A. 數控機床對檢測元件及位置檢測裝置有什麼要求
一、數控機床對檢測元件要求:
檢測元件是檢測裝置的重要部件,其主要作用是檢測位移和速度,發送反饋信號。位移檢測系統能夠測量的最小們移量稱為解析度。解析度不僅取決於檢測元件本身,而且也取決於測量電路。
1、數控機床對檢測元件的主要要求是:
(1)壽命長,可靠性高,抗干擾能力強;
(2)滿足精度和速度要求;
(3)使用維護方便,適合數控機床運行環境;
(4)成本低;
(5)便於與計算機連接。
不同類型的數控機床對檢測系統的精度與速度的要求不同。通常大型數控機床以滿足速度要求為主,而中、小型和高精度數控機床以滿足精度要求為主。選擇測量系統的解析度和脈沖當量時,一般要求比加工精度高一個數量級。
二、數控機床對位置檢測裝置的要求
位置檢測裝置是數控機床伺服系統的重要組成部分。位置檢測裝置的作用是檢測位移和速度,發送反饋信號,構成閉環或半閉環控制。數控機床的加工精度主要由於檢測系統的精度決定。不同類型的數控機床,對位置檢測元件,檢測系統的精度要求和被測部件的最高移動速度各不相同。現在檢測元件與系統的最高水平是;被測部件的最高移動速度高至240m/min時,其檢測位移的分辨力(能檢測的最小位移量)可達1um,即24m/min時可達0.1um。最高分辨力可達到0.01um。
數控機床對位置檢測裝置的要求是:
(1)受溫度、濕度的影響小,工作可靠,能長期保持精度,抗干擾能力強。
(2)在數控機床執行部件移動范圍內,能滿足精度和速度的要求。
(3)使用維護方便,適應數控機床工作環境。
(4)成本低。
B. 數控機床精度靠什麼裝置保證
方法主要有:
①試切法調整
試切法調整,就是對被加工零件進行「試切-測量-調整-再試切」,直至達到所要求的精度。它的調整誤差來源有:測量誤差;微量進給時,機構靈敏度所引起的誤差;最小切削深度影響。
②用定程機構調整
③用樣件或樣板調整
(5)工件殘余應力引起的誤差
殘余應力是指當外部載荷去掉以後仍存留在工件內部的應力。殘余應力是由於金屬發生了不均勻的體積變化而產生的。其外界因素來自熱加工和冷加工。有殘余應力的零件處於一種不穩定狀態。一旦其內應力的平衡條件被打破,內應力的分布就會發生變化,從而引起新的變形,影響加工精度。
①內應力產生的原因主要有:毛坯製造中產生的內應力;冷校正產生的內應力;切削加工產生的內應力。
②減小或消除內應力的措施一是採用適當的熱處理工序。二是給工件足夠的變形時間。三是零件結構要合理,結構要簡單,壁厚要均勻。
6)數控機床產生誤差的獨特性
數控機床與普通機床的最主要差別有兩點:一是數控機床具有「指揮系統」——數控系統;二是數控機床具有執行運動的驅動系統——伺服系統。
在數控機床上所產生的加工誤差,與在普通機床上產生的加工誤差,其來源有許多共同之處,但也有獨特之處,例如伺服進給系統的跟蹤誤差、檢測系統中的采樣延滯誤差等,這些都是普通機床加工時所沒有的。所以在數控加工中,除了要控制在普通機床上加工時常出現的那一類誤差源以外,還要有效地抑制數控加工時才可能出現的誤差源。這些誤差源對加工精度的影響及抑制的途徑主要有以下幾個方面:
①機床重復定位精度的影響
數控機床的定位精度是指數控機床各坐標軸在數控系統的控制下運動的位置精度,引起定位誤差的因素包括數控系統的誤差和機械傳動的誤差。而數控系統的誤差則與插補誤差、跟蹤誤差等有關。機床重復定位精度是指重復定位時坐標軸的實際位置和理想位置的符合程度。
②檢測裝置的影響
檢測反饋裝置也稱為反饋元件,通常安裝在機床工作台或絲杠上,相當於普通機床的刻度盤和人的眼睛,檢測反饋裝置將工作台位移量轉換成電信號,並且反饋給數控裝置,如果與指令值比較有誤差,則控制工作台向消除誤差的方向移動。數控系統按有無檢測裝置可分為開環、閉環與半閉環系統。開環系統精度取決於步進電動機和絲杠精度,閉環系統精度取決於檢測裝置精度。檢測裝置是高性能數控機床的重要組成部分。
③刀具誤差的影響
在加工中心上,由於採用的刀具具有自動交換功能,因而在提高生產率的同時,也帶來了刀具交換誤差。用同一把刀具加工一批工件時,由於頻繁重復換刀,致使刀柄相對於主軸錐孔產生重復定位誤差而降低加工精度。
抑制數控機床產生誤差的途徑有硬體補償和軟體補償。過去一般多採用硬體補償的方法。如加工中心採用螺距誤差補償功能。隨著微電子、控制、監測技術的發展,出現了新的軟體補償技術。它的特徵是應用數控系統通信的補償控制單元和相應的軟體,以實現誤差的補償,其原理是利用坐標的附加移動來修正誤差。
(7)提高加工精度的工藝措施
保證和提高加工精度的方法,大致可概括為以下幾種:減小原始誤差法、補償原始誤差法、轉移原始誤差法、均分原始誤差法、均化原始誤差法、「就地加工」法。
①減少原始誤差
這種方法是生產中應用較廣的一種基本方法。它是在查明產生加工誤差的主要因素之後,設法消除或減少這些因素。例如細長軸的車削,現在採用了大走刀反向車削法,基本消除了軸向切削力引起的彎曲變形。若輔之以彈簧頂尖,則可進一步消除熱變形引起的熱伸長的影響。
②補償原始誤差
誤差補償法,是人為地造出一種新的誤差,去抵消原來工藝系統中的原始誤差。當原始誤差是負值時人為的誤差就取正值,反之,取負值,並盡量使兩者大小相等;或者利用一種原始誤差去抵消另一種原始誤差,也是盡量使兩者大小相等,方向相反,從而達到減少加工誤差,提高加工精度的目的。
③轉移原始誤差
誤差轉移法實質上是轉移工藝系統的幾何誤差、受力變形和熱變形等。
誤差轉移法的實例很多。如當機床精度達不到零件加工要求時,常常不是一味提高機床精度,而是從工藝上或夾具上想辦法,創造條件,使機床的幾何誤差轉移到不影響加工精度的方面去。如磨削主軸錐孔保證其和軸頸的同軸度,不是靠機床主軸的回轉精度來保證,而是靠夾具保證。當機床主軸與工件之間用浮動聯接以後,機床主軸的原始誤差就被轉移掉了。
④均分原始誤差
在加工中,由於毛坯或上道工序誤差(以下統稱「原始誤差」)的存在,往往造成本工序的加工誤差,或者由於工件材料性能改變,或者上道工序的工藝改變(如毛坯精化後,把原來的切削加工工序取消),引起原始誤差發生較大的變化,這種原始誤差的變化,對本工序的影響主要有兩種情況:
誤差復映,引起本工序誤差;
定位誤差擴大,引起本工序誤差。
解決這個問題,最好是採用分組調整均分誤差的辦法。這種辦法的實質就是把原始誤差按其大小均分為n組,每組毛坯誤差范圍就縮小為原來的1/n,然後按各組分別調整加工。
⑤均化原始誤差
對配合精度要求很高的軸和孔,常採用研磨工藝。研具本身並不要求具有高精度,但它能在和工件作相對運動過程中對工件進行微量切削,高點逐漸被磨掉(當然,模具也被工件磨去一部分)最終使工件達到很高的精度。這種表面間的摩擦和磨損的過程,就是誤差不斷減少的過程。這就是誤差均化法。它的實質就是利用有密切聯系的表面相互比較,相互檢查從對比中找出差異,然後進行相互修正或互為基準加工,使工件被加工表面的誤差不斷縮小和均。 在生產中,許多精密基準件(如平板、直尺、角度規、端齒分度盤等)都是利用誤差均化法加工出來的。
⑥就地加工法
在加工和裝配中有些精度問題,牽涉到零件或部件間的相互關系,相當復雜,如果一味地提高零、部件本身精度,有時不僅困難,甚至不可能,若採用就地加工法(也稱自身加工修配法)的方法,就可能很方便地解決看起來非常困難的精度問題。就地加工法在機械零件加工中常用來作為保證零件加工精度的有效措施。
C. 數控機床按控制方式分為哪幾類,各方式什麼場合
一般傳統上不按照控制方式分類。按以下分類方法。
一、按加工工藝方法分類
1.金屬切削類數控機床
與傳統的車、銑、鑽、磨、齒輪加工相對應的數控機床有數控車床、數控銑床、數控鑽床、數控磨床、數控齒輪加工機床等。盡管這些數控機床在加工工藝方法上存在很大差別,具體的控制方式也各不相同,但機床的動作和運動都是數字化控制的,具有較高的生產率和自動化程度。
在普通數控機床加裝一個刀庫和換刀裝置就成為數控加工中心機床。加工中心機床進一步提高了普通數控機床的自動化程度和生產效率。例如銑、鏜、鑽加工中心,它是在數控銑床基礎上增加了一個容量較大的刀庫和自動換刀裝置形成的,工件一次裝夾後,可以對箱體零件的四面甚至五面大部分加工工序進行銑、鏜、鑽、擴、鉸以及攻螺紋等多工序加工,特別適合箱體類零件的加工。加工中心機床可以有效地避免由於工件多次安裝造成的定位誤差,減少了機床的台數和佔地面積,縮短了輔助時間,大大提高了生產效率和加工質量。
2.特種加工類數控機床
除了切削加工數控機床以外,數控技術也大量用於數控電火花線切割機床、數控電火花成型機床、數控等離子弧切割機床、數控火焰切割機床以及數控激光加工機床等。
3.板材加工類數控機床
常見的應用於金屬板材加工的數控機床有數控壓力機、數控剪板機和數控折彎機等。
近年來,其它機械設備中也大量採用了數控技術,如數控多坐標測量機、自動繪圖機及工業機器人等。
二、按控制運動軌跡分類
1.點位控制數控機床
點位控制數控機床的特點是機床移動部件只能實現由一個位置到另一個位置的精確定位,在移動和定位過程中不進行任何加工。機床數控系統只控制行程終點的坐標值,不控制點與點之間的運動軌跡,因此幾個坐標軸之間的運動無任何聯系。可以幾個坐標同時向目標點運動,也可以各個坐標單獨依次運動。
這類數控機床主要有數控坐標鏜床、數控鑽床、數控沖床、數控點焊機等。點位控制數控機床的數控裝置稱為點位數控裝置。
2.直線控制數控機床
直線控制數控機床可控制刀具或工作台以適當的進給速度,沿著平行於坐標軸的方向進行直線移動和切削加工,進給速度根據切削條件可在一定范圍內變化。
直線控制的簡易數控車床,只有兩個坐標軸,可加工階梯軸。直線控制的數控銑床,有三個坐標軸,可用於平面的銑削加工。現代組合機床採用數控進給伺服系統,驅動動力頭帶有多軸箱的軸向進給進行鑽鏜加工,它也可算是一種直線控制數控機床。
數控鏜銑床、加工中心等機床,它的各個坐標方向的進給運動的速度能在一定范圍內進行調整,兼有點位和直線控制加工的功能,這類機床應該稱為點位/直線控制的數控機床。
3.輪廓控制數控機床
輪廓控制數控機床能夠對兩個或兩個以上運動的位移及速度進行連續相關的控制,使合成的平面或空間的運動軌跡能滿足零件輪廓的要求。它不僅能控制機床移動部件的起點與終點坐標,而且能控制整個加工輪廓每一點的速度和位移,將工件加工成要求的輪廓形狀。
常用的數控車床、數控銑床、數控磨床就是典型的輪廓控制數控機床。數控火焰切割機、電火花加工機床以及數控繪圖機等也採用了輪廓控制系統。輪廓控制系統的結構要比點位/直線控系統更為復雜,在加工過程中需要不斷進行插補運算,然後進行相應的速度與位移控制。
現在計算機數控裝置的控制功能均由軟體實現,增加輪廓控制功能不會帶來成本的增加。因此,除少數專用控制系統外,現代計算機數控裝置都具有輪廓控制功能。
三、按驅動裝置的特點分類
1.開環控制數控機床
這類控制的數控機床是其控制系統沒有位置檢測元件,伺服驅動部件通常為反應式步進電動機或混合式伺服步進電動機。數控系統每發出一個進給指令,經驅動電路功率放大後,驅動步進電機旋轉一個角度,再經過齒輪減速裝置帶動絲杠旋轉,通過絲杠螺母機構轉換為移動部件的直線位移。移動部件的移動速度與位移量是由輸入脈沖的頻率與脈沖數所決定的。此類數控機床的信息流是單向的,即進給脈沖發出去後,實際移動值不再反饋回來,所以稱為開環控制數控機床。
開環控制系統的數控機床結構簡單,成本較低。但是,系統對移動部件的實際位移量不進行監測,也不能進行誤差校正。因此,步進電動機的失步、步距角誤差、齒輪與絲杠等傳動誤差都將影響被加工零件的精度。開環控制系統僅適用於加工精度要求不很高的中小型數控機床,特別是簡易經濟型數控機床。
2.閉環控制數控機床
閉環控制數控機床是在機床移動部件上直接安裝直線位移檢測裝置,直接對工作台的實際位移進行檢測,將測量的實際位移值反饋到數控裝置中,與輸入的指令位移值進行比較,用差值對機床進行控制,使移動部件按照實際需要的位移量運動,最終實現移動部件的精確運動和定位。從理論上講,閉環系統的運動精度主要取決於檢測裝置的檢測精度,也與傳動鏈的誤差無關,因此其控制精度高。圖1-3所示的為閉環控制數控機床的系統框圖。圖中A為速度感測器、C為直線位移感測器。當位移指令值發送到位置比較電路時,若工作台沒有移動,則沒有反饋量,指令值使得伺服電動機轉動,通過A將速度反饋信號送到速度控制電路,通過C將工作台實際位移量反饋回去,在位置比較電路中與位移指令值相比較,用比較後得到的差值進行位置控制,直至差值為零時為止。這類控制的數控機床,因把機床工作台納入了控制環節,故稱為閉環控制數控機床。
閉環控制數控機床的定位精度高,但調試和維修都較困難,系統復雜,成本高。
3.半閉環控制數控機床
半閉環控制數控機床是在伺服電動機的軸或數控機床的傳動絲杠上裝有角位移電流檢測裝置(如光電編碼器等),通過檢測絲杠的轉角間接地檢測移動部件的實際位移,然後反饋到數控裝置中去,並對誤差進行修正。通過測速元件A和光電編碼盤B可間接檢測出伺服電動機的轉速,從而推算出工作台的實際位移量,將此值與指令值進行比較,用差值來實現控制。由於工作台沒有包括在控制迴路中,因而稱為半閉環控制數控機床。
半閉環控制數控系統的調試比較方便,並且具有很好的穩定性。目前大多將角度檢測裝置和伺服電動機設計成一體,這樣,使結構更加緊湊。
4.混合控制數控機床
將以上三類數控機床的特點結合起來,就形成了混合控制數控機床。混合控制數控機床特別適用於大型或重型數控機床,因為大型或重型數控機床需要較高的進給速度與相當高的精度,其傳動鏈慣量與力矩大,如果只採用全閉環控制,機床傳動鏈和工作台全部置於控制閉環中,閉環調試比較復雜。混合控制系統又分為兩種形式:
(1)開環補償型。它的基本控制選用步進電動機的開環伺服機構,另外附加一個校正電路。用裝在工作台的直線位移測量元件的反饋信號校正機械繫統的誤差。
(2)半閉環補償型。它是用半閉環控制方式取得高精度控制,再用裝在工作台上的直線位移測量元件實現全閉環修正,以獲得高速度與高精度的統一。其中A是速度測量元件(如測速發電機),B是角度測量元件,C是直線位移測量元件。
D. 檢測裝置的分類
增量式檢測方式只測量位移增量,每移動一個測量單位就發出一個測量信號。其優點是檢測裝置比較簡單,任何一個對中點都可以作為測量起點。移動距離是靠對測量信號計數後讀出的,一旦計數有誤,此後的測量結果將全錯。另外在發生故障時(如斷電等)不能再找到事故前的正確位置,事故排除後,必須將工作台移至起點重新計數才能找到事故前的正確位置。
絕對值式測量方式可以避免上述缺點,它的被測量的任一點的位置都以一個固定的零點作基準,每一被測點都有一個相應的測量值。採用這種方式,解析度要求愈高,結構也愈復雜。 數字式檢測是將被測量單位量化以後以數字形式表示,它的特點是:
①被測量量化後轉換成脈沖個數,便於顯示處理;
②測量精度取決於測量單位,與量程基本無關;
③檢測裝置比較簡單,脈沖信號抗干擾能力強。
模擬式檢測是將被測量用連續的變數來表示。在大量程內作精確的模擬式檢測在技術上有較高要求,數控機床中模擬式檢測主要用於小量程測量。它的主要特點是:
①直接對被測量進行檢測,無須量化;
②在小量程內可以實現高精度測量;
③可用於直接檢測和間接檢測。
對機床的直線位移採用直線型檢測裝置測量,稱為直接檢測。其測量精度主要取決於測量元件的精度,不受機床傳動精度的直接影響。但檢測裝置要與行程等長,這對大型數控機床來說,是一個很大的限制。
對機床的直線位移採用回轉型檢測元件測量,稱為間接測量。間接檢測可靠方便,無長度限制,缺點是在檢測信號中加大了直線轉變為旋轉運動的傳動鏈誤差,從而影響檢測精度。因此,為了提高定位精度,常常需要對機床的傳動誤差進行補償。
E. 閉環控制系統的精度取決於給定精度和檢測元件的精度,為什麼會取決於給定精度
—、填空 1數控機床的加工精度取決於(位置檢測元件的 )精度和()精度和(操作者得技能)【不知道怎麼填(加工精度與數控系統沒有關系。取決於伺服驅動,機床水平。操作者得技能)】 2按反饋信號的采樣位置不同,數控機床分為(電壓)和(電流)兩種【第一,按極性不同,反饋分為正負反饋。 如果反饋信號與輸入信號極性使凈輸入信號增強,叫正反饋;反饋信號起削弱輸入信號的作用,使凈輸入信號削弱,叫負反饋。負反饋主要用於模擬放電路中,負反饋既能穩定靜態工作點,又能改善放大電路的各種性能。放大電路很少用正反饋。在一定條件下放在電路中的負反饋可轉化為正饋,形成自激振盪,使放大器不能正常工作,這是要避免的一面。正反饋還有有利的面,就是在波形產生的電路中,人為地把電路接成反饋形式,產生所需的波形。在電子技術實踐中,要正確組成反饋放大電路和振盪電路。必須清晰准確地判別正負反饋。如何有效判別正負反饋?可採用瞬時極性法,這有一個簡便的方法。 先設輸入信號瞬時極性為正,(1)如果反饋信號直接反饋到了輸入端,若其極性也為正,則該反饋為正反饋;若其極性為負,則該反饋為負反饋。(2)如果反饋信號間接反饋到了輸入端,若其極性為正,則該反饋為負反饋;若其極性為負,則該反饋為正反饋。如下圖: 由電路圖看出:反饋信號反饋到了第一級的發射極,也就是說反饋信號間接反饋到了輸入端(輸入端是第一級的基極),通過分析可以判斷出反饋信號與輸入信號的極性相同,都是正極性,故由Rf和Cf引入的反饋為負反饋。 第二,按反饋信號的不同,反饋分為交流和直流反饋。 對直流量起反饋作用的叫直流反饋;對交流量起反饋作用的叫交流反饋。如上圖由Rf和Cf引入的反饋就為交流反饋。(電容具有通交流,隔直流的特性) 第三,按采樣方式的不同,反饋分為電壓和電流反饋。 若反饋信號直接取自輸出端負載兩端的電壓稱為電壓反饋;若取的是電流,則是電流反饋。如上圖由Rf和Cf引入的反饋就是直接取自輸出端負載兩端的電壓,故該反饋為電壓反饋。 第四,按疊加方式的不同,反饋分為串聯和並聯反饋。 根據反饋信號在放大器輸入端與輸入信號連接方式的不同,可確定是串聯反饋還是並聯反饋。反饋信號在輸入端是以電壓的形式出現,且與輸入電壓是串聯起來加到放大器輸入端,稱為串聯反饋;反饋信號在輸入端是以電流的形式出現且與輸入電流並聯作用於放大器輸入端,稱為並聯反饋。 其實,在判斷串聯反饋和並聯反饋時有一個簡單的方法,那就是:如果反饋信號直接反饋到了輸入端,則該反饋為並聯反饋;如果反饋信號間接反饋到了輸入端,則該反饋為串聯反饋。 再如上圖由Rf和Cf引入的反饋,前面我們已經知道這個反饋不是直接反饋到輸入端的(輸入端是第一級的基極),故該反饋為串聯反饋。】 3數控機床中把平行於主軸的坐標成為(CZ)軸,在判斷坐標時,首先應確定(Z)軸 4數控機床按其控制系統形式分為那三類即(開環控制數控系統 )(半閉環控制數控系統)和(全閉環控制數控系統) 5,數控機床加工時,為避免刀具在表面留下接刀痕,應採用取沿輪廓( )或( )方向切入切出的走刀原則 6,數控機床對於何服系統的要求主要有(輸出位置精度高)(響應速度快且無超調)(能可逆運行和頻繁靈活啟停)和(調速范圍寬有良好的穩定性) 7,FMS是( (Flexible Manufacture System)的縮寫;FMC是(Flexible Manufacturing Cell)的縮寫;CIMS是(Computer Integrated Manufacturing Systems)的縮寫 8,數控機床中把水平方向、平行方向工件安裝面並與Z軸垂直的坐標軸稱之為(X軸)向坐標軸, — —、判斷 1,數控編程內容中包含了零件的加工工藝 ( / ) 2,數控機床就是將數控裝置和普通機床結合起來 ( x) 3,用等距離法擬合非圓曲線時,直線段越短所形成的擬合誤差越小 ( x) 4,數控加工程序不能包含子程序 ( x ) 5,閉環伺服系統的控制精度主要取決於檢測元件的檢測精度 ( /) 6,數控機床加工精度於所選刀具無關 ( x ) 7,短圓弧擬合非圓曲線比直線擬合非圓曲線的擬合精度更高 ( ) 8,多處理器的數控系統比單處處理器數控系統效率高但速度低 ( x ) 9,切削加工中 對刀具耐磨性影響最大的是切削速度 ( / ) 10,數控車床必須具有主軸准停功能 ( ) — — —、簡答題 1,開環步進系統的脈沖當量為0.01mm/脈沖,絲桿螺距為8mm,步進電機距角為0.75度,電機於絲杠採用齒形皮帶傳動,其傳動比應為多少 ? 2,全閉環數控機床和半閉環數控機床在伺服系統上的只要區別是什麼? 伺服系統中半閉環是有位置編碼器。 伺服系統中全閉環是有位置編碼器和位置檢測光柵尺 3,數控機床對進給運動系統有哪些要求? 1)高速度。 由於高速機床的主軸轉速比常規機床要高得多,並且還有繼續上升的趨勢,因此,為了保證高速切削的順利進行,減少空程時間,提高加工效率,同時為了保證刀具的每齒進給量不變,延長刀具的使用壽命,保證零件的加工質量,就要求進給系統必須提供足夠高的進給速度。目前,高速機床對進給速度的基本要求為60m/min以上,特殊情況可達120m/min,甚至更高。 (2)高加速度。 由於大多數高速機床加工零件的工作行程范圍只有幾十到幾百毫米,如果不能提供極大的加速度來保證在瞬間(極短的行程內)達到高速和在高速行程中瞬間准停,高速度是沒有意義的,因此對高速機床進給運動的加速度也提出了很高的要求。目前,一般高速機床要求進給加速度為1~2g,某些超高速機床要求進給加速度達到2~10g。 (3)高精度。 精度是機床的關鍵技術指標,高速機床對精度的要求尤為突出。在高速運動情況下,進給驅動系統的動態性能對機床加工精度的影響很大。隨著進給速度的不斷提高,各坐標軸的跟隨誤差對合成軌跡精度的影響將變得越來越突出,因此,高速機床一方面要提高各坐標軸自身位置閉環控制的精度,另一方面也要從合成軌跡和閉環控制的角度來研究高速情況下的軌跡控制方法與實現技術。 (4)高可靠性和高安全性。 在高速加工情況下,如果機床的可靠性與安全性差,將會造成災難性的後果,這方面比普通數控機床的要求更加嚴格。由於進給伺服系統是數控機床中強、弱電之間的介面環節,其故障率一般比較高,對機床整機的可靠性造成的影響也比較大;另一方面,進給系統包含有運動部件,高速下一旦失控,將非常危險。因此,提高高速進給系統的可靠性和安全性對提高高速機床的整機性能具有重要的意義。 (5)合理的成本。 在保證質量和性能的前提下,降低高速機床的製造成本,提高其性能價格比。 4,數控機床的主運動系統有什麼特點? 主運動通常由伺服電機驅動,實現了平滑連續的自動變速。因而避免了復雜的機械變速系統。 即使根據需要必須設計變速系統,變速系統也非常簡單,而且通常使用全自動的變速機構,可以實現根據主運動速度的自動變速。 5,什麼是起刀點?數控編程時如何選擇起刀點? 對刀點是指在數控機床上加工零件,刀具相對零件運動的起始點。對刀點也稱作程序起始點或起刀點。 6,何為機床的爬行現象?防止爬行的措施最主要的有哪些? 在滑動摩擦副中從動件在勻速驅動和一定摩擦條件下產生的周期性時停時走或時慢時塊的運動現象。 先看一看潤滑好不好。再看看鑲條是不是太緊了,還有壓板,把絲杠脫開盤一下絲杠,看是不是太緊,嘗試增加動力,如在直線運行,600N推力會出現爬行,就嘗試使用800N的推力 不知道對不對還有些我也不會 我中專學歷也只會這一點了
F. 數控機床控制系統在控制方式上分為全自動控制,半自動控制,手動控制,分組控制,安全控制時
數控系統按控制方式可分為:
1.開環控制: 這類控制的數控是其控制系統沒有位置檢測元件,伺服驅動部件通常為反應式步進電動機或混合式伺服步進電動機。數控系統每發出一個進給指令,經驅動電路功率放大後,驅動步進電機旋轉一個角度,再經過齒輪減速裝置帶動絲杠旋轉,通過絲杠螺母機構轉換為移動部件的直線位移。移動部件的移動速度與位移量是由輸入脈沖的頻率與脈沖數所決定的。此類數控機床的信息流是單向的,即進給脈沖發出去後,實際移動值不再反饋回來,所以稱為開環控制數控機床。 開環控制系統的數控機床結構簡單,成本較低。但是,系統對移動部件的實際位移量不進行監測,也不能進行誤差校正。因此,步進電動機的失步、步距角誤差、齒輪與絲杠等傳動誤差都將影響被加工零件的精度。開環控制系統僅適用於加工精度要求不很高的中小型數控機床,特別是簡易經濟型數控機床。
2.半閉環控制: 半閉環控制數控是在伺服電動機的軸或數控機床的傳動絲杠上裝有角位移電流檢測裝置(如光電編碼器等),通過檢測絲杠的轉角間接地檢測移動部件的實際位移,然後反饋到數控裝置中去,並對誤差進行修正。通過測速元件和光電編碼盤可間接檢測出伺服電動機的轉速,從而推算出工作台的實際位移量,將此值與指令值進行比較,用差值來實現控制。由於工作台沒有包括在控制迴路中,因而稱為半閉環控制數控機床。 半閉環控制數控系統的調試比較方便,並且具有很好的穩定性。目前大多將角度檢測裝置和伺服電動機設計成一體,這樣,使結構更加緊湊。
3.閉環控制: 閉環控制數控是在機床移動部件上直接安裝直線位移檢測裝置,直接對工作台的實際位移進行檢測,將測量的實際位移值反饋到數控裝置中,與輸入的指令位移值進行比較,用差值對機床進行控制,使移動部件按照實際需要的位移量運動,最終實現移動部件的精確運動和定位。從理論上講,閉環系統的運動精度主要取決於檢測裝置的檢測精度,也與傳動鏈的誤差無關,因此其控制精度高。當位移指令值發送到位置比較電路時,若工作台沒有移動,則沒有反饋量,指令值使得伺服電動機轉動,通過速度感測器將速度反饋信號送到速度控制電路,通過直線位移感測器將工作台實際位移量反饋回去,在位置比較電路中與位移指令值相比較,用比較後得到的差值進行位置控制,直至差值為零時為止。這類控制的數控機床,因把機床工作台納入了控制環節,故稱為閉環控制數控機床。 閉環控制數控機床的定位精度高,但調試和維修都較困難,系統復雜,成本高。