Ⅰ 汽車傳動系統的組成
離合器
功用:1,離合器可使汽車發動機與傳動系逐漸結合,保證汽車平穩起步。2,離合器可暫時切斷發動機與傳動系的聯系,便於發動機的起動和變速器的換擋,以保證傳動系換擋時工作平順。3,離合器還能限制所傳遞的轉矩,防止傳動系過載。
組成:主動部分、從動部分、壓緊裝置、分離機構和操縱機構。
變速器
功用:1,實現變速變矩。2,實現汽車倒駛。3,必要時中斷動力傳輸。4,實現動力輸出。
由於變速器分為MT、AT、AMT、DCT、CVT等多種形式,按照手動和自動兩種情況分類,手動變速器最為常見,自動變速器已較為普遍並且有取代手動變速器的趨勢。雖然類型不同、組成部分不同。但功能幾乎一樣。顯然自動變速器結構更為復雜、技術含量更高、操作更為簡便、價格較為昂貴、維修較為不便。對變速器的要求:1,能防止變速器自動換擋和自動脫檔。2,能保證變速器不會同時掛入兩個檔位。3,能防止誤掛倒檔。
萬向傳動裝置
功用:在汽車上任何一對軸間夾角和相對位置經常發生變化的轉軸之間傳遞動力。
1、變速器(或分動器)與驅動橋之間
一般FR的輸出軸線與驅動橋的輸入軸線難以布置重合,並且汽車在負荷變化及在不平路面行駛時引起的跳動,將使驅動橋輸入軸與變速器輸出軸之間的夾角和距離發生變化,故須萬向傳動裝置連接。
2、變速器與離合器或與分動器之間
雖然變速器、離合器、分動器等都支撐在車架上,且他們的軸線也可以設計重合,但為消除車架變形及製造、裝配誤差等引起的軸線同軸度誤差對動力傳遞的影響,其間也常裝有萬向傳動裝置。
3、轉向驅動橋和斷開式驅動橋中
汽車的轉向驅動橋需要滿足轉向和驅動的功能,其半軸是分段的,轉向時兩段半軸軸線相交且夾角變化,因此要用萬向傳動裝置。在斷開式驅動橋中,主減速器殼固定是在車架上的,橋殼上下擺動,半軸是分段的,也須用萬向傳動裝置。
4、轉向操縱機構中
某些汽車的轉向操縱機構受整體布置的限制,轉向盤軸線與轉向器輸入軸線不重合,因此在轉向操縱機構中裝有萬向傳動裝置
驅動橋
驅動橋將萬向傳動裝置(或變速器)傳來的動力經降速增扭、改變動力傳遞方向(發動機縱置時)後,分配到左右驅動輪,使汽車行駛,並允許左右驅動輪以不同的轉速旋轉。
驅動橋是傳動系的最後一個總成,它由主減速器、差速器、半軸和橋殼組成。
1,主減速器使輸入轉矩增大、轉速降低,並將動力傳遞方向改變後(發動機橫置的除外)再傳給差速器。
2,差速器的功用是將主減速器傳來的動力傳給左、右兩半軸,並在必要時允許左、右半軸以不同轉速旋轉,以滿足兩側驅動輪差速的需要。
3,半軸用於將差速器傳來的動力傳給驅動輪。
4,驅動橋殼既是傳動系的組成部分,同時也是行駛系的組成部分,其功用是安裝並保護主減速器、差速器和半軸,以及安裝懸架或輪轂。它還要與從動橋一起支承汽車懸架以上各部分質量,承受驅動輪傳來的反力和力矩,並在驅動輪與懸架之間傳力。
Ⅱ 電力傳動裝置
傳動裝置的分類[2]
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
Ⅲ CH-1000型綜合傳動裝置的結構與性能
CH-1000型傳動裝置為雙流傳動系統(所謂雙流傳動,是指該傳動裝置的變速和轉向功能,分別由2條功率流進行獨立傳遞的,再經匯流裝置匯合後輸出),凈重約1900KG。傳動裝置的主體結構,是由箱體、一對前傳動錐齒輪,帶自動閉鎖功能並與主動軸同軸的液力變矩器,1個三自由度行星變速箱,大功率液壓機械無級轉向機,匯流行星排,液力減速器等主要部件組成的;此外還有為液壓控制系統提供動力的輔助液壓泵,以及置於傳動裝置頂部的2個液壓冷卻風扇等部件。
同軸行星側傳動和停車機械制動器為傳動裝置的外圍部件,兩者集成於一個殼體內,通過彈性聯軸節與傳動裝置的主體連接。
傳動裝置與發動機通過連接件連接成一整體固定在一個三點式支承框架上,可以實現整體吊裝,在戰場上可在40分鍾內進行拆裝,為車輛重新投入戰斗贏得了寶貴時間。
CH-1000型傳動裝置的變速機構為一個串聯式的三自由度行星變速機構,由有2個簡單行星排、1個復合行星排和6個控製件組成。其中2個簡單行星排和3個控製件構成一組,操縱其中一個控製件可以得到「高」「低」「倒」3個檔位;1個復合行星排和3個控製件構成另一組,操縱其中一個控製件可以得到「1-2-3」3個檔位;2組以串聯的形式結合。因此,結合2組內的各一個操縱件則可以得到6個前進擋、3個倒檔共9個擋。由於系統採用了可自動閉鎖的液力變矩器,因此可以動力換擋,並且在速度逐漸降到零的過程中保證動力不間斷輸出;而在4檔以上時,液力變矩器的離合器自動閉鎖,可以實現較高的傳動效率。CH-1000型傳動用於配套坦克時,最高試驗速度可達80KM,最高公路運用速度和越野速度分別可達70KM和54KM,最高倒車速度可達34KM,0-32KM/H的加速時間為6-7秒。這為坦克帶來了良好的機動性,特別是較高的倒車速度便於坦克快速撤退,大大提高了坦克的戰場生存能力。
CH1000型的轉向系統為我國自主研發的大功率液壓機械無級轉向機,實際上是一個簡易的液壓機械無級變速器,由連體式液壓泵-馬達,正反轉行星排(含3個控製件)、功率合成機構和輸入-輸出機構組成。在大半徑轉向時,行星排機構由制動件鎖定,功率全部由液壓馬達輸出,此時為純液壓轉向工況;在小半徑轉向時,結合正反轉行星排上2個控製件的其中一個,就可以得到行星機構正、反方向的轉向,此時功率由液壓馬達和機械行星機構共同輸出,為液壓-機械轉向工況。它相對國際上廣泛使用的純液壓轉向機構而言,具有更高的輸出效率,而且液壓件的功率只需要1/3,這樣就克服了我國在高壓、大排量、大功率液壓馬達上的軟肋造成的技術瓶頸。它獨立地做成一個箱體模塊集成於綜合傳動系統中,並具有獨立的操縱機構。該轉向系統可以實現最小轉向半徑至無窮大的無級轉向,轉向時內側履帶的制動功率可以迴流到外側履帶,因此功率損失較小,效率較高;而傳統的單流轉向裝置大部分工況都是非規定半徑的滑摩轉向,這需要駕駛員多次間歇操縱,費力繁瑣,而且大量的能量消耗在摩擦和元件發熱中,效率低下,磨損嚴重。當車輛掛空擋時,可以實現0半徑「中心轉向」,最小理論周轉時間為8秒左右。
Ⅳ 機械式離合器操縱機構有哪兩種傳動方式
離合器操縱機構可分為人力式和氣壓助力式兩種,前者以駕駛員腳踏板力作為唯一力源,後者則以發動機驅動空氣壓縮機產生的壓縮空氣為主要力源,輔助人力操縱離合器。人力式操縱機構又可分為機械式和液力式兩種。
機械式操縱機構具有結構簡單、製造成本低、故障少等突出優點,因此廣泛運用於輕、中型載貨汽車和客車上,既可以採用桿系傳動,也可以利用繩索傳動,前者關節多、摩擦損失大、布置比較困難,後者布置靈活,但鋼索壽命較短、拉伸剛度小,只適用於微型和輕型車輛。
液壓操縱機構具有摩擦阻力小、質量小、布置方便、接合柔和等優點,廣泛運用於轎車和傳動距離較長的大型客車上。
在重型車輛個由於所需要傳遞轉矩的增大,離合器壓緊彈簧剛度增大,往往使得單憑人力分離離合器非常費力,發動機帶動空氣壓縮機作為操縱系統的主要力源,駕駛員人力作為輔助力量,形成氣壓助力式操縱機構。它既可以裝備在機械式操縱機構中,也可以設置在液壓式操縱機構中。氣壓助力效果應該與踏板力(行程)成比例,以使駕車者能夠准確感知和控制加油車離合器的接合與分離
Ⅳ 常用的傳動傳動裝置有哪些
汽車傳動裝置的分類:根據能量傳遞方式的不同,分為機械傳動、液壓傳動、液壓傳動、電氣傳動等。根據結構和傳動介質,其類型有機械式、液壓機械式、靜液壓式(容積液壓式)和電動式。以下是相關介紹:傳輸設備的定義:傳動裝置將動力裝置的動力傳遞給中間裝置,如工作機構。傳動系統的基本功能是將發動機的動力傳遞給汽車的驅動輪,使汽車以一定的速度行駛。傳動裝置的結構:傳動裝置是將原動機的運動和動力傳遞給工作機構的中間裝置。它的組成和布置因發動機的類型、安裝位置和汽車的用途而異。傳輸設備的功能:傳動系統具有減速、變速、倒車、動力中斷、輪對輪差速、軸對軸差速等功能。與發動機配合工作時,能保證汽車在各種工況下正常行駛,具有良好的動力性和經濟性。
Ⅵ 傳動機構的組成
起動機的傳動機構實際上是一個單向離合器。單向離合器的作用是單方向傳遞轉矩,即起動發動機時將起動機的轉矩傳給發動機曲軸,而當發動機起動後,它又能自動打滑,不使飛輪齒環帶動起動機電樞旋轉,以免損壞起動機。 單向離合器有滾柱式,摩擦片式、彈簧式、棘輪式等不同型式。其中,摩擦片式的單向離合器多用於大功率起動機。
液壓傳動系統的組成:
液壓系統主要由:動力元件(油泵)、執行元件(油缸或液壓馬達)、控制元件(各種閥)、輔助元件和工作介質等五部分組成。 1、動力元件(油泵)
它的作用是利用液體把原動機的機械能轉換成液壓力能;是液壓傳動中的動力部分。 2、執行元件(油缸、液壓馬達)
它是將液體的液壓能轉換成機械能。其中,油缸做直線運動,馬達做旋轉運動。 3、控制元件
包括壓力閥、流量閥和方向閥等。它們的作用是根據需要無級調節液動機的速度,並對液壓系統中工作液體的壓力、流量和流向進行調節控制。 4、輔助元件
除上述三部分以外的其它元件,包括壓力表、濾油器、蓄能裝置、冷卻器、管件各種管接頭(擴口式、焊接式、卡套式)、高壓球閥、快換接頭、軟管總成、測壓接頭、管夾等及油箱等,它們同樣十分重要。 5、工作介質
工作介質是指各類液壓傳動中的液壓油或乳化液,它經過油泵和液動機實現能量轉換。
Ⅶ 萬向傳動裝置類型有哪些
萬向傳動裝置可分為閉式和開式兩種.
1.閉式萬向傳動裝置採用單萬向節,傳動軸被封閉在套管中版,套管與車權架做球鉸連接,而與驅動橋固定連接.其最大特點是:傳動著外殼作為推力管來傳遞汽車的縱向力,從而時傳動軸外殼起到了懸架系統導向機構中縱向擺臂的作用,這對於其後懸架拆用螺旋彈簧作為彈性元件是十分必要的.
2.開式萬向傳動裝置結構簡單,重量輕,現代汽車廣泛應用開式萬向傳動裝置,
Ⅷ 萬向傳動裝置組成及分類
萬向傳動裝置的作用是連接不在同一直線上的變速器輸出軸和主減速器輸入軸,並保證在兩軸之間的夾角和距離經常變化的情況下,仍能可靠地傳遞動力。 它主要由萬向節、傳動軸和中間支承組成。安裝時必須使傳動軸兩端的萬向節叉處於同一平面。 編輯本段萬向傳動裝置的類型 萬向傳動裝置可分為閉式和開式兩種. 1.閉式萬向傳動裝置採用單萬向節,傳動軸被封閉在套管中,套管與車架做球鉸連接,而與驅動橋固定連接.其最大特點是:傳動著外殼作為推力管來傳遞汽車的縱向力,從而使傳動軸外殼起到了懸架系統導向機構中縱向擺臂的作用,這對於其後懸架拆用螺旋彈簧作為彈性元件是十分必要的。 2.開式萬向傳動裝置結構簡單,重量輕,現代汽車廣泛應用開式萬向傳動裝置。 編輯本段萬向傳動裝置的應用 萬向傳動裝置在汽車上的應用主要有以下幾個方面: ①變速器(或分動器)與驅動橋之間:一般汽車的變速器、離合器與發動機三者合為一體裝在車架上,驅動橋通過懸架與車架相連。在負荷變化及汽車在不平路面行駛時引起的跳動,會使驅動橋輸入軸與變速器輸出軸之間的夾角和距離發生變化。 ②越野汽車變速器與分動器之間:為消除車架變形及製造、裝配誤差等引起的其軸線同軸度誤差對動力傳遞的影響,須裝有萬向傳動裝置。 ③汽車轉向驅動橋的半軸是分段的,轉向時兩段半軸軸線相交巳交角變化,因此要用萬向節。 ④斷開式驅動橋的半軸:主減速器殼在車架上是固定的,橋殼上下擺動,半軸是分段的,須用萬向節。 ⑤某些汽車的轉向軸裝有萬向傳動裝置,有利於轉向機構的總體布置。
Ⅸ 汽車變速器的工作原理是什麼
汽車變速器的工作原理
變速器是能固定或分檔改變輸出軸和輸入軸傳動比的齒輪傳動裝置。又稱變速箱。變速器由傳動機構和變速機構組成,可製成單獨變速機構或與傳動機構合裝在同一殼體內。傳動機構大多用普通齒輪傳動,也有的用行星齒輪傳汽車散熱器動。普通齒輪傳動變速機構一般用滑移齒輪和離合器等。滑移齒輪有多聯滑移齒輪和變位滑移齒輪之分。
汽車變速器是通過改變傳動比,改變發動機曲軸的轉拒,適應在起步、加速、行駛以及克服各種道路阻礙等不同行駛條件下對驅動車輪牽引力及車速不同要求的需要。通俗上分為手動變速器(MT),自動變速器(AT), 手動/自動變速器,無級式變速器。
(1)改變傳動比,滿足不同行駛條件對牽引力的需要,使發動機盡量工作在有利的工況下,滿足可能的行駛速度要求。 在較大范圍內改變汽車行駛速度的大小和汽車驅動輪上扭矩的大小。由於汽車行駛條件不同,要求汽車行駛速度和驅動扭矩能在很大范圍內變化。例如,在高速路上車速應能達到100km/h,而在市區內,車速常在50km/h左右。空車在平直的公路上行駛時,行駛阻力很小,當滿載上坡時,行駛阻力便很大。而汽車發動機的特性是轉速變化范圍較小,而轉矩變化范圍更不能滿足實際路況需要。
(2)實現倒車行駛,用來滿足汽車倒退行駛的需要。實現倒車行駛汽車,發動機曲軸一般都是只能向一個方向轉動的,而汽車有時需要能倒退行駛,因此,往往利用變速箱中設置的倒檔來實現汽車倒車行駛。
(3)中斷動力傳遞,在發動機起動,怠速運轉,汽車換檔或需要停車進行動力輸出時,中斷向驅動輪的動力傳遞。
(4)實現空檔,當離合器接合時,變速箱可以不輸出動力。例如,可以保證駕駛員在發動機不熄火時松開離合器踏板離開駕駛員座位。
構成
變速箱由變速傳動機構和變速操縱機構兩部分組成。變速傳動機構的主要作用是改變轉矩和轉速的數值和方向;操縱機構的主要作用是控制傳動機構,實現變速器傳動比的變換,即實現換檔,以達到變速變矩。
原理
機械式變速箱主要應用了齒輪傳動的降速原理。簡單的說,變速箱內有多組傳動比不同的齒輪副,而汽車行駛時的換檔行為,也就是通過操縱機構使變速箱內不同的齒輪副工作。如在低速時,讓傳動比大的齒輪副工作,而在高速時,讓傳動比小的齒輪副工