導航:首頁 > 裝置知識 > 關於小型輸送裝置的畢業設計

關於小型輸送裝置的畢業設計

發布時間:2023-08-18 20:47:43

㈠ 帶式輸送機傳動裝置的設計

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N•m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N•m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N•m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N•mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N•m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft•tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N•m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N•m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N•m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N•m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N•m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N•m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft•tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N•m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N•m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N•m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N•m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.

放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20

(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2

(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3

D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.

九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。

十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。

十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版

㈡ 帶式輸送機傳動裝置畢業設計的每一步驟做簡要說明(怎麼完成)。

參考如下: 機械設計基礎課程設計任務書………………………………. 題目名稱帶式運輸機傳動裝置 學生學院 專業班級 姓 名 學 號 一、課程設計的內容設計一帶式運輸機傳動裝置(見圖1)。設計內容應包括:傳動裝置的總體設計;傳動零件、軸、軸承、聯軸器等的設計計算和選擇;減速器裝配圖和零件工作圖設計;設計計算說明書的編寫。圖2為參考傳動方案。 二、課程設計的要求與數據已知條件: 1.運輸帶工作拉力: F = 2.6 kN; 2.運輸帶工作速度: v = 2.0 m/s; 3.捲筒直徑: D = 320 mm; 4.使用壽命: 8年; 5.工作情況:兩班制,連續單向運轉,載荷較平穩; 6.製造條件及生產批量:一般機械廠製造,小批量。三、課程設計應完成的工作1.減速器裝配圖1張;2.零件工作圖 2張(軸、齒輪各1張);3.設計說明書 1份。四、課程設計進程安排序號設計各階段內容地點起止日期一設計准備: 明確設計任務;准備設計資料和繪圖用具教1-201第18周一二傳動裝置的總體設計: 擬定傳動方案;選擇電動機;計算傳動裝置運動和動力參數傳動零件設計計算:帶傳動、齒輪傳動主要參數的設計計算教1-201第18周一至第18周二 三減速器裝配草圖設計: 初繪減速器裝配草圖;軸系部件的結構設計;軸、軸承、鍵聯接等的強度計算;減速器箱體及附件的設計教1-201第18周二至第19周一四完成減速器裝配圖: 教1-201第19周二至第20周一五零件工作圖設計教1-201第20周周二六整理和編寫設計計算說明書教1-201第20周周三至周四七課程設計答辯工字2-617第20周五五、應收集的資料及主要參考文獻1 孫桓, 陳作模. 機械原理[M]. 北京:高等教育出版社,2001.2 濮良貴, 紀名剛. 機械設計[M]. 北京:高等教育出版社,2001.3 王昆, 何小柏, 汪信遠. 機械設計/機械設計基礎課程設計[M]. 北京:高等教育出版社,1995.4 機械制圖、機械設計手冊等書籍。發出任務書日期: 年 月 日 指導教師簽名: 計劃完成日期: 年 月 日 基層教學單位責任人簽章:主管院長簽章:目錄一、傳動方案的擬定及說明………………………………….3二、電動機的選擇…………………………………………….3三、計算傳動裝置的運動和動力參數……………………….4四、傳動件的設計計算………………………………………..6五、軸的設計計算…………………………………………….15六、滾動軸承的選擇及計算………………………………….23七、鍵聯接的選擇及校核計算……………………………….26八、高速軸的疲勞強度校核……………………………….….27九、鑄件減速器機體結構尺寸計算表及附件的選擇…..........30十、潤滑與密封方式的選擇、潤滑劑的選擇……………….31參考資料目錄

㈢ 帶式輸送機設計

下面是帶式輸送機的設計:

①原煤上料運輸②皮帶運輸機運輸能力為(700 - 學號版×5)噸/時③皮帶權運輸機出料端高度為(70 -
學號)米④皮帶運輸機入料端高度為平面開闊地,皮帶長度和傾角可以自由選擇.


設計條件如下:


原煤上料運輸


①皮帶運輸機運輸能力Q為(700-18×5)=610t/h;


②皮帶運輸機出料端高度為(70-18)=52 m;


③皮帶長度為240m;


④輸送機安裝傾角為12.5133°;


⑤物料的堆積密度為331.0/1000/tmkgm;


⑥物料的顆粒度為0-300mm;目前國內採用的是《DTⅡ型固定式帶式輸送機》系列。


該系列輸送機由許多標准件組成,各個部件的規格也都成系列。故本設計中也採用DTⅡ型固定式帶式輸送機系列。

DTII(A)型帶式輸送機簡圖:

㈣ 基於PLC控制的帶式輸送機自動張緊裝置的畢業論文誰有!!最好是免費的,簡述也行

1. PLC電鍍行車控制系統設計
2. 機械手模型的PLC控制系統設計
3. PLC在自動售貨機控制系統中的應用
4. 基於PLC控制的紙皮壓縮機
5. 基於松下系列PLC恆壓供水系統的設計
6. 基於PLC的自動門電控部分設計
7. 基於PLC的直流電機雙閉環調速系統設計
8. 基於PLC的細紗機電控部分設計
9. 燃氣鍋爐溫度的PLC控制系統
10. 交流提升系統PLC操作控制台
11. 基於PLC鋁帶分切機控制系統的設計
12. 高層建築電梯控制系統設計
13. 轉爐氣化冷卻控制系統
14. 高爐上料卷揚系統
15. 調速配料自動控制系統
16. 基於PLC的砌塊成型機的電氣系統設計
17. PLC在停車場智能控制管理系統應用
18. PLC 在冷凍乾燥機的應用
19. 基於PLC的過程式控制制
20. 電器裝配線PLC控制系統
21. 基於PLC的過程式控制制系統的設計
22. 基於PLC的伺服電機試驗系統設計
23. 陶瓷壓磚機PLC電氣控制系統的設計
24. 多工位組合機床的PLC控制系統
25. 基於PLC的車床數字化控制系統設計
26. PLC實現自動重合閘裝置的設計
27. 混凝土攪拌站控制系統設計
28. 基於PLC控制的帶式輸送機自動張緊裝置
29. 基於PLC的化學水處理控制系統的設計
30. S7-300 PLC在電梯控制中的應用
31. 模糊演算法在線優化PI控制器參數的PLC設計
32. 神經網路在線優化PI參數的PLC及組態設計
33. 模糊演算法優化PI參數的PLC實現及組態設計
34. BP演算法在線優化PI控制器參數的PLC實現
35. 推鋼爐過程式控制制系統設計
36. 焦爐電機車控制系統的設計
37. 基於PLC的鍋爐控制系統設計
38. 熱量計的硬體電路設計
39. 高層建築PLC控制的恆壓供水系統的設計
40. 材料分揀PLC控制系統設計
41. 基於PLC控制的調壓調速電梯拖動系統設計
42. 基於PLC的七層交流變頻電梯控制系統設計
43. 五層交流雙速電梯PLC電氣控制系統的設計
44. 四層交流雙速電梯的PLC電氣控制系統的設計
45. 三層樓交流雙速電梯的PLC電氣控制系統的設計
46. PLC在恆溫控制過程中的應用
Q.Q,89 ........................................後面接著輸入......
36........................................後面接著輸入......
28........................................後面接著輸入......
136
(4行連著輸入就是我的QQ)
47. 變頻器在恆壓供水控制系統中的應用
48. 基於西門子PLC的Z3040型搖臂鑽床改造
49. PLC控制的恆壓供水系統的設計

㈤ 機械設計課程設計---設計帶式輸送機傳動裝置

參考:

可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,它與普通膠帶輸送機相比增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。

結構概述

伸縮膠帶輸送機分為固定部分和非固定部分兩大部分。固定部分由機頭傳動裝置、儲帶裝置、收放膠帶裝置等組成;非固定部分由無螺栓連接的快速可拆支架、機尾等組成。

1、 機頭傳動裝置由傳動捲筒、減速器、液力聯軸器、機架、卸載滾筒、清掃器組成。

n 機頭傳動裝置是整個輸送機的驅動部分,兩台電機通過液力聯軸器、減速器分別傳遞轉距給兩個傳動滾筒(也可以用兩個齒輪串聯起來傳動)。用齒輪傳動時,應卸下一組電機、液力聯軸器和減速器。

n 液力聯軸器為YL-400型,它由泵輪、透平輪、外殼、從動軸等構成,其特點是泵輪側有一輔助室,電機啟動後,液流透過小孔進入工作室,因而能使負載比較平衡地啟動而電機則按近於堅載啟動,工作時殼體內加20號機械油,充油量為14m3,減速器採用上級齒輪減速,第一級為圓弧錐齒輪,第二、第三級為斜齒和直齒圓柱齒輪,總傳動比為25.564,與SGW-620/40T型刮板輸送機可通用互換,減速器用螺栓直接與機架連接。

n 傳動捲筒為焊接結構,外徑為Φ500毫米,捲筒表面有特製的硫化膠層,因此對提高膠帶與滾筒的eua值,防止打滑、減少初張力,具有較好的效果。

n 卸載端和頭部清掃器,帶式逆止器,便於卸載,機頭最前部有外伸的卸載臂,由卸載滾筒和伸出架組成,滾筒安裝在伸出架上,其軸線位置可通過軸承兩側的螺栓進行調節,以調整膠帶在機頭部的跑偏,在卸載滾筒的下部裝有兩道清掃器,由於清掃器刮板緊壓在膠帶上,故可除去粘附著的碎煤,帶式逆止器以防止停車時膠帶倒轉。

n 機架為焊接結構,用螺栓組裝,機頭傳動裝置所有的零部件均安裝在機架上。電動機和減速器可根據具體情況安裝在機架的左側或右側。

2、 儲帶裝置包括儲帶轉向架、儲帶倉架、換向滾筒、托輥小車、游動小車、張緊裝置、張緊絞車等。

n 儲帶裝置的骨架由框架和支架用螺栓連接而成,在機頭傳動裝置兩具轉框架上裝有三個固定換向滾筒與游動小車上的兩個換向滾筒一起供膠帶在儲帶裝置中往復導向,架子上面安裝固定槽形托輥和平托輥,以支撐膠帶,架子內側有軌道,供托輥不畫和游動小車行走。

n 固定換向滾筒為定軸式,用於儲帶裝置進行儲帶時,用以主承膠帶,使其懸垂度不致過大,托輥小車隨游動小車位置的變動,需要用人力拉出或退回。

n 游動小車由車架、換向滾筒、滑輪組、車輪等組成,滑輪組裝在車身後都與另一滑輪組相適應,其位置可保證受力時車身不被抬起,這樣,對保持車身穩定,防止換向滾筒上的膠帶跑偏效果較好,車身下部還裝著止爬鉤,用以防止車輪脫軌掉道。

n 游動小車向左側移動時,膠帶放出,機身伸長,游動小車向右側移動時,膠帶儲存,機身縮短,通過鋼絲繩拉緊游動小車可使膠帶得到適當的張緊度。

n 在儲帶裝置的後部,設有張緊絞車,膠帶張力指示器和張力緩沖器,張力緩沖器的作用是使輸送機(在起動時讓膠帶始終保持一定的張力,以減少空載膠帶的不適度和膠帶層間的拍打)。

3、 收放膠帶裝置位於張緊絞車的後部,它由機架、調心托輥、減速器、電動機、旋桿等組成,其作用是將膠帶增補到輸送機機身上或從輸送機機身取下,機架的兩端和後端,各裝一旋桿,當增加或減少膠帶時用以夾緊主膠帶,調心托輥組供捲筒收放膠帶時導向,工作時將捲筒推進機架的一端用尾架頂起,另一端頂在減速器出軸的頂尖上,開動電動機通過減速器出軸的撥盤帶動捲筒,收卷膠帶,放出膠帶,放出膠帶時不開電機由外拖動捲筒反轉,在不工作時活動軌可用插銷掛在機架上,以縮小寬度,在活動軌上方應設置起重裝置懸弔捲筒,巷道寬度可視具體情況適當拓寬,以利膠帶收入時操作。

4、 中間架由無螺栓連接的快速可拆支架,由H型支架、鋼管、平托輥和掛鉤式槽形托輥、「V」型托輥等組成,是機器的非固定部分,鋼管可作為拆卸的機身,用柱銷固裝在鋼管上,用小錘可以打動,掛鉤式槽形托輥膠接式,槽形角30°,用掛鉤掛在鋼管的柱銷上,掛鉤上制動的圓弧齒槽,托輥就是通過齒槽掛在柱銷上的,可向前向後移動,以調節托輥位置控制膠帶跑偏。

5、 上料裝置、下料裝置;上料裝置安裝在收放裝置後邊,由轉向轉導向接上料段,運送的物料從此段裝上運至下料段,下料裝置由下料段一組斜托輥將物料卸下,下料段直接極為,機尾由導軌(Ⅰ、Ⅱ、Ⅲ)和機尾滾筒座組成,導軌一端用螺栓固定在中支座上,並與另一導軌的前端用柱銷膠接,藉以適應底板的不平,機尾滾筒與儲帶裝置中的滾筒結構相同,能互換,其軸線位置可用螺栓調節,以調整膠帶中在機尾的跑偏,機尾滾筒前端設有刮煤板,可使滾筒表面的碎煤或粉煤刮下,並收集泥槽中,用特製的拉泥板取出,機尾加上裝有緩沖托輥組,受料時,可降低塊煤對膠帶的沖擊,有利於提高膠帶壽命

㈥ 壓帶式帶式輸送機的設計

既然是畢業設計標題,我們就應該充分了解壓帶帶式輸送機的方方面面。例如壓帶式輸送機的結構組成、工作原理、設計計算、應用特點等

壓帶帶式輸送機廣泛應用於大傾角輸送或垂直提升物料的連續輸送系統中

壓帶帶式輸送機,又名夾帶帶式輸送機或sand—wich(三明治)帶式輸送機,是由兩條面面相對的輸送帶夾著物料進行密閉輸送而得名。見圖1和圖2:下帶是承載帶,用來承載和輸送物料;上帶為壓帶,是一條輔助帶,它與承載帶共同夾緊物料,對物料產生一個法向夾緊力,增加了物料與物料、物料與輸送帶之間的摩擦力,阻止物料向下滑動,以實現大傾角甚至垂直輸送的目的。
壓帶帶式輸送機分為加料區段、彎曲提升區段、卸料區段[2]。由圖3知,加料區段,通過導料槽3或者其他給料裝置,將物料裝載到承載帶上,物料在該區段運行穩定後,進入壓帶5和承載帶2之間,在凹弧段被逐漸壓緊後進行提升。當物料被提升到凸弧段,兩輸送帶分開時,由卸料點通過漏斗卸載或直接將物料拋射到另一台輸送機上。

希望對你有所幫助,朋友想要更多了解壓帶帶式輸送機,可以聯系我。

㈦ 課程設計帶式輸送機傳動裝置

本次畢業設計是關於礦用固定式帶式輸送機的設計。首選膠帶輸送機作了簡單的內概述:接著分析了帶式輸送容機的選型原則及計算方法;然後根據這些設計准則與計算選型方法按照給定參數要求進行選型設計;接著對所選擇的輸送機各主要零部件進行了校核。普通帶式輸送機由六個主要部件組成:傳動裝置,機尾和導回裝置,中部機架,拉緊裝置以及膠帶。最後簡單的說明了輸送機的安裝與維護。目前,膠帶輸送機正朝著長距離,高速度,低摩擦的方向發展,近年來出現的氣墊式膠帶輸送機就是其中的一中。在膠帶輸送機的設計、製造以及應用方面,目前我國與國外先進水平相比仍有較大差距,國內在設計製造帶式輸送機過程中存在著很多不足。
關鍵詞:帶式輸送機,選型設計,主要部件

以上資料來自「三人行設計網」 我只是復制了一部分給你看 但願能對你有所幫助 他的還算比較全 你可以去看看 呵呵

㈧ 急求帶式輸送機傳動裝置中的二級圓柱齒輪減速器畢業設計

前 言

機械設計綜合課程設計在機械工程學科中佔有重要地位,它是理論應用於實際的重要實踐環節。本課程設計培養了我們機械設計中的總體設計能力,將機械設計系列課程設計中所學的有關機構原理方案設計、運動和動力學分析、機械零部件設計理論、方法、結構及工藝設計等內容有機地結合進行綜合設計實踐訓練,使課程設計與機械設計實際的聯系更為緊密。此外,它還培養了我們機械繫統創新設計的能力,增強了機械構思設計和創新設計。
本課程設計的設計任務是展開式二級圓柱齒輪減速器的設計。減速器是一種將由電動機輸出的高轉速降至要求的轉速比較典型的機械裝置,可以廣泛地應用於礦山、冶金、石油、化工、起重運輸、紡織印染、制葯、造船、機械、環保及食品輕工等領域。
本次設計綜合運用機械設計及其他先修課的知識,進行機械設計訓練,使已學知識得以鞏固、加深和擴展;學習和掌握通用機械零件、部件、機械傳動及一般機械的基本設計方法和步驟,培養學生工程設計能力和分析問題,解決問題的能力;提高我們在計算、制圖、運用設計資料(手冊、 圖冊)進行經驗估算及考慮技術決策等機械設計方面的基本技能,同時給了我們練習電腦繪圖的機會。
最後藉此機會,對本次課程設計的各位指導老師以及參與校對、幫助的同學表示衷心的感謝。
由於缺乏經驗、水平有限,設計中難免有不妥之處,懇請各位老師及同學提出寶貴意見。

帶式輸送機概論

帶式輸送機是一種摩擦驅動以連續方式運輸燃料的機械。應用它可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。它既可以進行碎散物料的輸送,也可以進行成件物品的輸送。除進行純粹的物料輸送外,還可以與各工業企業生產流程中的工藝過程的要求相配合,形成有節奏的流水作業運輸線。所以帶式輸送機廣泛應用於現代化的各種工業企業中。在礦山的井下巷道、礦井地面運輸系統、露天采礦場及選礦廠中,廣泛應用帶式輸送機。它用於水平運輸或傾斜運輸。使用非常方便。
輸送機發展歷史
中國古代的高轉筒車和提水的翻車,是現代斗式提升機和刮板輸送機的雛形;17世紀中,開始應用架
空索道輸送散狀物料;19世紀中葉,各種現代結構的輸送機相繼出現。
1868年,在英國出現了帶式輸送機;1887年,在美國出現了螺旋輸送機;1905年,在瑞士出現了鋼帶式輸送機;1906年,在英國和德國出現了慣性輸送機。此後,輸送機受到機械製造、電機、化工和冶金工業技術進步的影響,不斷完善,逐步由完成車間內部的輸送,發展到完成在企業內部、企業之間甚至城市之間的物料搬運,成為材料搬運系統機械化和自動化不可缺少的組成部分。
輸送機的特點
帶式輸送機是煤礦最理想的高效連續運輸設備,與其他運輸設備(如機車類)相比具有輸送距離長、運量大、連續輸送等優點,而且運行可靠,易於實現自動化和集中化控制,尤其對高產高效礦井,帶式輸送機已成為煤炭開采機電一體化技術與裝備的關鍵設備。
帶式輸送機主要特點是機身可以很方便的伸縮,設有儲帶倉,機尾可隨採煤工作面的推進伸長或縮短,結構緊湊,可不設基礎,直接在巷道底板上鋪設,機架輕巧,拆裝十分方便。當輸送能力和運距較大時,可配中間驅動裝置來滿足要求。根據輸送工藝的要求,可以單機輸送,也可多機組合成水平或傾斜的運輸系統來輸送物料。
帶式輸送機廣泛地應用在冶金、煤炭、交通、水電、化工等部門,是因為它具有輸送量大、結構簡單、維修方便、成本低、通用性強等優點。
帶式輸送機還應用於建材、電力、輕工、糧食、港口、船舶等部門。
一、 設計任務書
設計一用於帶式運輸機上同軸式二級圓柱齒輪減速器
1. 總體布置簡圖

2. 工作情況
工作平穩、單向運轉
3. 原始數據
運輸機捲筒扭矩(N•m) 運輸帶速度(m/s) 捲筒直徑(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 設計內容
(1) 電動機的選擇與參數計算
(2) 斜齒輪傳動設計計算
(3) 軸的設計
(4) 滾動軸承的選擇
(5) 鍵和聯軸器的選擇與校核
(6) 裝配圖、零件圖的繪制
(7) 設計計算說明書的編寫
5. 設計任務
(1) 減速器總裝配圖1張(0號或1號圖紙)
(2) 齒輪、軸、軸承零件圖各1張(2號或3號圖紙)
(3) 設計計算說明書一份
二、 傳動方案的擬定及說明
為了估計傳動裝置的總傳動比范圍,以便選擇合適的傳動機構和擬定傳動:方案,可由已知條件計算其驅動捲筒的轉速nw:

三. 電動機的選擇
1. 電動機類型選:Y行三相非同步電動機
2. 電動機容量
(1) 捲筒軸的輸出功率

(2) 電動機的輸出功率

傳動裝置的總效率
式中, 為從電動機至捲筒軸之間的各傳動機構和軸承的效率。由《機械設計課程設計》(以下未作說明皆為此書中查得)表2-4查得:V帶傳動 ;滾動軸承 ;圓柱齒輪傳動 ;彈性聯軸器 ;捲筒軸滑動軸承 ,則


(3) 電動機額定功率
由第二十章表20-1選取電動機額定功率
由表2-1查得V帶傳動常用傳動比范圍 ,由表2-2查得兩級展開式圓柱齒輪減速器傳動比范圍 ,則電動機轉速可選范圍為

可選符合這一范圍的同步轉速的電動3000 。

根據電動機所需容量和轉速,由有關手冊查出只有一種使用的電動機型號,此種傳動比方案如下表:
電動機型號 額定功率
電動機轉速
傳動裝置傳動比
Y100L-2 3 同步 滿載 總傳動比 V帶 減速器
3000 2880 62.06 2

三、 計算傳動裝置總傳動比和分配各級傳動比
1. 傳動裝置總傳動比

2. 分配各級傳動比
取V帶傳動的傳動比 ,則兩級圓柱齒輪減速器的傳動比為

按展開式布置考慮潤滑條件,為使兩級大齒輪直徑相近由圖12展開式曲線的
則i
所得 符合一般圓柱齒輪傳動和兩級圓柱齒輪減速器傳動比的常用范圍。
四、計算傳動裝置的運動和動力參數:

按電動機軸至工作機運動傳遞路線推算,得到各軸的運動和動力參數
1.各軸轉速:

2.各軸輸入功率:

Ⅰ~Ⅲ軸的輸出功率分別為輸入功率乘軸承效率0.99,捲筒軸輸出功率則為輸入功率乘捲筒的傳動效率0.96,計算結果見下表。

3. 各軸輸入轉矩:

Ⅰ~Ⅲ軸的輸出轉矩分別為輸入轉矩乘軸承效率0.99,捲筒軸輸出轉矩則為輸入轉矩乘捲筒的傳動效率0.96,計算結果見下表。

綜上,傳動裝置的運動和動力參數計算結果整理於下表:

軸名 功率
轉矩
轉速

傳動比

效率

輸入 輸出 輸入 輸出
電機軸 2.3 7.63 2880 2
0.96
I軸 2.21 14.65 1440
7.13
0.95
II軸 2.1 99.29 201. 96
4.35 0.95
III軸
2.0 410.58 46.43
1.00 0.98
捲筒軸 1.94 398.34

第三章 主要零部件的設計計算
§3.1 展開式二級圓柱齒輪減速器齒輪傳動設計

§3.1.1 高速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,大齒輪為正火處理,小齒輪熱處理均為調質處理且大、小齒輪的齒面硬度分別為260HBS,215HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 。
2. 按齒面接觸強度設計
由設計公式進行試算,即

(1) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩:
3) 查6-12(機械設計基礎)表選取齒寬系數 ,查圖6-37(機械設計基礎)按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

4)計算應力循環次數

5) 按接觸疲勞壽命系數

(2) 計算:

1) 帶入 中較小的值,求得小齒輪分度圓直徑 的最小值為

3) 計算齒寬: 取 ,
4) 計算分度圓直徑與模數、中心距:
模數: 取第一系列標准值m=1.5
分度圓直徑:

中心距:
5) 校核彎曲疲勞強度:
符合齒形因數 由圖6-40得 =4.35, =3.98
彎曲疲勞需用應力:
1) 查圖6-41得彎曲疲勞強度極限 : ;
2) 查圖6-42取彎曲疲勞壽命系數
3) 計算彎曲疲勞許用應力.
取彎曲疲勞安全系數S=1,得

4) 校核計算:
<
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級

§3.1.2 低速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,熱處理均為正火調質處理且大、小齒輪的齒面硬度分別為200HBS,250HBS,二者材料硬度差為40HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 ,取 。
2. 按齒面接觸強度設計
由設計公式進行試算,即

2) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩
3) 查表及其圖選取齒寬系數 ,由圖6-37按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
4) 計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

5) 查圖6-42取彎曲疲勞壽命系數

按接觸疲勞壽命系數

模數: 由表6-2取第一系列標准模數
分度圓直徑:
中心距:
齒寬:
校核彎曲疲勞強度:
復合齒形因數 由圖6-40得
6)計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1

校核計算: <
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級
對各個軸齒輪相關計算尺寸
表6-3高速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z

模數

壓力角

齒高系數

頂隙系數

齒距 P

齒槽寬 e

齒厚 s

齒頂高

齒根高

齒高 h

分度圓直徑 d

基圓直徑

齒頂圓直徑

齒根圓直徑

中心距

表6-3低速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z

模數

壓力角

齒高系數

頂隙系數

齒距 P

齒槽寬 e

齒厚 s

齒頂高

齒根高

齒高 h

分度圓直徑 d

基圓直徑

齒頂圓直徑

齒根圓直徑

中心距

V帶的設計
1)計算功率

2)選擇帶型
據 和 =2880由圖10-12<械設計基礎>選取z型帶
3)確定帶輪基準直徑
由表10-9確定 <械設計基礎>

1) 驗算帶速
因為 故符合要求
2) 驗算帶長
初定中心距

由表10-6選取相近
3) 確定中心距

4) 驗算小帶輪包角
故符合要求
5) 單根V帶傳遞額定功率
據 和 查圖10-9得
8) 時單根V帶的額定功率增量:據帶型及 查表10-2<械設計基礎>得
10)確定帶根數
查表10-3 查表10-4 <械設計基礎>

11) 單根V帶的初拉力
查表10-5

12)用的軸上的力

13帶輪的結構和尺寸
以小帶輪為例確定其結構和尺寸,由圖10-11<械設計基礎>帶輪寬
§3.3 軸系結構設計
§3.3.1 高速軸的軸系結構設計
一、軸的結構尺寸設計
根據結構及使用要求,把該軸設計成階梯軸且為齒輪軸,共分七段,其中第5段為齒輪,如圖2所示:

圖2
由於結構及工作需要將該軸定為齒輪軸,因此其材料須與齒輪材料相同,均為合金鋼,熱處理為調制處理, 材料系數C為118。
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表6 高速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)

13.6

16

60
第2段
(由唇形密封圈尺寸確定)

20(18.88)

50
第3段 由軸承尺寸確定
(軸承預選6004 B1=12)

20

23
第4段

24(23.6)

145
第5段 齒頂圓直徑
齒寬
33

38
第6段

24

10
第7段

20

23
二、軸的受力分析及計算
軸的受力模型簡化(見圖3)及受力計算
L1=92.5 L2=192.5 L3=40

三、軸承的壽命校核
鑒於調整間隙的方便,軸承均採用正裝.預設軸承壽命為3年即12480h.
校核步驟及計算結果見下表:
表7 軸承壽命校核步驟及計算結果
計算步驟及內容 計算結果
6007軸承

A端 B端
由手冊查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
計算Fs=eFr(7類)、Fr/2Y(3類) FsA=1809.55 FsB=1584.66
計算比值Fa/Fr FaA /FrA>e FaB /FrB< e
確定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查載荷系數fP 1.2
計算當量載荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
計算軸承壽命

9425.45h
小於
12480h
由計算結果可見軸承6007合格.

表8 中間軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
由軸承尺寸確定
(軸承預選6008 )

33.6

40

25

第2段
(考慮鍵槽影響)

45(44.68)

77.5
第3段

50

12.5
第4段

99

109

第5段

46

39
考慮到低速軸的載荷較大,材料選用45,熱處理調質處理,取材料系數
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表10 低速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)
(由聯軸器寬度尺寸確定)

52.49
60(55.64)

142

第2段
(由唇形密封圈尺寸確定)

64(63.84)

50
第3段

66
16

第4段 由軸承尺寸確定
(軸承預選6014C )

70

24
第5段

78

75
第6段
20

88

20
第7段
齒寬+10
80(79.8)

119
§3.3.4 各軸鍵、鍵槽的選擇及其校核
因減速器中的鍵聯結均為靜聯結,因此只需進行擠壓應力的校核.
一、 高速級鍵的選擇及校核:
帶輪處鍵:按照帶輪處的軸徑及軸長選 鍵B8X7,鍵長50,GB/T1096
聯結處的材料分別為: 45鋼(鍵) 、40Cr(軸)
二、中間級鍵的選擇及校核:
(1) 高速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B14X9GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、20Cr(軸)
此時, 鍵聯結合格.
三、低速級級鍵的選擇及校核
(1)低速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B22X14,鍵長 GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其

該鍵聯結合格
(2)聯軸器處鍵: 按照聯軸器處的軸徑及軸長選 鍵16X10,鍵長100,GB/T1096
聯結處的材料分別為: 45鋼 (聯軸器) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其

該鍵聯結合格.

第四章 減速器箱體及其附件的設計
§4.1箱體結構設計
根據箱體的支撐強度和鑄造、加工工藝要求及其內部傳動零件、外部附件的空間位置確定二級齒輪減速器箱體的相關尺寸如下:(表中a=322.5)
表12 箱體結構尺寸
名稱 符號 設計依據 設計結果
箱座壁厚 δ 0.025a+3=11 11
考慮鑄造工藝,所有壁厚都不應小於8
箱蓋壁厚 δ1 0.02a+3≥8 9.45
箱座凸緣厚度 b 1.5δ 16.5
箱蓋凸緣厚度 b1 1.5δ1 14.18
箱座底凸緣厚度 b2 2.5δ 27.5
地腳螺栓直徑 df 0.036a+12 24(23.61)
地腳螺栓數目 n 時,n=6
6
軸承旁聯結螺栓直徑 d1 0.75df 18
箱蓋與箱座聯接螺栓直徑 d 2 (0.5~0.6)df 12
軸承端蓋螺釘直徑和數目 d3,n (0.4~0.5)df,n 10,6
窺視孔蓋螺釘直徑 d4 (0.3~0.4)df 8
定位銷直徑 d (0.7~0.8) d 2 9
軸承旁凸台半徑 R1 c2 16
凸台高度 h 根據位置及軸承座外徑確定,以便於扳手操作為准 34
外箱壁至軸承座端面距離 l1 c1+c2+ (5~10) 42
大齒輪頂圓距內壁距離 ∆1 >1.2δ 11
齒輪端面與內壁距離 ∆2 >δ 10
箱蓋、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
軸承端蓋凸緣厚度 t (1~1.2) d3 10
軸承端蓋外徑 D2 D+(5~5.5) d3 120
軸承旁邊連接
螺栓距離

S
120
第五章 運輸、安裝和使用維護要求
1、減速器的安裝
(1)減速器輸入軸直接與原動機連接時,推薦採用彈性聯軸器;減速器輸出軸與工作機聯接時,推薦採用齒式聯軸器或其他非剛性聯軸器。聯軸器不得用錘擊裝到軸上。
(2)減速器應牢固地安裝在穩定的水平基礎上,排油槽的油應能排除,且冷卻空氣循環流暢。
(3)減速器、原動機和工作機之間必須仔細對中,其誤差不得大於所用聯軸器的許用補償量。
(4)減速器安裝好後用手轉動必須靈活,無卡死現象。
(5)安裝好的減速器在正式使用前,應進行空載,部分額定載荷間歇運轉1~3h後方可正式運轉,運轉應平穩、無沖擊、無異常振動和雜訊及滲漏油等現象,最高油溫不得超過100℃;並按標准規定檢查輪齒面接觸區位置、面積,如發現故障,應及時排除。
2、使用維護
本類型系列減速器結構簡單牢固,使用維護方便,承載能力范圍大,公稱輸入功率0.85—6660kw,公稱輸出轉矩100—410000N.m,不怕工況條件惡劣,是適用性很好,應用量大面廣的產品。可通用於礦山、冶金、運輸、建材、化工、紡織、輕工、能源等行業的機械傳動。但有以下限制條件:
1.減速器高速軸轉速不高於1000r/min;
2.減速器齒輪圓周速度不高於20m/s;
3.減速器工作環境溫度為—40~45℃,低於0℃時,啟動前潤滑油應預熱到8℃以上,高於45℃時應採取隔熱措施。
3、減速器潤滑油的更換:
(1)減速器第一次使用時,當運轉150~300h後須更換潤滑油,在以後的使用中應定期檢查油的質量。對於混入雜質或變質的油須及時更換。一般情況下,對於長期工作的減速器,每500~1000h必須換油一次。對於每天工作時間不超過8h的減速器,每1200~3000h換油一次。
(2)減速器應加入與原來牌號相同的油,不得與不同牌號的油相混用。牌號相同而粘度不同的油允許混合用。
(3)換油過程中,蝸輪應使用與運轉時相同牌號的油清洗。
(4)工作中,當發現油溫溫升超過80℃或油池溫度超過100℃及產生不正常的雜訊等現象時,應停止使用,檢查原因。如因齒面膠合等原因所致,必須排除故障,更換潤滑油後,方可繼續運轉。
減速器應定期檢修。如發現擦傷、膠合及顯著磨損,必須採用有效措施制止或予以排除。備件必須按標准製造,更新的備件必須經過跑合和負荷試驗後才能正式使用。 用戶應有合理的使用維護規章制度,對減速器的運轉情況和檢驗中發現的問題應做認真的記錄 。

小 結
轉眼兩周的時間過去了,感覺時間過得真快,忙忙碌碌終於把機械設計做出來了。我通過這次設計學到了很多東西。使我對機械設計的內容有了進一步的了解.
因為剛結束課程就搞設計,還沒有來得及復習,所以剛開始遇到好多的問題,都感覺很棘手.因為機械設計是把我們這學期所學知識全部綜合起來了,還用到了許多先前開的課程,例如金屬工藝學,材料力學,機械原理等.
首先,我們要運用知識想好用什麼結構,然後進行軸大小長短的設計,要校核,選軸承。最後還要校核低速軸,看能否用。鍵也是一件重要的零件,校核也不可避免。所有這些都用到了力學和機械設計得內容,可是我當時力學沒有學好,機械設計又沒完全掌握,做這次設計真是不容易啊!.
但通過這次機械設計學到了許多,不僅是在知識方面,重要是在觀念方面。以往我們不管做什麼都有現成的東西,而我們只要算別人現有的東西就可以了,其實那就是抄。但現在很多是自己設計,沒有約束了反而不知所措了。其次,我在這次設計中出現了許多問題,經過常老師得指點,我學到了許多課本上沒有的東西他並且給我們講了一些實際用到的經驗.收獲真是破多啊!最後就是我們大學的課程開了這么多,我們一定要把基礎打牢,為以後的綜合運用打下基礎啊.這次機械設計課程就體現了,我們現在很缺乏把自己學的東西聯系起來的能力.
最後我總結一下通過這次機械設計我學到的。實踐出真知,不假。通過設計我現在可以了解真正的設計是一個怎樣的程序啊.而且其中出現了許多錯誤,為以後工作增加經驗。雖然機設很累,但我很充實,我學到了許多知識,我增加了社會競爭力,我又多了解了機械,又進步了。總之,這次機械設計雖然很累,但是我學到了好多自己從前不知道和沒有經歷的經驗。

參 考 文 獻

1 <<機械設計>>第八版 濮良貴主編 高等教育出版社 ,2006
2 <<機械設計課程設計>>第1版 . 王昆,何小柏主編 .機械工業出版社 ,2004
3 <<機械原理>> 申永勝主編 清華大學出版社 ,1999
4 <<材料力學 >> 劉鴻文主編 高等教育出版社 ,2004
5 <<幾何公差與測量>>第五版 甘永力主編 上海科學技術出版社 ,2003
6 <<機械制圖>>

閱讀全文

與關於小型輸送裝置的畢業設計相關的資料

熱點內容
尿道閥門打開為什麼還尿線細 瀏覽:931
制動器自動補償裝置視頻 瀏覽:247
迷你世界機械開關怎麼做 瀏覽:580
扶梯安全裝置的設計改進 瀏覽:170
如何用硬紙板做一個機械手臂 瀏覽:980
喂料裝置的設計 瀏覽:244
皇冠液化氣閥門 瀏覽:700
斜仰卧起坐器材怎麼用 瀏覽:506
冷藏庫一般用什麼製冷劑 瀏覽:382
奧迪a7儀表盤怎麼調暗 瀏覽:983
dcs怎麼控制閥門開度 瀏覽:513
小米3提示本設備已鎖定怎麼辦 瀏覽:428
為什麼空調製冷感覺不到 瀏覽:74
起重絞車傳動裝置 瀏覽:725
古代車輪沒有軸承怎麼轉 瀏覽:970
名爵zs儀表盤有響聲該怎麼解決 瀏覽:913
早教班需要哪些設備和教具 瀏覽:175
軸承徑向載荷如何計算 瀏覽:575
MS開頭是什麼登陸設備 瀏覽:227
為什麼開空調跳泵頻繁製冷劑夠了 瀏覽:852