『壹』 一個實驗:驗證風是由空氣流動形成的。需要什麼實驗器
說出風的形成實驗所用的實驗材料,再說出是怎樣形成的?
實驗目的:探究風形成的原因。內
實驗材料:大塑料容瓶、小塑料瓶、蠟燭、蚊香、火柴。
實驗步驟:
1、用一個大塑料瓶,去底去口,再在一側壁面用小刀挖一個與小塑料瓶口大小相同的孔,將一個小塑料瓶去底,瓶口卡進側壁洞口,並用橡皮泥將洞口周圍封嚴。
2、在桌子上點燃一支蠟燭,火苗向上沒有飄動,說明周圍沒有形成溫差,既沒有風。
3、將做好的裝置罩在燃燒的蠟燭上,使小瓶的口正對著火苗,可清晰看到火苗向一定方向飄動。
4、在小瓶底口處點燃蚊香。
5、轉動大瓶。
6.觀察記錄所發現的現象,並進行分析。
實驗現象;
1. 小瓶的口正對著火苗,可清晰看到火苗向一定方向飄動。
2. 小瓶底口處點燃蚊香,也可以看到煙流向大瓶內。
3. 轉動大瓶,火苗也隨著改動飄動方向。
實驗結論:
風形成的原因:空氣受熱膨脹、變輕、上升,體積減少,壓力變小,別處的冷空氣流入補充,這樣不斷循環流動就形成了風。
『貳』 設計一個簡單的實驗,模擬風的形成,寫出所需的器材和實驗步驟
模擬實驗:風的形成
實驗目的:理解風的成因,初步學會做空氣流動形成風的模擬實驗。
准備的材料:大塑料瓶、小塑料瓶、蠟燭、剪刀、油性筆、橡皮泥、蚊香片、火柴、鑷子。
實驗過程:
1、取一個大塑料瓶橫放在桌面,用刀把它的底部去掉,並利用剪刀把瓶底修理平整。
2、取一個小塑料瓶,把它的瓶口與大塑料瓶中間外壁相接觸,用油性筆在大塑料瓶身上按小塑料瓶瓶口的大小做個記號。
3、用剪刀沿油性筆的記號在大塑料瓶中間外壁開一個小洞,洞的大小比小塑料瓶口略大一點。
4、把小塑料瓶瓶口卡進大塑料瓶外壁的洞里,周圍用橡皮泥封緊。這樣一個空氣流動裝置就做好了。
5、選擇一支與大塑料瓶中間洞口高度差不多的蠟燭,點燃蠟燭放在平整的桌面,觀察蠟燭的火焰沒有飄動,說明現在沒有風。
6、把剛才做好的空氣流動裝置罩在燃燒的蠟燭上,火焰對著小塑料瓶口。這時發現蠟燭的火焰向另外一個方向飄動,說明現在形成了風。
原因分析:點燃蠟燭後,瓶內空氣受熱變輕上升,從瓶口流出,瓶內空氣因此稀薄,壓力減小。而同時,瓶外溫度沒有升高,空氣沒有變化,壓力較大。由於瓶外壓力大於瓶內壓力,瓶外的冷空氣就順著小塑料瓶口向大瓶內流動,瓶內的空氣受熱不斷上升流出,瓶外的空氣又源源不斷地流進瓶內。這樣,就形成了一股由瓶外向瓶內流動的空氣,空氣的流動就形成了風。
『叄』 化工原理實驗中哪些用到了風機工作
化工原理實驗中哪些用到了風機工作:
化工原理實驗裝置系列一、雷諾實驗裝置 JGKY-LN實驗目的:1、觀察流體在管內流動的兩種不同型態。2、觀察滯流狀態下管路中流體速度分布狀態。3、測定流動形態與雷諾數Re之間的關系及臨界雷諾數值。主要配置:有機玻璃水槽、示蹤劑盒、示蹤劑流出管、細孔噴嘴、玻璃觀察管、計量水箱、不銹鋼框架。技術參數:1、有機玻璃水槽:大於30L。2、玻璃觀察管:Φ20mm。3、計量水箱:容積大於8L。4、指示液為紅墨水或其它顏色鮮艷的液體。5、框架為不銹鋼,結構緊湊,外形美觀,流程簡單,操作方便。6、外形尺寸:1200×450×1300mm。二、柏努利實驗裝置 JGKY-BNL實驗目的:1、熟悉流體流動中各種能量和壓頭的概念及相互轉化關系,加深對柏努利方程式的理解。2、觀察各項能量(或壓頭)隨流速的變化規律。主要配置:蓄水箱、水泵、有機玻璃實驗水箱、有機玻璃計量水箱、測壓管、閥門、不銹鋼框架。技術參數:1、水泵為微型增壓泵,功率:90W。2、計量水箱:容積大於8L。3、實驗管道:Φ20與Φ40mm。4、測壓管 Φ8有機玻璃管 指示液為水,無毒、使操作更為安全。5、實驗水箱: 400×250×450 mm(透明有機玻璃水箱)。蓄水箱: 600×400×400 mm(PVC或不銹鋼水箱)。6、實驗所用的流體--水為全循環設計。7、框架為不銹鋼,結構緊湊,外形美觀,流程簡單,操作方便。8、外形尺寸:1800×500×1500mm。三、離心泵特性曲線測定實驗裝置 JGKY-LXB實驗目的:1、了解離心泵的結構和特性,熟悉離心泵的操作。2、測量一定轉速下的離心泵特性曲線。3、了解並熟悉離心泵的工作原理。主要配置:蓄水箱、離心泵、壓力表、真空表、功率表、渦輪流量計、實驗管路、不銹鋼框架、控制屏。技術參數:1、卧式離心泵流量6
m^{3}
m
3
/h,揚程15m,功率370W。
2、流量測量採用渦輪流量計,流量約0.5~8 m3/h。3、壓力表:Y-100型,0~0.6Mpa,真空表-0.1~0Mpa。4、功率測量:數字型功率表,精度1.0級。5、蓄水箱由PVC或不銹製成,容積約80L。6、實驗所用的流體--水為全循環設計。7、控制屏面板及框架為不銹鋼,結構緊湊,外形美觀,流程簡單,操作方便。8、外形尺寸:1600×500×1500mm。數據採集型(JGKY-LXB/Ⅱ):配計算機、微機介面和數據處理軟體、渦輪流量計及流量積算儀、變頻器、壓力感測器。能在線監測流量、壓力等實驗數據。四、恆壓過濾實驗裝置 JGKY-GL/HY實驗目的:1、掌握過濾的基本方法。2、掌握在恆壓下過濾常數K、當量濾液體積qe的求取。3、觀察過濾終了速率與洗滌速率的關系。主要配置:板框過濾機、空壓機、壓力容器、計量槽、盛渣槽、攪拌電機、控制閥、不銹鋼框架。技術參數:1、板框過濾機的過濾面積:0.084m2,過濾介質:帆布。2、空壓機排氣量:0.036m3/h,壓力:0.7MPa,功率:750KW。3、壓力容器:容積約35L,上裝壓力表(0-0.6Mpa)、空壓 機入口給混合液加壓、視鏡可方便觀察容器內的液位。4、盛渣槽:過濾時會有一定泄漏現象,為保證實驗室的衛生用來盛泄漏的混合液。5、計量槽由有機玻璃製成,容積:約14L。6、攪拌器轉速:0-200轉/min。7、框架為不銹鋼,結構緊湊,外形美觀,流程簡單,操作方便。8、外形尺寸:1700×600×1600mm。數據採集型(JGKY-HY GL/Ⅱ):配計算機、微機介面和數據處理軟體、重量感測器、壓力感測器。能在線監測慮液量、壓力等實驗數據。五、流量計校核實驗裝置 JGKY-LX實驗目的:1、熟悉節流式流量計的構造及應用。2、掌握流量計的流量校正方法。3、通過對流量計量系數的測定,了解流量系數的變化規律。
主要配置:水泵、孔板流量計、文丘里流量計、計量水槽、秒錶、U型壓差計、蓄水箱、不銹鋼框架及管路、控制屏。技術參數:1、水泵:最大流量30L/min、最高揚程16m、功率370W、工作電壓220V、轉速2850r/min2、孔板孔口徑:dO=8mm,不銹鋼材質。3、文丘里管喉徑:dV=8mm,不銹鋼材質。4、計量槽容積:15L,蓄水箱容積:20L。5、實驗所用的流體--水為全循環設計。7、框架為不銹鋼,結構緊湊,外形美觀,操作方便。8、外形尺寸:1500×500×1500mm。數據採集型(JGKY-LX /Ⅱ):配計算機、微機介面和數據處理軟體、壓差感測器、渦輪流量計及流量積算儀。能在線監測壓差、流量等實驗數據。六、流體流動阻力實驗裝置 JGKY-ZL實驗目的:1、掌握流體流經直管和閥門時的阻力損失和測定方法,通過實驗了解流體流動中能量損失的變化規律。2、測定流體流經閥門時的局部阻力系數ζ。3、測定直管摩擦系數λ與雷諾數Re之間的關系。主要配置:水泵、蓄水箱、沿程阻力光滑管、沿程阻力粗糙管、局部阻力管、壓差計、流量計、閥門、實驗台架及電控箱。技術參數:1、粗糙管段:不銹鋼管,管徑25mm、管長1.6m,內裝不銹鋼螺旋絲或工業鍍鋅管。2、光滑管段:不銹鋼光滑管,管徑25mm、管長1.5m。3、局部阻力段:管徑25mm,測量閥門局部阻力。4、水泵:流量5m3/h、揚程20m、電機功率:550W。5、流量計:採用轉子流量計或渦輪流量計,(渦輪流量計:LWCY-15,0.6-6 m3/h,LED背光液晶顯示)。6、蓄水箱為不銹鋼材質,容積約40L。7、閥門及三通等管件均為304不銹鋼材質。8、操作台架及電控箱為不銹鋼材質,結構緊湊,外形美觀,流程簡單,操作方便。9、尺寸:2000×600×1800mm。數據採集型(JGKY-ZL/Ⅱ):配計算機、微機介面和數據處理軟體、壓差感測器、渦輪流量計及流量積算儀。能在線監測壓差、流量等實驗數據。
七、流化床乾燥實驗裝置 JGKY-GZ/LHC實驗目的:1、了解流化床乾燥裝置的結構、流程及操作方法。2、學習測定物料在恆定乾燥條件下乾燥特性的實驗方法,研究乾燥條件對乾燥過程特性的影響。3、掌握根據實驗乾燥曲線求取乾燥速率曲線以及恆速階段乾燥速率、臨界含水量、平衡含水量的實驗分析方法。主要配置:空氣旋渦泵、電加熱箱、流化床體、集塵器、加料斗、旋風分離器、U型壓差計、孔板流量計(或畢託管流量計)、不銹鋼實驗台架及電控箱。技術參數:1、空氣旋渦泵:風量450 m3/h,風壓120mmH2O,效率66%,軸功率0.75KW。2、電加熱箱:功率2KW,不銹鋼材質。3、U型壓差計:測量流化床總塔壓差及進風流量。4、電控箱:在電控箱上裝有智能溫控儀表,測量乾燥室的進出口溫度;電源開關、風機開關,按下開關旋鈕對應的工作開始進行。5、實驗台架及控制屏均為不銹鋼材質,結構緊湊、外形美觀、流程簡單、操作方便。6、外形尺寸:1500×600×2000mm。數據採集型(JGKY-GZLHCⅡ):配計算機、微機介面和數據處理軟體、溫度感測器、壓差感測器、渦輪流量計及流量積算儀。能在線監測壓差、溫度、流量等實驗數據。八、傳熱實驗裝置 JGKY-CR實驗目的:1、熟悉傳熱實驗的實驗方案設計及流程設計。2、了解換熱器的基本構造與操作原理。3、掌握熱量衡算與傳熱系數K及對流傳熱膜系數α的測定方法。4、了解強化傳熱的途徑及影響傳熱系數的因素。主要配置:套管換熱器、蒸汽發生器、氣泵、熱電偶、數顯儀表、壓力表、熱球風速儀或轉子流量計、實驗管道、閥門、不銹鋼框架、控制屏。技術參數:1、套管換熱器:內管ф22X1.5mm,外管ф52X1.5mm,換熱段長度:1.0m。2、蒸汽發生器:不銹鋼製作,加熱功率:2KW,操作電壓220V。3、氣泵:離心式中壓吹風機,功率:250W,轉速:2800/min,風壓:1300Pa,風量:8m3/min。
4、壓力測量:測量范圍:0-2.5MPa,精度0.5級;溫度測量:測量范圍:-50 - 150℃,精度0.5級。5、熱球風速儀:測量風速:0.05-10m/s;轉子流量計:測量范圍:4-40 m3/h。6、實驗管道、閥門為不銹鋼和銅結構。7、框架為不銹鋼,結構緊湊,外形美觀,流程簡單,操作方便。8、外形尺寸:1500×550×1700mm。數據採集型(JGKY-CR/Ⅱ):配計算機、微機介面和數據處理軟體、溫度感測器、壓力感測器、渦輪流量計及流量積算儀。能在線監測壓力、溫度、流量等實驗數據。九、填料吸收實驗裝置 JGKY-XS/TL實驗目的:1、了解填料吸收塔的結構、流程及操作方法。2、觀察填料吸收塔的流體力學行為並測定在干、濕填料狀態下填料層壓降與空塔氣速的關系。3、測定總傳質系數Kya,並了解其影響因素。主要配置:吸收塔、風機、混合穩壓罐、流量計、U型壓差計、蓄水箱、水泵、壓力儀表、溫度儀表、不銹鋼框架、控制屏。技術參數:1、吸收塔採用填料塔,尺寸:φ100×800mm,塔體為透明有機玻璃,便於學生觀察相關實驗現象2、填料:φ10×10×1mm瓷拉西環,吸收介質:二氧化碳氣體,吸收劑:水。3、風機:風壓≥0.04Mpa,排氣量≥85 L/min。4、流量計流量:氣體轉子流量計兩個,大流量液體轉子流量計一個5、壓差計:U型壓差計,觀察上下塔壓降變化。6、壓力儀表:測量范圍0-2.5MPa,精度0.5級;溫度儀表:測量范圍-50 – 150℃,精度0.5級。7、混合穩壓罐:不銹鋼製作,對空氣和二氧化碳氣體充分混合、穩壓後輸出。8、框架為不銹鋼,結構緊湊,外形美觀,流程簡單,操作方便。9、外形尺寸:2000×600×1700mm。數據採集型(JGKY-XCTL/Ⅱ):配計算機、微機介面和數據處理軟體、溫度感測器、壓差感測器、渦輪流量計及流量積算儀。能在線監測壓差、溫度、流量等實驗數據。
十、精餾實驗裝置 JGKY-JL實驗目的:1、熟悉精餾單元操作過程的設備與流程。2、了解板式塔結構與流體力學性能。3、掌握精餾塔的操作方法與原理。4、學習精餾塔效率的測定方法。主要配置:精餾塔、冷凝器、再沸器、溫控系統、加料系統、迴流系統、產品貯槽、配料槽及測量儀表、不銹鋼框架、控制屏。技術參數:1、精餾塔體和塔板均採用不銹鋼製作,精餾塔容積:8L;塔徑:φ50mm,塔板數:13塊,板間距:100mm,孔徑:φ2mm,開孔率:6%。2、冷凝器換熱管管徑:φ12mm,壁厚:1mm,換熱面積:0.0568m2。3、再沸器採用不銹鋼製作,內置電加熱管加熱,總加熱功率為2000W,分兩組,各1000W。4、溫控系統採用自動無級控溫承擔精餾塔的溫度控制調節。5、加料系統:料液泵流量:0.4m3/hr,揚程:8m,功率:120W。6、塔頂餾出液的組成:90-95%,進料組成:15-35%。7、裝置產量:約4L/H。8、迴流系統:由兩支LZB-6的液體流量計控制迴流比。9、各項操作及溫度、壓力、流量的顯示、調節、控制全在控制屏板面進行。10、框架為不銹鋼,結構緊湊,外形美觀,流程簡單,操作方便操作方便,操作方便。
『肆』 流體流動阻力的測定實驗為什麼要測流體的溫度
一、實驗目的
1、掌握流體阻力及一定管徑和管壁粗糙度下摩擦系數λ的測定方法
2、掌握測定局部阻力系數ζ的方法
3、掌握摩擦系數λ與雷諾數Re之間的關系及工程意義
二、實驗原理
流體阻力產生的根源是流體具有粘性,流動時存在內摩擦。而壁面的形狀則促使流動的流體內部發生相對運動,為流動阻力的產生提供了條件,流動阻力的大小與流體本身的物理性質、流動狀況及壁面的形狀等因素有關。流動阻力可分為直管阻力和局部阻力。
流體在流動過程中要消耗能量以克服流動阻力,因此,流動阻力的測定頗為重要。測定流體阻力的基本原理如圖所示,水從貯槽由離心泵輸入管道,經流量計計量後回到水槽,循環利用。改變流量並測定直管與管件的相應壓差,即可測得流體流動阻力。
1.直管阻力摩擦系數λ的測定
直管阻力是流體流經直管時,由於流體的內摩擦而產生的阻力損失hf 。對於等直徑水平直管段,根據兩測壓點間的柏努利方程有:
(1)
式中:l ,直管長度,m
d ,管內徑,m
(P1 - P2),流體流經直管的壓強降,Pa
u ,流體截面平均流速,m/s
ρ,流體密度,kg/m3
μ,流體粘度,PaS
由式(1)可知,欲測定λ,需知道l、d、(P1 - P2)、u、ρ、μ等。
(1)若測得流體溫度,則可查得流體的ρ、μ值。
(2)若測得流量,則由管徑可計算流速u。
(3)兩測壓點間的壓降(P1 -P2),可用U型壓差計測定。此時:
(2)
式中:R,U型壓差計中水銀柱的高度差,m
則:
(3)
2.局部阻力系數ζ的測定
局部阻力主要是由於流體流經管路中管件、閥門及管截面的突然擴大或縮小等局部位置時所引起的阻力損失,在局部阻力件左右兩側的測壓點間列柏努利方程有:
(4)
即
式中:ζ,局部阻力系數
P1′- P2′,局部阻力壓強降,Pa
式(4)中ρ、u、P1′- P2′等的測定同直管阻力測定方法。
三、實驗操作步驟
1、了解實驗裝置,熟悉實驗各裝置的作用和原理。
2、進一步熟悉離心泵的操作。
3、檢查水槽水量是否夠用,必要時應為水槽加水;如實驗時間稍長,水槽水量不夠,可以向水槽加自來水,水位過高時即從溢流口流入地溝,便可保證水槽的水量。
4、開始實驗前先灌泵,避免在空載狀態下開車。打開電源開關,關閉泵出口閥,打開泵電源開關。打開連通閥,將泵出口閥打至最大,等待幾分鍾後關閉出口閥,反復開關管子上部的排氣閥對管子進行排氣。
5、在連通閥打開的情況下將排空閥開關幾次對測壓管進行排氣。關閉連通閥再開排空閥幾次對壓差計調零。
6、將流量由小逐漸加大,流量每變一次需等待幾分鍾到壓差計內讀數穩定,記錄下U型管的液柱高度差。
7、流量在增加過程中,其流速開始時增加的間隔較為緩慢,一般為10L/h。當流量增大到150L/h 後,便以50L/h 的流速來增加。
8、在實驗過程中,U型管液柱高度差應當是逐步增加的,如果不符合這一規律,應當從流量為最大值時開始,逆向操作(即逐步減少流量),直至流量為零為止。此時,U型管液柱高度差應當是逐步減少的。
9、如果實驗結果符合正常實驗規律,即可終止實驗。先關閉水的出口閥,再停泵,最後關閉電源開關;
10、局部阻力系數的測定與直管阻力的測定方法一樣,只是通過轉向閥使液體流入彎管。
11、打掃實驗室衛生,整理好原始記錄,交實驗指導老師簽字後再離開實驗室。
四、實驗注意事項與設備的維護保養
1、裝置配備的U型管壓差計內的指示液為水,20℃時密度為998.2kg/m3。
2、本裝置的直管為垂直安裝,與U型管壓差計相連的兩測壓點垂直距離為1054mm,直管內徑為15mm,絕對粗糙度ε=0.2mm;
直管垂直安裝,測壓點測量的應為兩截面間的勢能差,包括了兩者的代數和為ΣΔP=(P2-P1)+ρgΔZ。顯然,ΔPS=ΣHf=λLρu2/(2d),ρgΔZ則應為常數,且當u=0時,ΔPS=ΣHf=0,ΣΔP取最大值,即ρgΔZ(此值可通過實驗測定)。因此,實際的直管阻力ΣHf=ρgΔZ-ΣΔP。本實驗裝置的數據還可以用於驗證層流條件下λ與Re數的關系。
3、設備的維修主要是料液泵,具體要求請參照泵的使用說明書和有關的電機手冊;
4、設備使用一段時間後,如果管道連接件泄漏,可用維修的活動扳手禁錮連接螺母;
5、加密封生料帶之後再緊錮,還不行,則必須更換管道接頭或管道;
6、注意實驗過程中切勿捕捉測量點,只能從大到小測,或從小到大有規律的測,若少測了數據則需重新開始實驗。不能將流量打回所需測的數值另讀一組數據。否則數據將有很大的偏離。
五、實驗結果處理與要求
1、根據實驗所測項目,設計原始數據記錄表格。
2、驗證層流時λ~Re的關系。
3、湍流時,流量由小(大)到大(小)測8~10組數據,計算λ、ζ、Re值。
4、在雙對數坐標紙上繪出λ~Re曲線,並與書上λ~Re比較是否相符?
5、局部阻力原始記錄表格與下表一致。
『伍』 如圖所示實驗裝置,容器與粗細不均勻的水平管相連,管口裝有閥門,A、B、C為底部連通的敞口豎直管.容器
讀圖可知,容器中裝有足量的水,閥門關閉,水不流動時,三根豎直管構成連通內器,因此管中的水柱容高度相同;
當閥門打開水流動,在流過的水量一定的情況下,管的橫截面積越大,水流速越慢,其壓強越大,水的高度越大,由於B處的水的流速最大,故該處的壓強最小,水的高度最低.因此,三根豎直管中的水柱高度不相同.
故答案為:相同;不相同.