的調整距離有限,通常情況下,將傳動滾筒軸心線調整至與皮帶機長度方向垂直後利用螺旋拉緊裝置或重錘拉緊裝置來調整尾部改向滾筒軸承座的位置。此方法可有效消除皮帶鬆弛、機架歪斜引起的皮帶跑偏。
2.3安裝調心托輥組
輸送帶在整個皮帶運輸機中部跑偏時常採用安裝調心托輥組防偏,其防偏原理是採用托輥在水平面內轉動阻擋或產生橫向推力使皮帶自動向心達到調整皮帶跑偏的目的。一般在皮帶運輸機總長度較短時或皮帶運輸機雙向運行時採用此方法比較合理,原因是較短皮帶運輸機更容易跑偏並且不容易調整。而長皮帶運輸機最好不採用此方法,因為調心托輥組的使用會對皮帶的使用壽命產生一定的影響。
2.4張緊處的調整
根據張緊形式可分為:重錘式張緊(包括尾部重錘式張緊和中部重錘式張緊),機械式張緊(一般為螺旋張緊)。重錘張緊處上部的兩個改向滾筒除應垂直於皮帶長度方向以外還應垂直於重力垂線,即保證其軸中心線水平。使用螺旋張緊時,張緊滾筒的兩個軸承座應當同時平移,以保證滾筒軸線與皮帶縱向方向垂直。具體的皮帶跑偏的調整方法與滾筒處的調整類似。
2.5轉載點處落料位置對皮帶跑偏影響的調整
在皮帶機輸送系統中轉載點處物料的落料位,置對皮帶的跑偏有很大影響,尤其是兩條皮帶機在水平面的投影成垂直方向時影響更大。通常應當考慮轉載點處上下兩條皮帶機的相對高度。相對高度越低,物料的水平速度分量越大,對下層皮帶的側向沖擊也越大,同時物料也很難居中。使在皮帶橫斷面上的物料偏斜,最終導致輸送帶跑偏。如果物料偏到右側,則皮帶向左側跑偏,反之亦然。在安裝過程中在允許條件下應盡可能地加大兩條皮帶機的相對高度。同時,上下漏斗、導料槽等件的形狀與尺寸應該認真設計。一般導料槽的寬度為皮帶寬度的2/3左右比較合適。另外,為減少或避免皮帶跑偏可增加擋料板阻擋物料,改變物料的下落方向和位置。
Ⅵ 補償裝置漲緊重怎麼配置
提升機張緊裝置多數設計在了罩殼外的下半部分,其設置張緊裝置的目的在於,保證了輸送帶具有足夠的張力,使輸送帶和驅動滾筒之間能夠產生必要的摩擦力,限制輸送帶在各個支撐之間的垂度問題。總而言之,設置張緊裝置的最重要目的是為了保障設備能夠正常的運轉。
張緊裝置除了最常見的螺旋式張緊裝置之外,還有墜重式張緊裝置。螺旋式張緊裝置是把滾筒軸承固定在了螺旋拉緊裝置的滑板之上,滑板則安裝在下部區段的導軌之內。滑板主要是在U型鋼板里裝上了調整用的螺母,在下部區段上的調整螺桿的作用之下進行旋轉。從而拉緊下部滾筒沿著都是提升機的下部分區段做上下運動進而來調整張距。張緊裝置的行程剛在20-30厘米。
螺旋張緊裝置的特點在於結構緊湊輕巧,安裝簡單,佔地面積也小。但由於張緊力和張緊行程比較小,不能夠自動調整張緊裝置。由於螺旋張緊裝置的行程收到結構的限制,所以不能夠自動的保證恆張力。所以,此類張緊裝置都是用在長度短功率小的輸送機上。而長進行程選取總機長度的百分之一。
墜重張緊裝置是依靠自身的重力來實現恆定張緊力的,因為其自身重量是恆定的,故而,可以保證足夠的恆定張力。此類張緊裝置多數用在輸送功率大,輸送長度大的大型輸送機上。
Ⅶ 帶式輸送機傳動裝置設計說明書和裝配圖
圖沒法給你,下面是說明書,自己改吧。
一、設備用途
帶式輸送機是依靠摩擦傳動實現物料輸送的機械,廣泛用於冶金、礦山、煤炭、環保、建材、電力、化工、輕工、糧食等行業。適用於輸送鬆散密度為0.5-2.5t/m3的各種粒狀、粉狀等散體物料,也可以輸送成件物品。其工作環境溫度為-25-60℃,普通橡膠輸送帶適用的物料溫度不超過80℃。
二、技術參數
帶 寬: 1000 mm
頭尾滾筒中心距:60400 mm
帶 速: 1m/s
輸送帶型號:EP-150
輸送帶規格長度:1000X3(3+1.5)X128m(含硫化長度0.9m)
輸送能力:205m3/h
物料密度:0.6 t/m3
傾 角: 0°
電機功率: 7.5kW
三、工作原理
該設備主要由驅動裝置、傳動滾筒、輸送帶、槽型上托輥、下托輥、機架、清掃器、拉緊裝置、改向滾筒、導料槽、重錘張緊裝置及電器控制裝置等組成。
輸送帶繞經傳動滾筒和尾部改向滾筒形成環行封閉帶。托輥承載輸送帶及上面輸送的物料。張緊裝置使輸送帶具有足夠的張力,保證與傳動滾筒間產生摩擦力使輸送帶不打滑。工作時,減速電機帶動傳動滾筒,通過摩擦力驅動輸送帶運行,物料由進料裝置進入並隨輸送帶一起運動,經過一定的距離到達出料口轉入下一道工藝環節。
四、結構和控制特點
上托輥採用槽形托輥,利於承載鬆散物料。回程托輥採用V型托輥,有效防止皮帶機跑偏。在空段清掃器前後安裝下平托輥有利於清除物料。
輸送帶張緊採用螺旋張緊和重錘張緊兩套裝置。螺旋張緊裝置還可以調整皮帶機的跑偏。
在輸送帶的工作面兩側,沿輸送帶全長安裝有導料槽,導料槽由槽板和橡膠板組合而成,橡膠板與輸送帶接觸,形成槽形斷面,起到增加輸送量的作用,同時也防止物料灑落。導料槽板同橡膠板的固定方式採用螺栓和壓板壓緊的形式,橡膠板不需要鑽孔,同時可以根據橡膠板的磨損情況,方便的進行調整,保證橡膠板保持同輸送帶的密封狀態。
在輸送機頭部和尾部安裝有頭部及空段清掃器。頭部清掃器為重錘刮板式結構,安裝於傳動滾筒下方,用於清除輸送帶工作面的粘料。空段清掃器為刮板式結構,安裝於靠近尾部的輸送帶非工作面的上方,用於清除輸送帶非工作面上的物料。
輸送帶採用聚酯帆布帶,具有耐油、耐酸鹼的性質。接頭採用硫化接頭,接頭安全系數10-12。
輸送機一側安裝有拉繩開關,當發生緊急情況時拉動開關上的鋼絲繩啟動此開關,可以立即停機。故障排除後,拉動復位銷開關可復位。
輸送機頭尾部安裝有跑偏開關,當輸送帶發生跑偏時,輸送帶帶動開關上的立輥旋轉並傾斜,傾斜大於一級動作角度12°時,發出一組開關信號;如立輥繼續傾斜大於二級動作角度30°時,發出另一組開關信號。兩組信號分別用於報警和停機。當輸送機恢復正常運行後,立輥自動復位。
五、安裝調試
1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。
六、故障排除
1.輸送帶打滑
原因是輸送帶張力小或驅動滾筒表面粘有物料或水份。應旋緊張緊螺桿,增大張力。清理驅動滾筒並加大空段清掃器的清掃力度。
2.輸送帶在兩端跑偏
原因是滾筒裝配位置偏斜,應拉緊跑偏一側的張緊裝置的螺桿調整改向滾筒位置。通過調整軸承座調整傳動滾筒的位置。
3.輸送帶在中部跑偏
原因是托輥安裝位置不正。應檢查各托輥安裝位置是否與輸送帶垂直,否則松開安裝螺栓調整托輥位置。調整完畢後旋緊各螺栓。
此外,進料口落料點不在輸送帶中心也可能引起跑偏,應改善進料情況。
七、注意事項
輸送機應有專人負責操作。每班使用後進行日常檢修和維護工作:
1. 檢查各緊固件是否松動。
2.各清掃器、導料槽的橡膠刮板磨損時應調整其伸出的尺寸。如果磨損嚴重,應進行更換。
3.多台輸送機或其它設備聯合運轉使用時,應注意啟動和停車順序:應保持空載啟動;進料口設備停機供料後本設備應運轉一段時間待卸空物料後再停車。
4.停車後,將輸送機上的污物清理干凈,並關閉電源。
5.若設備停止使用較長時間,在啟動前應檢查設備上是否有異物影響運動部件的運動。
八、維護保養
1.減速電機按其使用說明書定期更換潤滑油。
2.各滾筒的軸承座及軸承每半年清洗一次,並重新加註鋰基潤滑脂ZL-2。
3.張緊裝置的螺桿每3—6個月表面塗一次鋰基潤滑脂ZY-2。
4.根據設備使用情況,各部件和結構件應定期清理污物和除銹,並塗油或噴漆進行防腐處理。
Ⅷ 帶式輸送機傳動裝置設計
一、帶式輸送機傳動裝置,可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,不過增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
二、設計安裝調試:
1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。