『壹』 受控熱核反應的受控熱核反應實驗裝置
產生受控熱核反應的實驗裝置有兩大類: 不用特殊方法維持或約束等離子體的裝置。用激光束或電子束、離子束等照射固態氘或其他燃料製成的小球靶,在對稱激光束的輻射下,小球靶向中心爆聚。當小球靶的溫度高於一億開,密度比固體高幾千倍以上時,就會產生受控熱核反應。實質上,這種熱核反應就相當於微型氫彈爆炸,而「慣性約束」就意味著不約束。
慣性約束涉及很多等離子體動力學問題,如激波加熱問題。在爆聚過程中,如果只有單個激波,最大壓縮時的密度只能增加3倍;如果對激光束的輸出功率進行調制,使等離子體產生一系列激波,並在所要求的時間內同時收縮到中心(靶心),則可使密度增大1000倍。要達到這種效果,大約需要7個激波。這樣的時間控制,已在實驗室中實現。慣性約束中的等離子體穩定性問題也是等離子體動力學研究的問題之一。由於爆聚過程相當於輕流體驅動重流體作加速運動,會產生瑞利-泰勒不穩定性(見磁流體力學穩定性)。其後果不僅使爆聚失去對稱性,影響壓縮比,而且會產生強烈混合,降低燃燒率。這是實現激光核聚變的主要障礙之一。 用強磁場使高溫等離子體與容器器壁隔開的裝置,有托卡馬克(見磁流體靜力學)、磁鏡、仿星器和角箍縮等。托卡馬克是研究得最普遍的一種,實驗數據也和勞孫判據最接近。
學者們曾提出多種把等離子體加熱到高溫的方法。首先是歐姆加熱法,即用大電流通過等離子體,等離子體由於具有一定電阻而產生熱效應,溫度因而升高。但是溫度升到一定程度,電阻便下降,所以此法一般只能加熱到1000萬開左右。其次是磁壓縮法,即用逐漸增強的磁場來壓縮等離子體,以達到加熱的目的。目前最有效的加熱法是注入中性束,即把高能的中性粒子束(如氘粒子束)透過磁場注入等離子體,從而提高等離子體的溫度。採用這種方法,1981年美國的托卡馬克PLT裝置已能達到8000萬開的高溫。目前正在研究的是波加熱法,即把各種不同頻率的波入射到等離子體中,通過共振使等離子體加熱。
被磁場包圍(約束)的高溫等離子體的一個固有特性是磁流體力學不穩定性。經過多年研究,已提出一些有效的方法來抑制磁流體力學不穩定性的發生。例如,在等離子體中加上強縱向磁場,在強縱向磁場外面加上良導體壁,設計某些特殊的磁場位形,等等(見磁流體力學穩定性)。

『貳』 熱核聚變,托卡馬克裝置
托卡馬克的中央是一個環形的真空室,外面纏繞著線圈。在通電的時候托卡馬克版的內部會產生巨權大的螺旋型磁場,將其中的等離子體加熱到很高的溫度,以達到核聚變的目的。

『叄』 我國自行研製了可控熱核反應實驗裝置「超導托卡馬克」(英名稱:EAST,俗稱「人造太陽」).設可控熱核實
A、可控熱核反應裝置中發生的核反應方程式是 1 2 H+ 1 3 H→ 2 4 He+ 0 1 n,故A正確; B、核反應過程中質量數守恆,但質量不守恆,核反應過程中存在質量虧損,因此m 1 +m 2 ≠m 3 +m 4 ,故B錯誤; C、核反應過程中的質量虧損△m=m 1 +m 2 -m 3 -m 4 ,釋放的核能△E=△mc 2 =(m 1 +m 2 -m 3 -m 4 )c 2 ,故C正確; D、這種裝置的核反應是核聚變,我國大亞灣核電站所使用核裝置是核裂變,它們的核反應原理不相同,故D正確; 本題選不正確的,故選B; |
『肆』 我一兩個月前好像聽說中國研製成功一個叫人造太陽,是什麼玩意啊
網路搜索一下就知道了。是模擬太陽熱核反應的裝置。主要的目的是利用熱核反版應的能量,故而稱為人造太陽。權
反應的裝置利用磁力使其懸浮,具體在安徽合肥,是2006年國家自然科學基金最大資助項目,達到2個億還多。
『伍』 托卡馬克詳細資料大全
托卡馬克,是一種利用磁約束來實現受控核聚變的環形容器。它的名字Tokamak 來源於環形、真空室、磁、線圈。最初是由位於蘇聯莫斯科的庫爾恰托夫研究所的阿齊莫維齊等人在20世紀50年代發明的。托卡馬克的中央是一個環形的真空室,外面纏繞著線圈。在通電的時候托卡馬克的內部會產生巨大的螺旋型磁場,將其中的電漿加熱到很高的溫度,以達到核聚變的目的。
基本介紹
- 中文名 :托卡馬克
- 外文名 :Tokamak
- 技術類別 :可控核聚變裝置
- 約束類型 :磁約束
- 相似技術產物 :仿星器
- 競爭技術 :慣性約束可控核聚變
裝置的主要部件和子系統,核聚變簡介,結構原理,各國概況,歷史發展,現狀及前景,鋼鐵俠中的「方舟反應堆」,
裝置的主要部件和子系統
托卡馬克(Tokamak)是一環形裝置,通過約束電磁波驅動,創造氘、氚實現聚變的環境和超高溫,並實現人類對聚變反應的控制。它的名字Tokamak來源於環形(toroidal)、真空室(kamera)、磁(mag)、線圈(kotushka)。最初是由位於蘇聯莫斯科的庫爾恰托夫研究所的阿齊莫維齊等人在20世紀50年代發明的。 受控熱核聚變在常規托卡馬克裝置上已經實現。但常規托卡馬克裝置體積龐大、效率低,突破難度大。上世紀末,科學家們把新興的超導技術用於托卡馬克裝置,使基礎理論研究和系統運行參數得到很大提高。據科學家估計,可控熱核聚變的演示性的聚變堆將於2025年實現,商用聚變堆將於2040年建成。商用堆建成之前,中國科學家還設計把超導托卡馬克裝置作為中子源,用於環境保護、科學研究及其它途徑。這一構想獲得國內外專家較高評價。 包括磁體(環向場磁體及極向場磁體)、真空室及其抽氣系統、供電系統、控制系統(裝置控制和電漿控制)、加熱與電流驅動系統(中性束和微波)、噴氣及彈丸注入系統、偏濾器及孔闌、診斷和數據採集與處理系統、包層系統、氚系統、輻射防護系統、遙控操作與維修系統等部件(子系統)。雖然強磁場能提高約束性能,但受工程技術和材料限制,環向磁場一般為2~8T;為了獲取穩定的核聚變能輸出,托卡馬克聚變堆最終要採用超導磁體(穩態運行要求),為此要增加杜瓦、冷屏和低溫製冷系統。為將電漿加熱至需要的溫度,大型裝置的總加熱功率為幾十兆瓦,國際熱核實驗堆裝置的加熱功率為73~130MW。
核聚變簡介
核聚變(nuclear fusion),又稱核融合、融合反應或聚變反應[1]核是指由質量小的原子,主要是指氘或氚,在一定條件下(如超高溫和高壓),只有在極高的溫度和壓力下才能讓核外電子擺脫原子核的束縛,讓兩個原子核能夠互相吸引而碰撞到一起,發生原子核互相聚合作用,生成新的質量更重的原子核(如氦),中子雖然質量比較大,但是由於中子不帶電,因此也能夠在這個碰撞過程中逃離原子核的束縛而釋放出轎梁巧來,閉鍵大量電子和中子的釋放所表現出來的就是巨大的能量釋放。這是一種核反應的形式。原子核中蘊藏巨大的能量,原子核的變化(從一種原子核變化為另外一種原子核)往往伴隨著能量的釋放。核聚變是核裂變相反的核反應形式。科學家正在努力研究可控核聚變,核聚變可能成為未來的能量來源。 核聚變的過程與核裂變相反,是幾個原子核聚合成一個原子核的過程。只有較輕的原子核才能發生核聚變,比如氫的同位素氘(dāo)、氚(chuān)等。核聚變也會放出巨大的能量,而且比核裂變放出的能量更大。太陽內部連續進行著氫聚變成氦過程,它的光和熱就是由核聚變產生的。 相比核裂變,核聚變幾乎不會帶來放射性污染等環境問題,而且其原料可直接取自海水中的氘,來源幾乎取之不盡,是理想的能源方式。 人類已經可以實現不受控制的核聚變,如氫彈的爆炸。但是要想能量可被人類有效利用,必須能夠合理的控制核聚變的速度和規模,實現持續、平穩的能量輸出。科學家正努力研究如何控制核聚變。
結構原理
在托卡馬克裝置渣禪中,歐姆線圈的電流變化提 *** 生、建立和維持電漿電流所需要的伏秒數(變壓器原理);極向場線圈產生的極向磁場控制電漿截面形狀和位置平衡;環向場線圈產生的環向磁場保證電漿的巨觀整體穩定性;環向磁場與電漿電流產生的極向磁場一起構成磁力線旋轉變換的和磁面結構嵌套的磁場位形來約束電漿。同時,電漿電流還對自身進行歐姆加熱。電漿的截面形狀可以是圓形,也可以與偏濾器(位於真空室內部的邊緣區域,通過產生磁分界面將約束區與邊緣區隔離開來,具有排熱、控制雜質和排除氦灰等功能的特殊部件)位形結合設計成D形。在托卡馬克裝置上,已可通過大功率中性束注入加熱和微波加熱使電漿達到和超過氘一氚有效燃燒所需的溫度(>10K),最高已達4.4×10K。加大裝置尺寸,約束時間大致按尺寸的平方增大。此外,還可通過提高環向磁場、最佳化約束位形和運行模式來提高 能量約束時間。實驗結果表明,托卡馬克裝置已基本滿足建立核聚變反應堆的要求。
各國概況
相比其他方式的受控核聚變,托卡馬克擁有不少優勢。1968年8月在蘇聯新西伯利亞召開的第三屆電漿物理和受控核聚變研究國際會議上,阿齊莫維齊宣布在蘇聯的T-3托卡馬克上實現了電子溫度1keV,質子溫度0.5keV,nτ=10的18次方m-3.s,這是受控核聚變研究的重大突破,在國際上掀起了一股托卡馬克的熱潮,各國相繼建造或改建了一批大型托卡馬克裝置。其中比較著名的有:美國普林斯頓大學由仿星器-C改建成的ST Tokamak,美國橡樹嶺國家實驗室的奧爾馬克,法國馮克奈-奧-羅茲研究所的TFR Tokamak,英國卡拉姆實驗室的克利奧(Cleo),西德馬克斯-普朗克研究所的Pulsator Tokamak。
高1米4,半徑0.785米 2006年9月28日,中國耗時8年、耗資2億元人民幣自主設計、自主建造而成的新一代熱核聚變裝置EAST首次成功完成放電實驗,獲得電流200千安、時間接近3秒的高溫電漿放電。EAST成為世界上第一個建成並真正運行的全超導非圓截面核聚變實驗裝置。
歷史發展
二戰末期,前蘇聯和美、英各國曾出於軍事上的考慮,一直在互相保密的情況下開展對核聚變的研究。幾千萬、幾億攝氏度高溫的聚變物質裝在什麼容器里一直是困擾人們的難題。二十世紀五十年代初期,前蘇聯科學家提出托卡馬克的概念。托卡馬克(TOKAMAK)在俄語中是由「環形」、「真空」、「磁」、「線圈」幾個片語合而成,這是一種形如麵包(多納)圈的環流器,依靠電漿電流和環形線圈產生的強磁場,將極高溫等離子狀態的聚變物質約束在環形容器里,以此來實現聚變反應。
托卡馬克內部 1954年,第一個托卡馬克裝置在原蘇聯庫爾恰托夫原子能研究所建成。當人們提出這種磁約束的概念後,磁約束核聚變研究在一些方面的進展順利,氫彈又迅速試驗成功,這曾使不少國家的核科學家一度對受控核聚變抱有過分樂觀的態度。但人們很快發現,約束電漿的磁場,雖然不怕高溫,卻很不穩定。另外,電漿在加熱過程中能量也不斷損失。 1985年,美國里根總統和前蘇聯戈巴契夫總統,在一次首腦會議上倡議開展一個核聚變研究的國際合作計畫,要求「在核聚變能方面進行最廣泛的切實可行的國際合作」。後來戈巴契夫、里根和法國總統密特朗又進行了幾次高層會晤,支持在國際原子能機構(IAEA)主持下,進行國際熱核實驗堆(ITER)概念設計和輔助研究開發方面的合作。這是當時也是當前開展核聚變研究的最重大的國際科學和技術合作工程項目。1987年春,IAEA總幹事邀請歐共體、日本、美國和加拿大、前蘇聯的代表在維也納開會,討論加強核聚變研究的國際合作問題,並達成了協定,四方合作設計建造國際熱核實驗堆。 1990年,中國國家科學院等離子所興建大型超導托卡馬克裝置,得到俄、美、歐盟等機構、專家大力的支持。特別是俄羅斯科學家,世界聚變研究最具權威的俄羅斯國家研究中心卡多姆采夫教授,成為裝置建設的「經常性技術指導」。 1993年HT-7建成,中國成為世界上俄、法、日(法國的Tore-Supra,俄羅斯的T-15,日本的JT-60U)之後第四個擁有同類大型裝置的國家。中國在裝置相關的超導、低溫製冷、強磁場等研究都登上新的台階。 1993年12月9日和10日,美國在TFTR裝置上使用氘、氚各50%的混合燃料,使溫度達到3億至4億攝氏度,兩次實驗釋放的聚變能分別為0.3萬千瓦和0.56萬千瓦,大約為JET輸出功率的2倍和4倍,能量增益因子Q值達0.28。與JET相比,Q值又得到很大提高。 1997年9月22日,聯合歐洲環JET又創造輸出功率為1.29萬千瓦的世界紀錄,能量增益因子Q值達0.60,持續時間2秒。僅過了39天,輸出功率又提高到1.61萬千瓦,Q值達到0.65。 1997年12月,日本方面宣布,在JT-60上成功進行了氘-氘反應實驗,換算到氘-氚反應,Q值可以達到1.00。後來,Q值又超過了1.25。在JT-60U上,還達到了更高的等效能量增益因子,大於1.3,它也是從氘-氘實驗得出的結果外推後算出的。 2000年,HT-7實驗放電時間超過10秒,標志中國在這重大基礎理論研究領域中進入世界先進行列。 2002年1月28日,在中國成都的核工業西南物理研究院與合肥西郊的中國科學院等離體物理研究所,基於超導托卡馬克裝置HT-7的可控熱核聚變研究再獲突破,實現了放電脈沖長度大於100倍能量約束時間、電子溫度2000萬攝氏度的高約束穩態運行,中心密度大於每立方米1.2×1019,運行參數居世界前兩位。本輪實驗有來自美、日等14個研究機構的18位外籍專家參與。 2006年,中國新一代「人造太陽」實驗裝置(EAST)實現了第一次「點火」——激發等離子態與核聚變。很快,它就實現了最高連續1000秒的運行,這在當時是前所未有的成就。
EAST 2012年04月22日,中國新一代「人造太陽」實驗裝置(EAST)中性束注入系統(NBI)完成了氫離子束功率3兆瓦、脈沖寬度500毫秒的高能量離子束引出實驗。本輪實驗獲得的束能量和功率創下中國國內紀錄,並基本達到EAST項目設計目標。這標志著中國自行研製的具有國際先進水平的中性束注入系統基本克服所有重大技術難關。
現狀及前景
只有同時達到密度(>10cm)、溫度(>10K)及能量約束時間(>1s)三個條件(或聚變三重積>10cm·K·s)時,才能實現氘一氚自持核聚變反應。這三個條件已經在不同的裝置上分別達到或超過,但還沒有在一個裝置上同時達到或超過。JET(見圖)和JT-60U裝置基本達到能量得失相當條件(Q≈1),JET的氘一氚實驗還得到17MW聚變功率輸出。
歐洲聯合環JET裝置結構簡圖 實驗研究還發現多種改善約束的模式,根據這些模式,托卡馬克型核聚變反應堆的經濟性能還可以進一步提高。基於50多年來在電漿理論、物理實驗研究和工程技術上取得的重大進展,由七方共同參與的超大型國際合作項目國際熱核實驗堆(ITER)計畫已經進入工程建造階段。
鋼鐵俠中的「方舟反應堆」
電影《鋼鐵俠》中的方舟反應堆與托卡馬克極為相似,有可能是根據托卡馬克改編的。
『陸』 核聚變要在近億度高溫條件下進行,這時所有物質都被氣化,那麼怎樣產生高熱,又用什麼裝它呢
核聚變反應堆主體是用一種球形磁場來約束的。核聚變的產生條件就需要較小的原子核發生碰撞和融合,但原子核都帶正電,原子外層都帶負電。
原子核想碰一起需要很高的能量來突破電磁力的排斥,就像讓兩塊小磁鐵同極相觸一樣(但難度不是一個量級)。溫度反映了物質內部粒子的運動能量,所以高溫下才會有可能讓高速的原子核艱難碰撞在一起。
要引發氫彈首先要引發原子彈,用原子彈核裂變產生的極高溫度才能使氫核之間劇烈碰撞而發生核聚變反應,所以一般某國家在研究兩彈時,都是先研製出原子彈,再研製出氫彈。這也是為何氫彈比原子彈殺傷力強的原因之一。

(6)熱核反應實驗裝置擴展閱讀:
熱核反應,或原子核的聚變反應,是當前很有前途的新能源。參與核反應的輕原子核,如氫(氕)、氘、氚、鋰等從熱運動獲得必要的動能而引起的聚變反應(參見核聚變)。熱核反應是氫彈爆炸的基礎,可在瞬間產生大量熱能,但尚無法加以利用。
如能使熱核反應在一定約束區域內,根據人們的意圖有控制地產生與進行,即可實現受控熱核反應。這正是在進行試驗研究的重大課題。受控熱核反應是聚變反應堆的基礎。聚變反應堆一旦成功,則可能向人類提供最清潔而又是取之不盡的能源。
冷核聚變是指:在相對低溫(甚至常溫)下進行的核聚變反應,這種情況是針對自然界已知存在的熱核聚變(恆星內部熱核反應)而提出的一種概念性『假設』。
這種設想將極大的降低反應要求,只要能夠在較低溫度下讓核外電子擺脫原子核的束縛,或者在較高溫度下用高強度、高密度磁場阻擋中子或者讓中子定向輸出,就可以使用更普通更簡單的設備產生可控冷核聚變反應,同時也使聚核反應更安全。