㈠ 在日常生活中有哪些利用杠桿原理製成的機械
日常生活中咱抄們常見的機械襲裝置,最多的就是是杠桿、四連桿機構、齒輪機構。很多東西最終都可以歸結到這三個上面 1,壓水井的壓水手柄: 利用杠桿原理製成,支點距水井較近,而手柄較長,這樣力臂較長,可以省力。但是由杠桿原理可知
㈡ 生活中常見的連桿機構有哪些
㈢ 自動扶梯附加制動器全套機構原理
附加制動器每家來廠家不一源樣,機械裝置的原理是:棘爪棘輪,各廠形式不同,方向是倒轉時彈出卡住棘輪。棘輪藏在扶梯上部的驅動鏈輪內,隨之轉動;棘爪在一旁。在正常的正反轉運動時,棘爪舌頭不彈出。
棘爪後部有個連桿機構,電機控制擺動。
棘爪動作的前提:
1.主動失電,和關機都屬,靜止時也是;
2.被動失電,停電或其他安全開關動作。
otis此次,根據報道猜測,
螺栓松導致減速機前移----減速機鏈條張緊是需要一段距離,但設計時應該考慮安全距離,可松但鏈條不應脫落----鏈條不脫落,制動器就能制動;
驅動鏈條下應該有安全觸點-----公共交通型必配-----脫落也會打掉安全開關-----棘爪動作
可以想像---安全開關沒有動作啊,所有檢驗檢測維保內容,安全開關是首要檢查的,機械到未必
所以國家的結論是正確的,機械和電器設計嚴重缺陷。
試驗:通常在廠里此功能是每台試驗後出廠的,工地無法進行
試驗的內容不會看動作,因為肯定動作,試驗是看滑移距離600-1200,緩沖,避免突然停止的傷害。
總之,在浮躁的社會心態下,追求利潤最大化,技術已是次要的了,許多人都會抄,但從來不問為什麼,這樣只能通過事故來學習長進了
㈣ 機械原理中的連桿機構分析!!!
第二章 平面連桿機構
案例導入:通過雷達天線、汽車雨刮器、攪拌機等實際應用的機構分析引入四桿機構的概念,介紹四桿機構的組成、基本形式和工作特性。
第一節 鉸鏈四桿機構
一、鉸鏈四桿機構的組成和基本形式
1.鉸鏈四桿機構的組成
如圖1-14所示,鉸鏈四桿機構是由轉動副將各構件的頭尾聯接起的封閉四桿系統,並使其中一個構件固定而組成。被固定件4稱為機架,與機架直接鉸接的兩個構件1和3稱為連架桿,不直接與機架鉸接的構件2稱為連桿。連架桿如果能作整圈運動就稱為曲柄,否則就稱為搖桿。
2.鉸鏈四桿機構的類型
鉸鏈四桿機構根據其兩個連架桿的運動形式的不同,可以分為曲柄搖桿機構、雙曲柄機構和雙搖桿機構三種基本形式。
(1)曲柄搖桿機構。在鉸鏈四桿機構中,如果有一個連架桿做循環的整周運動而另一連架桿作搖動,則該機構稱為曲柄搖桿機構。如圖2-1所示曲柄搖桿機構,是雷達天線調整機構的原理圖,機構由構件AB、BC、固連有天線的CD及機架DA組成,構件AB可作整圈的轉動,成曲柄;天線3作為機構的另一連架桿可作一定范圍的擺動,成搖桿;隨著曲柄的緩緩轉動,天線仰角得到改變。如圖2-2所示汽車刮雨器,隨著電動機帶著曲柄AB轉動,刮雨膠與搖桿CD一起擺動,完成刮雨功能。如圖2-3所示攪拌器,隨電動機帶曲柄AB轉動,攪拌爪與連桿一起作往復的擺動,爪端點E作軌跡為橢圓的運動,實現攪拌功能。
(2)雙曲柄機構。在鉸鏈四桿機構中,兩個連架桿均能做整周的運動,則該機構稱為雙曲柄機構。如圖2-4所示慣性篩的工作機構原理,是雙曲柄機構的應用實例。由於從動曲柄3與主動曲柄1的長度不同,故當主動曲柄1勻速回轉一周時,從動曲柄3作變速回轉一周,機構利用這一特點使篩子6作加速往復運動,提高了工作性能。當兩曲柄的長度相等且平行布置時,成了平行雙曲柄機構,如圖2-5a)所示為正平行雙曲柄機構,其特點是兩曲柄轉向相同和轉速相等及連桿作平動,因而應用廣泛。火車驅動輪聯動機構利用了同向等速的特點;路燈檢修車的載人升斗利用了平動的特點,如圖2-6a、b)所示。如圖2-5b)為逆平行雙曲柄機構,具有兩曲柄反向不等速的特點,車門的啟閉機構利用了兩曲柄反向轉動的特點,如圖2-6c)所示。
(3)雙搖桿機構。兩根連架桿均只能在不足一周的范圍內運動的鉸鏈四桿機構稱為雙搖桿機構。如圖2-7所示為港口用起重機吊臂結構原理。其中,ABCD構成雙搖桿機構,AD為機架,在主動搖桿AB的驅動下,隨著機構的運動連桿BC的外伸端點M獲得近似直線的水平運動,使吊重Q能作水平移動而大大節省了移動吊重所需要的功率。圖2-8所示為電風扇搖頭機構原理,電動機外殼作為其中的一根搖桿AB,蝸輪作為連桿BC,構成雙搖桿機構ABCD。蝸桿隨扇葉同軸轉動,帶動BC作為主動件繞C點擺動,使搖桿AB帶電動機及扇葉一起擺動,實現一台電動機同時驅動扇葉和搖頭機構。圖2-9所示的汽車偏轉車輪轉向機構採用了等腰梯形雙搖桿機構。該機構的兩根搖桿AB、CD是等長的,適當選擇兩搖桿的長度,可以使汽車在轉彎時兩轉向輪軸線近似相交於其它兩輪軸線延長線某點P,汽車整車繞瞬時中心P點轉動,獲得各輪子相對於地面作近似的純滾動,以減少轉彎時輪胎的磨損。
二、鉸鏈四桿機構中曲柄存在的條件
1.鉸鏈四桿機構中曲柄存在的條件
鉸鏈四桿機構的三種基本類型的區別在於機構中是否存在曲柄,存在幾個曲柄。機構中是否存在曲柄與各構件相對尺寸的大小以及哪個構件作機架有關。可以證明,鉸鏈四桿機構中存在曲柄的條件為:
條件一:最短桿與最長桿長度之和不大於其餘兩桿長度之和。
條件二:連架桿或機架中最少有一根是最短桿。
2.鉸鏈四桿機構基本類型的判別准則
(1)滿足條件一但不滿足條件二的是雙搖桿機構;
(2)滿足條件一而且以最短桿作機架的是雙曲柄機構;
(3)滿足條件一而且最短桿為連架桿的是曲柄搖桿機構;
(4)不滿足條件一是雙搖桿機構。
【實訓例2-1】 鉸鏈四桿機構ABCD如圖2-10所示。請根據基本類型判別准則,說明機構分別以AB、BC、CD、AD各桿為機架時屬於何種機構。
解:經測量得各桿長度標於圖2-10,分析題目給出鉸鏈四桿機構知,最短桿為AD = 20,最長桿為CD = 55,其餘兩桿AB = 30、BC = 50。
因為 AD+CD = 20+55 = 75
AB+BC = 30+50 = 80 > Lmin+Lmax
故滿足曲柄存在的第一個條件。
1)以AB或CD為機架時,即最短桿AD成連架桿,故為曲柄搖桿機構;
2)以BC為機架時,即最短桿成連桿,故機構為雙搖桿機構;
3)以AD為機架時,即以最短桿為機架,機構為雙曲柄機構。
第二節 平面四桿機構的其它形式
一、曲柄滑塊機構
在圖2-11a)所示的鉸鏈四桿機構ABCD中,如果要求C點運動軌跡的曲率半徑較大甚至是C點作直線運動,則搖桿CD的長度就特別長,甚至是無窮大,這顯然給布置和製造帶來困難或不可能。為此,在實際應用中只是根據需要製作一個導路,C點做成一個與連桿鉸接的滑塊並使之沿導路運動即可,不再專門做出CD桿。這種含有移動副的四桿機構稱為滑塊四桿機構,當滑塊運動的軌跡為曲線時稱為曲線滑塊機構,當滑塊運動的軌跡為直線時稱為直線滑塊機構。直線滑塊機構可分為兩種情況:如圖2-11b)所示為偏置曲柄滑塊機構,導路與曲柄轉動中心有一個偏距e;當e = 0即導路通過曲柄轉動中心時,稱為對心曲柄滑塊機構,如圖2-11c)所示。由於對心曲柄滑塊機構結構簡單,受力情況好,故在實際生產中得到廣泛應用。因此,今後如果沒有特別說明,所提的曲柄滑塊機構即意指對心曲柄滑塊機構。
應該指出,滑塊的運動軌跡不僅局限於圓弧和直線,還可以是任意曲線,甚至可以是多種曲線的組合,這就遠遠超出了鉸鏈四桿機構簡單演化的范疇,也使曲柄滑塊機構的應用更加靈活、廣泛。
圖2-12所示為曲柄滑塊機構的應用。圖2-12a)所示為應用於內燃機、空壓機、蒸汽機的活塞-連桿-曲柄機構,其中活塞相當於滑塊。圖2-12b)所示為用於自動送料裝置的曲柄滑塊機構,曲柄每轉一圈活塞送出一個工件。當需要將曲柄做得較短時結構上就難以實現,通常採用圖2-12c)所示的偏心輪機構,其偏心圓盤的偏心距e就是曲柄的長度。這種結構減少了曲柄的驅動力,增大了轉動副的尺寸,提高了曲柄的強度和剛度,廣泛應用於沖壓機床、破碎機等承受較大沖擊載荷的機械中。
二、導桿機構
在對心曲柄滑塊機構中,導路是固定不動的,如果將導路做成導桿4鉸接於A點,使之能夠繞A點轉動,並使AB桿固定,就變成了導桿機構,如圖2-13所示。當AB<BC時,導桿能夠作整周的回轉,稱旋轉導桿機構,如圖2-13a=所示。當AB>BC時導桿4隻能作不足一周的回轉,稱擺動導桿機構,如圖2-13b)所示。
導桿機構具有很好的傳力性,在插床、刨床等要求傳遞重載的場合得到應用。如圖2-14a)所示為插床的工作機構,如圖2-14b)所示為牛頭刨床的工作機構。
三、搖塊機構和定塊機構
在對心曲柄滑塊機構中,將與滑塊鉸接的構件固定成機架,使滑塊只能搖擺不能移動,就成為搖塊機構,如圖2-15a)所示。搖塊機構在液壓與氣壓傳動系統中得到廣泛應用,如圖2-15b)所示為搖塊機構在自卸貨車上的應用,以車架為機架AC,液壓缸筒3與車架鉸接於C點成搖塊,主動件活塞及活塞桿2可沿缸筒中心線往復移動成導路,帶動車箱1繞A點擺動實現卸料或復位。將對心曲柄滑塊機構中的滑塊固定為機架,就成了定塊機構,如圖2-16a)所示。圖2-16b)為定塊機構在手動唧筒上的應用,用手上下扳動主動件1,使作為導路的活塞及活塞桿4沿唧筒中心線往復移動,實現唧水或唧油。表2-1給出了鉸鏈四桿機構及其演化的主要型式對比。
第三節 平面四桿機構的工作特性
一、運動特性
在圖2-17所示的曲柄搖桿機構中,設曲柄AB為主動件。曲柄在旋轉過程中每周有兩次與連桿重疊,如圖2-17中的B1AC1和AB2C2兩位置。這時的搖桿位置C1D和C2D稱為極限位置,簡稱極位。C1D與C2D的夾角 稱為最大擺角。曲柄處於兩極位AB1和AB2的夾角銳角θ稱為極位夾角。設曲柄以等角速度ω1順時針轉動,從AB1轉到AB2和從AB2到AB1所經過的角度為(π+θ)和(π-θ),所需的時間為t1和t2 ,相應的搖桿上C點經過的路線為C1C2弧和C2C1弧,C點的線速度為v1和v2 ,顯然有t1>t2 ,v1<v2 。這種返回速度大於推進速度的現象稱為急回特性,通常用v1與v2的比值K來描述急回特性,K稱為行程速比系數,即
K= (2-1)
或有 (2-2)
可見,θ越大K值就越大,急回特性就越明顯。在機械設計時可根據需要先設定K值,然後算出θ值,再由此計算得各構件的長度尺寸。
急回特性在實際應用中廣泛用於單向工作的場合,使空回程所花的非生產時間縮短以提高生產率。例如牛頭刨床滑枕的運動。
二、傳力特性
1.壓力角和傳動角
在工程應用中連桿機構除了要滿足運動要求外,還應具有良好的傳力性能,以減小結構尺寸和提高機械效率。下面在不計重力、慣性力和摩擦作用的前提下,分析曲柄搖桿機構的傳力特性。如圖2-18所示,主動曲柄的動力通過連桿作用於搖桿上的C點,驅動力F必然沿BC方向,將F分解為切線方向和徑向方向兩個分力Ft和Fr ,切向分力Ft與C點的運動方向vc同向。由圖知
Ft = F 或 Ft = F
Fr = F 或 Fr = F
α角是Ft與F的夾角,稱為機構的壓力角,即驅動力F與C點的運動方向的夾角。α隨機構的不同位置有不同的值。它表明了在驅動力F不變時,推動搖桿擺動的有效分力Ft的變化規律,α越小Ft就越大。
壓力角α的餘角γ是連桿與搖桿所夾銳角,稱為傳動角。由於γ更便於觀察,所以通常用來檢驗機構的傳力性能。傳動角γ隨機構的不斷運動而相應變化,為保證機構有較好的傳力性能,應控制機構的最小傳動角γmin。一般可取γmin≥40°,重載高速場合取γmin≥50°。曲柄搖桿機構的最小傳動角出現在曲柄與機架共線的兩個位置之一,如圖2-18所示的B1點或B2點位置。
偏置曲柄滑塊機構,以曲柄為主動件,滑塊為工作件,傳動角γ為連桿與導路垂線所夾銳角,如圖2-19所示。最小傳動角γmin出現在曲柄垂直於導路時的位置,並且位於與偏距方向相反一側。對於對心曲柄滑塊機構,即偏距e = 0 的情況,顯然其最小傳動角γmin出現在曲柄垂直於導路時的位置。
對以曲柄為主動件的擺動導桿機構,因為滑塊對導桿的作用力始終垂直於導桿,其傳動角γ恆為90°,即γ = γmin = γmax =90°,表明導桿機構具有最好的傳力性能。
2.止點
從Ft = F cosα知,當壓力角α = 90°時,對從動件的作用力或力矩為零,此時連桿不能驅動從動件工作。機構處在這種位置稱為止點,又稱死點。如圖2-20a)所示的曲柄搖桿機構,當從動曲柄AB與連桿BC共線時,出現壓力角α = 90°,傳動角γ = 0。如圖2-20b)所示的曲柄滑塊機構,如果以滑塊作主動,則當從動曲柄AB與連桿BC共線時,外力F無法推動從動曲柄轉動。機構處於止點位置,一方面驅動力作用降為零,從動件要依靠慣性越過止點;另一方面是方向不定,可能因偶然外力的影響造成反轉。
四桿機構是否存在止點,取決於從動件是否與連桿共線。例如上述圖2-20a)所示的曲柄搖桿機構,如果改搖桿主動為曲柄主動,則搖桿為從動件,因連桿BC與搖桿CD不存在共線的位置,故不存在止點。又例如前述圖2-20b)所示的曲柄滑塊機構,如果改曲柄為主動,就不存在止點。
止點的存在對機構運動是不利的,應盡量避免出現止點。當無法避免出現止點時,一般可以採用加大從動件慣性的方法,靠慣性幫助通過止點。例如內燃機曲軸上的飛輪。也可以採用機構錯位排列的方法,靠兩組機構止點位置差的作用通過各自的止點。
在實際工程應用中,有許多場合是利用止點位置來實現一定工作要求的。如圖2-21a)所示為一種快速夾具,要求夾緊工件後夾緊反力不能自動松開夾具,所以將夾頭構件1看成主動件,當連桿2和從動件3共線時,機構處於止點,夾緊反力N對搖桿3的作用力矩為零。這樣,無論N有多大,也無法推動搖桿3而松開夾具。當我們用手搬動連桿2的延長部分時,因主動件的轉換破壞了止點位置而輕易地松開工件。如圖2-21b)所示為飛機起落架處於放下機輪的位置,地面反力作用於機輪上使AB件為主動件,從動件CD與連桿BC成一直線,機構處於止點,只要用很小的鎖緊力作用於CD桿即可有效地保持著支撐狀態。當飛機升空離地要收起機輪時,只要用較小力量推動CD,因主動件改為CD破壞了止點位置而輕易地收起機輪。此外,還有汽車發動機蓋、折疊椅等。
第四節 平面四桿機構運動設計簡介
四桿機構的設計方法有圖解法、試驗法、解析法三種。本節僅介紹圖解法。
一、按給定的連桿長度和位置設計平面四桿機構
1.按連桿的預定位置設計四桿機構
【例2-2】 已知連桿BC的長度和依次占據的三個位置B1C1、B2C2、B3C3 ,如圖2-22所示。求確定滿足上述條件的鉸鏈四桿機構的其它各桿件的長度和位置。
解:顯然B點的運動軌跡是由B1、B2、B3三點所確定的圓弧,C點的運動軌跡是由C1、C2、C3三點所確定的圓弧,分別找出這兩段圓弧的圓心A和D,也就完成了本四桿機構的設計。因為此時機架AD已定,連架桿CD和AB也已定。具體作法如下:
(1)確定比例尺,畫出給定連桿的三個位置。實際機構往往要通過縮小或放大比例後才便於作圖設計,應根據實際情況選擇適當的比例尺 ,見式(1-1)。
(2)連結B1B2、B2B3 ,分別作直線段B1B2和B2B3的垂直平分線b12和b23(圖中細實線),此兩垂直平分線的交點A即為所求B1、B2、B3三點所確定圓弧的圓心。
(3)連結C1C2、C2C3,分別作直線段C1C2和C2C3的垂直平分線c12、c23(圖中細實線)交於點D,即為所求C1、C2、C3三點所確定圓弧的圓心。
(4)以A點和D點作為連架鉸鏈中心,分別連結AB3、B3C3、C3D(圖中粗實線)即得所求四桿機構。從圖中量得各桿的長度再乘以比例尺,就得到實際結構長度尺寸。
在實際工程中,有時只對連桿的兩個極限位置提出要求。這樣一來,要設計滿足條件的四桿機構就會有很多種結果,這時應該根據實際情況提出附加條件。
【實訓例2-3】 如圖2-23所示的加熱爐門啟閉機構,圖中Ⅰ為爐門關閉位置,使用要求在完全開啟後門背朝上水平放置並略低於爐口下沿,見圖中Ⅱ位置。
解:把爐門當作連桿BC,已知的兩個位置B1C1和B2C2 ,B和C已成為兩個鉸點,分別作直線段B1B2、C1C2的平分線得b12和c12 ,另外兩鉸點A和D就在這兩根平分線上。為確定A、D的位置,根據實際安裝需要,希望A、D兩鉸鏈均安裝在爐的正壁面上即圖中yy位置,yy直線分別與b12、c12相交點A和D即為所求。
二、按給定的行程速比系數設計四桿機構
設計具有急回特性的四桿機構,一般是根據運動要求選定行程速比系數,然後根據機構極位的幾何特點,結合其他輔助條件進行設計。
【實訓例2-4】 已知行程速比系數K,搖桿長度lCD,最大擺角 ,請用圖解法設計此曲柄搖桿機構。
解:設計過程如圖2-24所示,具體步驟:
(1)由速比系數K計算極位角θ。由式(2-2)知
(2)選擇合適的比例尺,作圖求搖桿的極限位置。取搖桿長度lCD除以比例尺 得圖中搖桿長CD,以CD為半徑、任定點D為圓心、任定點C1為起點做弧C,使弧C所對應的圓心角等於或大於最大擺角 ,連接D點和C1點的線段C1D為搖桿的一個極限位置,過D點作與C1D夾角等於最大擺角 的射線交圓弧於C2點得搖桿的另一個極限位置C2D。
(3)求曲柄鉸鏈中心。過C1點在D點同側作C1C2的垂線H,過C2點作與D點同側與直線段C1C2夾角為(900-θ)的直線J交直線H於點P,連接C2P,在直線段C2P上截取C2P/2得點O,以O點為圓點、OP為半徑,畫圓K ,在C1C2弧段以外在K上任取一點A為鉸鏈中心。
(4)求曲柄和連桿的鉸鏈中心。連接A、C2點得直線段AC2為曲柄與連桿長度之和,以A點為圓心、AC1為半徑作弧交AC2於點E,可以證明曲柄長度AB = C2E/2,於是以A點為圓心、C2E/2為半徑畫弧交AC2於點B2為曲柄與連桿的鉸接中心。
(5)計算各桿的實際長度。分別量取圖中AB2、AD、B2C2的長度,計算得:
曲柄長 lAB = AB2,連桿長 lBC = B2C2 ,機架長 lAD = AD。
習題二
2-1 鉸鏈四桿機構按運動形式可分為哪三種類型?各有什麼特點?試舉出它們的應用實例。
2-2 鉸鏈四桿機構中曲柄存在的條件是什麼?
2-3 機構的急回特性有何作用?判斷四桿機構有無急回特性的根據是什麼?
2-4 題圖所示的鉸鏈四桿機構中,各構件的長度已知,問分別以a、b、c、d為機架時,各得什麼類型的機構?
2-5 標注出各機構在題圖所示位置的壓力角和傳動角。
實訓二 設計平面四桿機構
1.實訓目的
掌握平面四桿機構的圖解設計方法,初步了解和掌握計算機輔助設計在平面四桿機構設計中的應用。
2.實訓內容和要求
(1)設計一鉸鏈四桿機構,已知搖桿長LC D = 0.12m , 擺角 =45°,機架長LAD = 0.10m,行程速比系數K=1.4,試用圖解法求曲柄和連桿的長度。
(2)使用圖解法設計一擺動導桿機構。已知行程速比系數K=1.5,機架長LAD=0.18m。
可自選一題目,採用計算機輔助設計(用AutoCAD圖解設計)。
3.實訓過程。參考實訓例2-4。
4. 採用AutoCAD圖解設計的實訓步驟
按照自選好的題目初步構思、擬定作圖步驟,然後上機操作:①進入AutoCAD工作界面;②按作圖步驟作圖;③利用查詢功能測出設計結果;④保存設計結果。
㈤ 收集的幾種連桿機構:機器人行走背後的機械原理(一)
機器人概念已經紅紅火火好多年了,目前確實有不少公司已經研製出了性能非常優越的機器人產品,我們比較熟悉的可能就是之前波士頓動力的「大狗」和會空翻的機器人了,還有國產宇樹科技的機器狗等,這些機器人動作那麼敏捷,背後到底隱藏了什麼高科技呢,控制技術太過復雜,一般不太容易了解,不過其中的機械原理倒是相對比較簡單,大部分都是一些連桿機構。
連桿機構(Linkage Mechanism)
又稱低副機構,是機械的組成部分中的一類,指由若干(兩個以上)有確定相對運動的構件用低副(轉動副或移動副)聯接組成的機構。低副是面接觸,耐磨損;加上轉動副和移動副的接觸表面是圓柱面和平面,製造簡便,易於獲得較高的製造精度。
由若干剛性構件用低副聯接而成的機構稱為連桿機構,其特徵是有一作平面運動的構件,稱為連桿,連桿機構又稱為低副機構。其廣泛應用於內燃機、攪拌機、輸送機、橢圓儀、機械手爪、牛頭刨床、開窗、車門、機器人、折疊傘等。
主要特徵
連桿機構構件運動形式多樣,如可實現轉動、擺動、移動和平面或空間復雜運動,從而可用於實現已知運動規律和已知軌跡。
優點:
(1)採用低副:面接觸、承載大、便於潤滑、不易磨損,形狀簡單、易加工、容易獲得較高的製造精度。
(2)改變桿的相對長度,從動件運動規律不同。
(3)兩構件之間的接觸是靠本身的幾何封閉來維系的,它不像凸輪機構有時需利用彈簧等力封閉來保持接觸。
(4)連桿曲線豐富,可滿足不同要求。
缺點:
(1)構件和運動副多,累積誤差大、運動精度低、效率低。
(2)產生動載荷(慣性力),且不易平衡,不適合高速。
(3)設計復雜,難以實現精確的軌跡。
網路的相關詞條圖片如下
下面我們就看看一般都有什麼連桿機構適於用於行走(或者移動)的。
平面四桿機構是由四個剛性構件用低副鏈接組成的,各個運動構件均在同一平面內運動的機構。機構類型有曲柄搖桿機構、鉸鏈四桿機構、雙搖桿機構等。
1、曲柄搖桿機構(Crank rocker mechanism )
曲柄搖桿機構是指具有一個曲柄和一個搖桿的鉸鏈四桿機構。通常,曲柄為主動件且等速轉動,而搖桿為從動件作變速往返擺動,連桿作平面復合運動。曲柄搖桿機構中也有用搖桿作為主動構件,搖桿的往復擺動轉換成曲柄的轉動。曲柄搖桿機構是四桿機構最基本的形式 。主要應用有:牛頭刨床進給機構、雷達調整機構、縫紉機腳踏機構、復擺式顎式破碎機、鋼材輸送機等。
2、雙曲柄機構(Double crank mechanism )
具有兩個曲柄的鉸鏈四桿機構稱為雙曲柄機構。其特點是當主動曲柄連續等速轉動時,從動曲柄一般做不等速轉動。在雙曲柄機構中,如果兩對邊構件長度相等且平行,則成為平行四邊形機構。這種機構的傳動特點是主動曲柄和從動曲柄均以相同的角速度轉動,而連桿做平動。
雙曲柄機構類型分類
【1】不等長雙曲柄機構
說明:曲柄長度不等的雙曲柄機構。
結構特點:無死點位置,有急回特性。
應用實例:慣性篩
【2】平行雙曲柄機構
說明:連桿與機架的長度相等且兩曲柄長度相等、曲柄轉向相同的雙曲柄機構。
結構特點:有2個死點位置,無急回特性。
應用實例:天平
【3】反向雙曲柄機構
說明:連桿與機架的長度相等且兩曲柄長度相等、曲柄轉向相反的雙曲柄機構。
結構特點:無死點位置,無急回特性。
運動特點:以長邊為機架時,雙曲柄的回轉方向相反;以短邊為機架時,雙曲柄回轉方向相同,兩種情況下曲柄角速度均不等。
應用實例:汽車門啟閉系統
3、鉸鏈四桿機構(Hinge four-bar mechanism)
鉸鏈是一種連接兩個剛體,並允許它們之間能有相對轉動的機械裝置,比如門窗用的合頁,就是一種常見的鉸鏈。由鉸鏈連接的四連桿就叫鉸鏈四桿機構。所有運動副均為轉動副的四桿機構稱為鉸鏈四桿機構,它是平面四桿機構的基本形式,其他四桿機構都可以看成是在它的基礎上演化而來的。選定其中一個構件作為機架之後,直接與機架鏈接的構件稱為連架桿,不直接與機架連接的構件稱為連桿,能夠做整周回轉的構件被稱作曲柄,只能在某一角度范圍內往復擺動的構件稱為搖桿。如果以轉動副連接的兩個構件可以做整周相對轉動,則稱之為整轉副,反之稱之為擺轉副。
鉸鏈四桿機構可以通過以下方法演化成衍生平面四桿機構。
(1)轉動副演化成移動副。如引進滑塊等構件。以這種方式構成的平面四桿機構有曲柄滑塊機構、正弦機構等。
(2)選取不同構件作為機架。以這種方式構成的平面四桿機構有轉動導桿機構、擺動導桿機構、移動導桿機構、曲柄搖塊機構、正切機構等。
(3)變換構件的形態。
(4)擴大轉動副的尺寸,演化成偏心輪機構 。
4、雙搖桿機構(Double rocker mechanism)
雙搖桿機構就是兩連架桿均是搖桿的鉸鏈四桿機構,稱為雙搖桿機構。 機構中兩搖桿可以分別為主動件。當連桿與搖桿共線時,為機構的兩個極限位置。雙搖桿機構連桿上的轉動副都是周轉副,故連桿能相對於兩連架桿作整周回轉。
雙搖桿機構的兩連架桿都不能作整周轉動。三個活動構件均做變速運動,只是用於速度很低的傳動機構中 。雙搖桿機構在機械中的應用也很廣泛,手動沖孔機,就是雙搖桿機構的應用實例,比如說吧飛機起落架,鶴式起重機和汽車前輪轉向機構都是雙搖桿機構。
判別方法
1.最長桿長度+最短桿長度 ≤ 其他兩桿長度之和,連桿(機架的對桿)為最短桿時。
2. 如果最長桿長度+最短桿長度 >其他兩桿長度之和,此時不論以何桿為機架,均為雙搖桿機構。
5、連桿機構的理論應用
動力機的驅動軸一般整周轉動,因此機構中被驅動的主動件應是繞機架作整周轉動的曲柄在形成鉸鏈四桿機構的運動鏈中,a、b、c、d既代表各桿長度又是各桿的符號。當滿足最短桿和最長桿之和小於或等於其他兩桿長度之和時,若將最短桿的鄰桿固定其一,則最短桿即為曲柄。若鉸鏈四桿機構中最短桿與最長桿長度之和小於或等於其餘兩桿長度之和,則
a、 取最短桿的鄰桿為機架時,構成曲柄搖桿機構;
b、 取最短桿為機架時,構成雙曲柄機構;
c、 取最短桿為連桿時,構成雙搖桿機構;
若鉸鏈四桿機構中最短桿與最長桿長度之和大於其餘兩桿長度之和,則無曲柄存在,不論以哪一桿為機架,只能構成雙搖桿機構。
急回系數
在曲柄等速運動、從動件變速運動的連桿機構中,要求從動件能快速返回,以提高效率。即k稱為急回系數。曲柄存在條件參考圖
壓力角
如圖中的曲柄搖桿機構,若不計運動副的摩擦力和構件的慣性力,則曲柄a通過連桿b作用於搖桿c上的力P,與其作用點B的速度vB之間的夾角α稱為搖桿的壓力角,壓力角越大,P在vB方向的有效分力就越小,傳動也越困難,壓力角的餘角γ稱為傳動角。在機構設計時應限制其最大壓力角或最小傳動角。
死點
在曲柄搖桿機構中,若以搖桿為主動件,則當曲柄和連桿處於一直線位置時,連桿傳給曲柄的力不能產生使曲柄回轉的力矩,以致機構不能起動,這個位置稱為死點。機構在起動時應避開死點位置,而在運動過程中則常利用慣性來過渡死點。
6、平面四桿機構一些案例
切比雪夫連桿機構其實是和霍肯連桿機構是屬於同一種形式的四連桿機構,其軌跡點都是在連桿兩端誰在的直線上。霍肯連桿機構的軌跡點是在兩端點連線的延伸線上,而切比雪夫連桿機構的軌跡點是在兩端點連線的中間。如下:
切比雪夫連桿機構的動態演示
1、切比雪夫(1821~1894)
俄文原名Пафну́тий Льво́вич Чебышёв,俄羅斯數學家、力學家。切比雪夫在概率論、數學分析等領域有重要貢獻。在力學方面,他主要從事這些數學問題的應用研究。他在一系列專論中對最佳近似函數進行了解析研究,並把成果用來研究機構理論。他首次解決了直動機構(將旋轉運動轉化成直線運動的機構)的理論計算方法,並由此創立了機構和機器的理論,提出了有關傳動機械的結構公式。他還發明了約40餘種機械,製造了有名的步行機(能精確模仿動物走路動作的機器)和計算器,切比雪夫關於機構的兩篇著作是發表在1854年的《平行四邊形機構的理論》和1869年的 《論平行四邊形》。
理論聯系實際是切比雪夫科學工作的一個鮮明特點。他自幼就對機械有濃厚的興趣,在大學時曾選修過機械工程課。就在第一次出訪西歐之前,他還擔任著彼得堡大學應用知識系(准工程系)的講師。這次出訪歸來不久,他就被選為科學院應用數學部主席,這個位置直到他去世後才由李雅普諾夫接任。應用函數逼近論的理論與演算法於機器設計,切比雪夫得到了許多有用的結果,它們包括直動機的理論、連續運動變為脈沖運動的理論、最簡平行四邊形法則、絞鏈杠桿體系成為機械的條件、三絞鏈四環節連桿的運動定理、離心控制器原理等等。他還親自設計與製造機器。據統計,他一生共設計了40餘種機器和80餘種這些機器的變種,其中有可以模仿動物行走的步行機,有可以自動變換船槳入水和出水角度的劃船機,有可以度量大圓弧曲率並實際繪出大圓弧的曲線規,還有壓力機、篩分機、選種機、自動椅和不同類型的手搖計算機。他的許多新發明曾在1878年的巴黎博覽會和1893年的芝加哥博覽會上展出,一些展品至今仍被保存在蘇聯科學院數學研究所、莫斯科歷史博物館和巴黎藝術學院里。
2、切比雪夫連桿機構經常被用於模擬機器人的行走
根據公式i=3n-2m
(n為活動構件數目,m為低副數目)
可得自由度i=1
3、切比雪夫連桿機構被廣泛運用在機器人步態模擬上,從動圖上也能看出,它的軌跡底部較為平穩,步態方式非常像四足動物,收腿動作有急回特性。根據下圖WORKING MODEL模擬分析可得,在X軸上,也能看出它的急回特點。
4、嵌入汽缸的切比雪夫直線機構的運動
動圖
5、使用切比雪夫連桿機構的行走桌子
常見到有人遛狗溜貓,但你絕對沒見過人溜桌子的,拜荷蘭設計師Wouter Scheublin的腦洞所賜,荷蘭人民倒是有幸見到過這一奇葩景象,有人推著一張桌子在路上行走,而有著八條腿的桌子就運動著自己的腿,走的蹭蹭蹭的,場景怪異中帶著搞笑,讓人印象深刻。那麼桌子是怎麼行走的呢?其實並沒有用上什麼高科技,它只是通過精細的機械傳動機構動起來而已。設計師受到俄羅斯數學家切比雪夫的理論啟發,並將它應用到桌子中,所以這張160斤重的桌子輕輕推拉就能走,而且走的異常平穩,不比輪子差。
每條桌腿與桌板之間,都採用精細的木質結構打造。當用手推動桌子時,給力的一方會使桌腿不斷前進,通過力臂的搖擺和連接處木質結構,會把力傳遞到對面的桌腿使之向前移動,然後桌子就能滿街跑了。
㈥ 機械原理連桿機構
空間連桿機構
由若干剛性構件通過低副(轉動副﹑移動副)聯接﹐而各構件上各點的運動平面相互不平行的機構﹐又稱空間低副機構。在空間連桿機構中﹐與機架相連的構件常相對固定的軸線轉動﹑移動﹐或作又轉又移的運動﹐也可繞某定點作復雜轉動﹔其餘不與機架相連的連桿則一般作復雜的空間運動。利用空間連桿機構可將一軸的轉動轉變為任意軸的轉動或任意方向的移動﹐也可將某方向的移動轉變為任意軸的轉動﹐還可實現剛體的某種空間移位或使連桿上某點軌跡近似於某空間曲線。與平面連桿機構相比﹐空間連桿機構常有結構緊湊﹑運動多樣﹑工作靈活可靠等特點﹐但設計困難﹐製造較復雜。空間連桿機構常應用於農業機械﹑輕工機械﹑紡織機械﹑交通運輸機械﹑機床﹑工業機器人﹑假肢和飛機起落架中。
類型 空間連桿機構常指單自由度空間閉鏈(見運動鏈)機構﹐但是隨著工業機器人和假肢技術的發展﹐多自由度空間開鏈機構也有不少用途。單自由度單環平面連桿機構只含4個轉動副﹐而單自由度單環空間連桿機構所含轉動副應為7個﹐此即空間七桿機構。空間連桿機構中採用多自由度的運動副如球面副或圓柱副時﹐所含構件數即可減少而形成簡單穩定的空間四桿機構或三桿機構。為了表明空間連桿機構的組成類型﹐常用R﹑P﹑C﹑S﹑H分別表示轉動副﹑移動副﹑圓柱副﹑球面副﹑螺旋副。一般空間連桿機構從與機架相連的運動副開始﹐依次用其中的一些符號來表示。常用空間四桿機構的組成類型有RSSR﹑RRSS﹑RSSP和RSCS機構(圖1 常用空間四桿機構的組成類型 )。這些機構因含有兩個球面副﹐結構比較簡單﹐但繞兩球心連線自由轉動的局部自由度影響高速性能。所有轉動副軸線匯交一點的球面四桿機構(圖2 球面四桿機構 )﹐也是一種應用較廣的空間連桿機構﹐如萬向聯軸節機構。此外﹐還有某些特殊空間連桿機構﹐如貝內特機構﹐其運動副軸線夾角和構件尺度要求滿足某些特殊關系。
運動分析和綜合 空間連桿機構的分析綜合均較平面連桿機構復雜困難﹐這在很大程度上影響空間連桿機構的推廣應用。研究空間連桿機構的方法有以畫法幾何為基礎的圖解法和運用向量﹑對偶數﹑矩陣和張量等數學工具的解析法。圖解法有一定的局限性﹐應用較多的是便於電子計算機運算的解析法。空間連桿機構分析中重要而又困難的問題是位移分析。對多於 4桿的空間連桿機構﹐由輸入求輸出位移時因中間運動變數不易避開或消去﹐一般要用數值迭代法聯解多個非線性方程式或求解高次代數方程式。對最難進行位移分析的空間7R 機構﹐由輸入求輸出位移的代數方程式高達32次。對空間連桿機構進行運動綜合的基本問題是﹕當主動件運動規律一定時﹐要求連架從動件能按若干對應位置或近似按某函數關系運動﹔要求連桿能按若干空間位置姿態運動而實現空間剛體的導引﹔要求連桿上某點能近似沿給定空間曲線運動。由於這些問題和平面連桿機構的綜合問題相仿﹐所以平面的巴默斯特爾理論可解析地推廣於空間剛體的導引問題和其他運動綜合問題。此外尚有利用機構封閉性等同條件建立設計方程式和採用優化技術等綜合方法。