A. 機械設計課程設計螺旋輸送機(二級)設計書
電機傳動經過減速箱,兩級減速後,減速機輸出經過錐齒輪傳動到螺旋輸送軸,你需要根據設計計算對減速箱進行選型,並配齒輪傳動比。
B. 機械設計,設計螺旋運輸機的傳動裝置
這個吧
C. 機械設計 螺旋輸送機傳動裝置設計
一、傳動方案擬定
螺旋輸送機用減速器方案如下圖所示
FD
V
二、電動機的選擇
電動機的選擇:選用Y系列三相非同步電動機
1.帶式輸送機所需功率
2.初估電動機額定功率P=
V帶效率=0.96,一對滾動軸承效率=0.99,閉式齒輪傳動效率=0.97(8級精度),聯軸器
3.確定電動機轉速
選擇同步轉速為1500電動機,型號為
4.各尺寸及主要性能如下:
額定功率
同步轉速
滿載轉速
額定轉矩
最大轉矩
質量
(kg)
4.0
1500
1440
2.2
2.2
43
機座號
中心高
安裝尺寸
軸伸尺寸
平鍵尺寸
外形尺寸
112M
112
A
B
D
E
G
L
HD
AC
AD
190
140
28
60
24
400
265
230
190
三、分配各級傳動比
初取V帶傳動比3
則兩斜圓柱齒輪 取
綜上取傳動比
四、 計算運動和動力參數(傳動裝置運動和動力參數的計算)
1.各軸轉速
電動機軸
I軸
II軸
III軸
捲筒軸IV
2.各軸輸入功率
I軸
II軸
III軸
捲筒軸IV
3.各軸輸入轉矩
I軸
II軸
III軸
捲筒軸IV
五、 減速器外傳動零件的設計計算
一 V帶的設計計算
1:確定計算功率
由V帶的工作情況和工作時間長短等因素 取
2:選擇帶型
根據計算功率小帶輪的轉速,由表8-6,可選 SPZ型V帶
3:確定帶輪的基準直徑
1):由表8-7,8-3,初選
2):驗算帶速度:
故V帶選擇合適
3):計算從動輪的基準直徑
由表8-7,選取
4:確定中心距
初選,帶的基準長度
由表8-2取
5:驗算主動輪的包角
,
主動輪的包角符合要求
6:確定窄V帶根數z
由查表8-5c和8-5d得:
由表8-8得:
由表8-2得:
代入式(8-22)得:
故z取z=3
7:計算帶的預緊力
查表8-4得:
由於新帶容易鬆弛,所以安裝新帶時的預緊力為上述預緊力的1.5倍
8:計算壓緊力
9驗算 實際傳動比:
9:帶輪結構設計
基準寬度
基準線上槽深
基準線下槽深
槽間距
第一槽對稱面
至端面的距離
最小帶輪緣厚
帶輪寬
外徑
輪槽角
D. 江湖告急-機械設計課程設計 設計傳動裝置
僅供參考
一跡正、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉滾或速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶大州伍 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.
六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm
II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。
主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠
(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min
(1)已知nII=121.67(r/min)
兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠
二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠
七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。
八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.
放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:
:
(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20
(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2
(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3
D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.
九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。
十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。
十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版
E. 機械設計課程設計---設計帶式輸送機傳動裝置
參考:
可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,它與普通膠帶輸送機相比增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
結構概述
伸縮膠帶輸送機分為固定部分和非固定部分兩大部分。固定部分由機頭傳動裝置、儲帶裝置、收放膠帶裝置等組成;非固定部分由無螺栓連接的快速可拆支架、機尾等組成。
1、 機頭傳動裝置由傳動捲筒、減速器、液力聯軸器、機架、卸載滾筒、清掃器組成。
n 機頭傳動裝置是整個輸送機的驅動部分,兩台電機通過液力聯軸器、減速器分別傳遞轉距給兩個傳動滾筒(也可以用兩個齒輪串聯起來傳動)。用齒輪傳動時,應卸下一組電機、液力聯軸器和減速器。
n 液力聯軸器為YL-400型,它由泵輪、透平輪、外殼、從動軸等構成,其特點是泵輪側有一輔助室,電機啟動後,液流透過小孔進入工作室,因而能使負載比較平衡地啟動而電機則按近於堅載啟動,工作時殼體內加20號機械油,充油量為14m3,減速器採用上級齒輪減速,第一級為圓弧錐齒輪,第二、第三級為斜齒和直齒圓柱齒輪,總傳動比為25.564,與SGW-620/40T型刮板輸送機可通用互換,減速器用螺栓直接與機架連接。
n 傳動捲筒為焊接結構,外徑為Φ500毫米,捲筒表面有特製的硫化膠層,因此對提高膠帶與滾筒的eua值,防止打滑、減少初張力,具有較好的效果。
n 卸載端和頭部清掃器,帶式逆止器,便於卸載,機頭最前部有外伸的卸載臂,由卸載滾筒和伸出架組成,滾筒安裝在伸出架上,其軸線位置可通過軸承兩側的螺栓進行調節,以調整膠帶在機頭部的跑偏,在卸載滾筒的下部裝有兩道清掃器,由於清掃器刮板緊壓在膠帶上,故可除去粘附著的碎煤,帶式逆止器以防止停車時膠帶倒轉。
n 機架為焊接結構,用螺栓組裝,機頭傳動裝置所有的零部件均安裝在機架上。電動機和減速器可根據具體情況安裝在機架的左側或右側。
2、 儲帶裝置包括儲帶轉向架、儲帶倉架、換向滾筒、托輥小車、游動小車、張緊裝置、張緊絞車等。
n 儲帶裝置的骨架由框架和支架用螺栓連接而成,在機頭傳動裝置兩具轉框架上裝有三個固定換向滾筒與游動小車上的兩個換向滾筒一起供膠帶在儲帶裝置中往復導向,架子上面安裝固定槽形托輥和平托輥,以支撐膠帶,架子內側有軌道,供托輥不畫和游動小車行走。
n 固定換向滾筒為定軸式,用於儲帶裝置進行儲帶時,用以主承膠帶,使其懸垂度不致過大,托輥小車隨游動小車位置的變動,需要用人力拉出或退回。
n 游動小車由車架、換向滾筒、滑輪組、車輪等組成,滑輪組裝在車身後都與另一滑輪組相適應,其位置可保證受力時車身不被抬起,這樣,對保持車身穩定,防止換向滾筒上的膠帶跑偏效果較好,車身下部還裝著止爬鉤,用以防止車輪脫軌掉道。
n 游動小車向左側移動時,膠帶放出,機身伸長,游動小車向右側移動時,膠帶儲存,機身縮短,通過鋼絲繩拉緊游動小車可使膠帶得到適當的張緊度。
n 在儲帶裝置的後部,設有張緊絞車,膠帶張力指示器和張力緩沖器,張力緩沖器的作用是使輸送機(在起動時讓膠帶始終保持一定的張力,以減少空載膠帶的不適度和膠帶層間的拍打)。
3、 收放膠帶裝置位於張緊絞車的後部,它由機架、調心托輥、減速器、電動機、旋桿等組成,其作用是將膠帶增補到輸送機機身上或從輸送機機身取下,機架的兩端和後端,各裝一旋桿,當增加或減少膠帶時用以夾緊主膠帶,調心托輥組供捲筒收放膠帶時導向,工作時將捲筒推進機架的一端用尾架頂起,另一端頂在減速器出軸的頂尖上,開動電動機通過減速器出軸的撥盤帶動捲筒,收卷膠帶,放出膠帶,放出膠帶時不開電機由外拖動捲筒反轉,在不工作時活動軌可用插銷掛在機架上,以縮小寬度,在活動軌上方應設置起重裝置懸弔捲筒,巷道寬度可視具體情況適當拓寬,以利膠帶收入時操作。
4、 中間架由無螺栓連接的快速可拆支架,由H型支架、鋼管、平托輥和掛鉤式槽形托輥、「V」型托輥等組成,是機器的非固定部分,鋼管可作為拆卸的機身,用柱銷固裝在鋼管上,用小錘可以打動,掛鉤式槽形托輥膠接式,槽形角30°,用掛鉤掛在鋼管的柱銷上,掛鉤上制動的圓弧齒槽,托輥就是通過齒槽掛在柱銷上的,可向前向後移動,以調節托輥位置控制膠帶跑偏。
5、 上料裝置、下料裝置;上料裝置安裝在收放裝置後邊,由轉向轉導向接上料段,運送的物料從此段裝上運至下料段,下料裝置由下料段一組斜托輥將物料卸下,下料段直接極為,機尾由導軌(Ⅰ、Ⅱ、Ⅲ)和機尾滾筒座組成,導軌一端用螺栓固定在中支座上,並與另一導軌的前端用柱銷膠接,藉以適應底板的不平,機尾滾筒與儲帶裝置中的滾筒結構相同,能互換,其軸線位置可用螺栓調節,以調整膠帶中在機尾的跑偏,機尾滾筒前端設有刮煤板,可使滾筒表面的碎煤或粉煤刮下,並收集泥槽中,用特製的拉泥板取出,機尾加上裝有緩沖托輥組,受料時,可降低塊煤對膠帶的沖擊,有利於提高膠帶壽命
F. 機械課程設計實習小結
單級圓柱直齒減速器
前言
製造業是現代國民經濟和綜合國力的重要支柱,其生產總值一般佔一個國家國內生產總值的20%~55%。在一個國家的企業生產力構成中,製造技術的作用一般佔60%左右。機械式變速箱主要應用了齒輪傳動的降速原理。是現代機械設備中應用最廣泛的一種傳動變速裝置,結構緊湊,傳動性能可靠壽命長且傳動效率高;可以以空間任意角度進行動力傳動且具有恆定的傳動比;能適用各種動力傳動場合,廣泛的應用於機械變速機構中。
本課題是南昌理工學院05級機電一體化工程專業的設計主題,以螺旋輸送機動力和傳動裝置為設計主體.根據學院有關設計要求,經過大學長期理論知識學習以及大量社會實踐,配合機械設計及機械設計基礎課程設計實踐環節而設計。
本設計共分為五部分:第一部分為電動機選擇及傳動系統總的傳動比分配;主要確定電動機類型和結構形式、工作機主動軸功率、電動輸出功率及傳動系統總的傳動比分配。第二部分為傳動裝置的運動和動力參數計算,主要確定各軸轉速、各軸的輸入功率、及各軸轉矩。第三部分為有關錐齒輪的計算,選擇齒輪、材料、精度、等級、確定齒輪齒數、轉矩、載荷系數、輪寬系數及齒根彎曲疲勞強度校核。第四部分為帶輪的設計包括帶輪類型的選擇、帶輪尺寸參數的確定。第五部分為聯軸器類型的選擇及聯軸器尺寸(型號)的確定 。
該變速器主要由齒輪、軸、軸承、箱體等組成。為方便減速器的製造、裝配及使用 ,還在減速器上設置一系列附件,如檢查孔、透氣孔、油標尺或油麵指示器、吊鉤及起蓋螺釘等。在原動機於變速器間採用是機械設備中應用較多的傳動裝置帶傳動,主要有主動輪、從動輪和傳動帶組成。工作時靠帶與帶輪間的摩擦或嚙合實現主、從動輪間運動和動力的傳遞,具有結構簡單、傳動平穩、價格低廉、緩沖吸振及過載打滑以保護其他零件的優點。
設計者以嚴謹務實的認真態度進行了此次設計,但由於知識水平與實際經驗有限。在設計中難免會出現一些錯誤、缺點和疏漏,誠請位評審老師能給於批評和指正。
摘 要
這次畢業設計是由封閉在剛性殼內所有內容的齒輪傳動是一獨立完整的機構。通過這一次設計可以初步掌握一般簡單機械的一套完整的設計及方法,構成減速器的通用零部件。
這次畢業設計主要介紹了減速器的類型作用及構成等,全方位的運用所學過的知識。如:機械制圖,金屬材料工藝學公差等已學過的理論知識。在實際生產中得以分析和解決。減速器的一般類型有:圓柱齒輪減速器、圓錐齒輪減速器、齒輪-蝸桿減速器,軸裝式減速器、組裝式減速器、聯體式減速器。
在這次設計中進一步培養了工程設計的獨立能力,樹立正確的設計思想,掌握常用的機械零件,機械傳動裝置和簡單機械設計的方法
和步驟,要求綜合的考慮使用經濟工藝性等方面的要求。確定合理的設計方案。
關鍵詞:減速器 直齒輪 V帶輪 聯軸器 方案
Abstract
This time graate the design to have the contents a to design concerning the machine that decelerate the complets systeem .
Decelerating the machine is a kind of from close to move in the rigid wheel gear in the hull is an independent complet organization.Pass this a design can then the first step controls general simple a set of complete designs step and methods of the machine.
This time graate the design to introce the type function of the deceleration machine and constitute the etc. primarily, made use of all directionsly learned the knowledge.the metals material craft learns the theories knowledge that business trip etc.already learn, In actual procton can analysis definitely reach agre ement. The general type that decelerate the machine has:The cylinder wheel gear-Cochlea pole deceleraes the machine ,stalk park type decelerates machine, assembles type decelerate machine, couplet type decelerate machine, couplet type deceleratemachine
Further ecated in this time design independent bility that engineering design, set up the right design thought controls the in common use machine spare parts,the machine spread to move the device with the simple machine design of method with step, the consideration that device with the simle machine request of econmic craft etc.make sure the reaaonable design project.
Key words: Bevel gear recer coupling V pulley program
設計—用於帶式運輸機上的單級直齒圓柱減速器,已知條件:運輸帶的工作拉力F=1350 N,運輸帶的速度V=1.6 m/s捲筒直徑D=260 mm,兩班制工作(12小時),連續單向運轉,載荷平移,工作年限10年,每年300工作日,運輸帶速度允許誤差為±5%,捲筒效率0.96
一.傳動方案分析:
如圖所示減速傳動由帶傳動和單級圓柱齒輪傳動組成,帶傳動置於高速級具有緩沖吸振能力和過載保護作用,帶傳動依靠摩擦力工作,有利於減少傳動的結構尺寸,而圓柱齒輪傳動布置在低速級,有利於發揮其過載能力大的優勢
還有
G. 設計已螺旋輸送機的驅動裝置設計說明書
計算內容 計算結果
一, 設計任務書
設計題目:傳送設備的傳動裝置
(一)方案設計要求:
具有過載保護性能(有帶傳動)
含有二級展開式圓柱齒輪減速器
傳送帶鼓輪方向與減速器輸出軸方向平行
(二)工作機原始數據:
傳送帶鼓輪直徑___ mm,傳送帶帶速___m/s
傳送帶主動軸所需扭矩T為___N.m
使用年限___年,___班制
工作載荷(平穩,微振,沖擊)
(三)數據:
鼓輪D 278mm,扭矩T 248N.m
帶速V 0.98m/s,年限 9年
班制 2 ,載荷 微振
二.電機的選擇計算
1. 選擇電機的轉速:
a. 計算傳動滾筒的轉速
nw= 60V/πd=60×0.98/3.14×0.278=67.326 r/min
b.計算工作機功率
pw= nw/9.55×10³=248×67.326/9.55×10³=1.748Kw
2. 工作機的有效功率
a. 傳動裝置的總效率
帶傳動的效率η1= 0.96
彈性聯軸器的效率η2= 0.99
滾筒的轉速
nw=67.326 r/min
工作機功率
pw=1.748Kw
計算內容 計算結果
滾動軸承的效率 η3=0.99
滾筒效率 η4=0.96
齒輪嚙合效率 η5=0.97
總效率 η=η1×η2×η34×η4×η5²=
0.95×0.99×0.994×0.96×0.97²=0.816
c. 所需電動機輸出功率Pr=Pw/η=1.748/0.816=2.142kw
3. 選擇電動機的型號:
查參考文獻[10] 表16-1-28得 表1.1
方案
號 電機
型號 電機
質量
(Kg) 額定
功率
(Kw) 同步
轉速(r/min) 滿載
轉速
(r/min) 總傳
動比
1 Y100L1-4 34 2.2 1500 1420 21.091
2 Y112M-6 45 2.2 1000 940 13.962
根據以上兩種可行同步轉速電機對比可見,方案2傳動比小且質量價格也比較合理,所以選擇Y112M-6型電動機。
三.運動和動力參數的計算
1. 分配傳動比取i帶=2.5
總傳動比 i=13.962
i減=i/i帶=13.962/2.5=5.585
減速器高速級傳動比i1= =2.746
減速器低速級傳動比i2= i減/ i1=2.034
2. 運動和動力參數計算:
總效率
η=0.816
電動機輸出功率
Pr=2.142kw
選用三相非同步電動機Y112M-6
p=2.2 kw
n=940r/min
中心高H=1112mm,外伸軸段D×E=28×60
i=13.962
i12=2.746
i23=2.034
P0=2.142Kw
計算內容 計算結果
0軸(電動機軸):
p0=pr=2.142Kw
n0=940r/min
T0=9.55103P0/n0=9.551032.119/940=21.762N.m
Ⅰ軸(減速器高速軸):
p1=p.η1=2.1420.95=2.035Kw
n1= n0/i01=940/2.5=376
T1=9.55103P1/n1=51.687 N.m
Ⅱ軸(減速器中間軸):
p2=p1η12=p1η5η3=2.0350.970.99
=1.954 Kw
n2= n1/i12=376/2.746=136.926 r/min
T2=9.55103 P2/n2=136.283N.m
Ⅲ軸(減速器低速軸):
p3=p2η23= p2η5η3=1.876 Kw
n3= n2/i23=67.319 r/min
T3=9.55103 P3/n3=266.133 N.m
Ⅳ軸(鼓輪軸):
p4=p3η34=1.839 Kw
n4= n3=67.319 r/min
T4=9.55103 P4/n4=260.884 N.m
四.傳動零件的設計計算
(一)減速器以外的傳動零件
1.普通V帶的設計計算
(1) 工況系數取KA=1.2
確定dd1, dd2:設計功率pc=KAp=1.22.2=2.64Kw n0=940r/min
T0=21.762N.m
p1=2.035Kw
n1=376r/min
T1=51.687N.m
p2=1.954Kw
n2=136.926 r/min
T2=136.283 N.m
p3=1.876Kw
n3=67.319 r/min
T3=266.133N.m
p4=1.839 Kw
n4=67.319r/min
T4=260.884 N.m
小帶輪轉速n1= n0=940 r/min
選取A型V帶 取dd1=118mm
dd2=(n1/n2)dd1=(940/376) 118=295mm
取標准值dd2=315mm
實際傳動i=dd1/ dd2=315/118=2.669
所以n2= n1/i=940/2.669=352.192r/min(誤差為6.3%>5%)
重取 dd1=125mm,
dd2=(n1/n2)dd1=(940/376)125=312.5mm
取標准值dd2=315mm
實際傳動比i= dd1/ dd2=315/125=2.52
n2= n1/i=940/2.52=373.016
(誤差為8% 允許)
所選V帶帶速v=πdd1 n1/(601000)=3.14
125940/(601000)=6.152m/s
在5 ~25m/s之間 所選V帶符合
(2)確定中心距
①初定a0 :0.7(dd1 +dd2)≤a0≤ 2(dd1 +dd2)
308≤a0≤880 取a0=550mm
②Lc=2 a0+(π/2)( dd1 +dd2)+( dd2 -dd1)²/4 a0
=2550+(3.14/2) (315+125)+(315-125)²/4550=1807.559
③取標准值:Ld=1800mm
④中心距:a=a0+ (LdLc)/2=550+(1800-1807.559)/2
計算內容 計算結果
=546.221mm
取a=547mm,a的調整范圍為:
amax=a+0.03 Ld=601mm
amin=a-0.015Ld=520mm
(2)驗算包角:
α≈180°-(dd2-dd1) 60° /a=180°-(315-125) 60°/547=159°>120°,符合要求。
(3)確定根數:z≥pc/p0』
p0』=Kα(p0+Δp1+Δp2)
Kα=1.25(1- )=0.948
對於A型帶:c1=3.7810-4,c2=9.8110-3,
c3=9.610-15,c4=4.6510-5
L0=1700mm
ω1= = =98.437rad/s
p0= dd1ω1[c1- - c3 (dd1ω1)²- c4lg(dd1ω1)]
=12598.437[3.7810-4- -9.6
10-15 (12598.437)²- 4.6510-5
lg(12598.437)]=1.327
Δp1= c4dd1ω1 =0.148
Δp2=c4dd1ω1 =0.0142
p0』=0.948 (1.327+0.149+0.0142)=1.413 Kw
確定根數:z≥ ≤Zmax
z= = 取z=2
(4)確定初拉力F0
F0=500 =500×
=175.633KN
(5)帶對軸的壓力Q
Q=2 F0zsin =2 =690.768KN
(二)減速器以內的零件的設計計算
1.齒輪傳動設計
(1)高速級用斜齒輪
① 選擇材料
小齒輪選用40Cr鋼,調質處理,齒面硬度250~280HBS大齒輪選用ZG340~ 640,正火處理,齒面硬度170 ~ 220HBS
應力循環次數N:
N1=60n1jLh=60×376×(9×300×16)=9.74×108
N2= N1/i1=9.74×108 ÷2.746=3.549×108
查文獻[2]圖5-17得:ZN1=1.02 Z N2=1.11(允許有一點蝕)
由文獻[2]式(5-29)得:ZX1 = ZX2=1.0,取SHmin=1.0,Zw=1.0,ZLVR=0.92
按齒面硬度250HBS和170HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=450 Mpa
許用接觸應力[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=647.496 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=459.540 Mpa
因[σH]2〈[σH]1,所以計算中取[σH]= [σH]2 =459.540 Mpa
②按接觸強度確定中心距
初定螺旋角β=12° Zβ= =0.989
初取KtZεt2=1.12 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i1 =2.746,取Φa=0.4
端面壓力角αt=arctan(tanαn/cosβ)=arctan(tan20°/cos12°)=20.4103°
基圓螺旋角βb= arctan(tanβ×cosαt)= arctan(tan12°×cos20.4103°)=11.2665°
ZH= = =2.450
計算中心距a:
計算內容 計算結果
a≥
=
=111.178mm
取中心距 a=112mm
估算模數mn=(0.007~0.02)a=(0.007~0.02)×=
0.784~2.24
取標准模數mn=2
小齒輪齒數
實際傳動比: 傳動比誤差 在允許范圍之內
修正螺旋角β=
10°50′39〃
與初選β=12°相近,Zβ,ZH可不修正。
齒輪分度圓直徑
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
③驗算齒面接觸疲勞強度
按電機驅動,載荷平穩,由文獻[2]表5-3 取 KA=1.25
由文獻[2]圖5-4(b),按8級精度和
取KV=1.023
齒寬 ,取標准b=45mm
由文獻[2]圖5-7(a)按b/d1=45/61.091=0.737,取Kβ=1.051
由文獻[2]表5-4,Kα=1.2
載荷系數K= KAKVKβKα=
計算重合度:
齒頂圓直徑
端面壓力角:
齒輪基圓直徑: mm
mm
端面齒頂壓力角:
高速級斜齒輪主要參數:
mn=2
z1=30, z2=80
β=
10°50′39〃
mt= mn/cosβ=2.036mm
d1=61.091mm
d2=162.909mm
da1=65.091mm
da2=166.909mm
df1= d1-2(ha*+ c*) mn=56.091mm
df2= d2-2(ha*+ c*) mn=157.909mm
中心距a=1/2(d1+d2)=112mm
齒寬b2=b=
45mm
b1= b2+(5~10)=50mm
計算內容 計算結果
齒面接觸應力
安全
④驗算齒根彎曲疲勞強度
由文獻[2]圖5-18(b)得:
由文獻[2]圖5-19得:
由文獻[2]式5-23:
取
計算許用彎曲應力:
計算內容
計算結果
由文獻[2]圖5-14得:
由文獻[2]圖5-15得:
由文獻[2]式5-47得計算
由式5-48: 計算齒根彎曲應力:
均安全。
⑵低速級直齒輪的設計
①選擇材料
小齒輪材料選用40Cr鋼,齒面硬度250—280HBS,大齒輪材料選用ZG310-570,正火處理,齒面硬度162—185HBS
計算應力循環次數N:同高速級斜齒輪的計算 N1=60 n1jL h=1.748×108
N2= N1/i1=0.858×108
計算內容
計算結果
查文獻[2]圖5-17得:ZN1=1.12 Z N2=1.14
按齒面硬度250HBS和162HBS由文獻[2]圖(5-16(b))得:σHlim1=690Mpa, σHlim2=440 Mpa
由文獻[2]式5-28計算許用接觸應力:
[σH]1 =(σHlim1/SHmin)ZN1 ZX1 Zw ZLVR=710.976 Mpa,[σH]2=(σHlim2/SHmin)ZN2 ZX2 Zw ZLVR
=461.472 Mpa
因[σH]2〈[σH]1,所以取[σH]= [σH]2 =461.472 Mpa
②按接觸強度確定中心距
小輪轉距T1=136.283N.m=136283N.m
初取KtZεt2=1.1 由文獻[2]表5-5得ZE=188.9 ,減速傳動u=i23=2.034,取Φa=0.35
計算中心距a: a≥
=145.294mm
取中心距 a=150mm估算模數m=(0.007~0.02)a=(0.007~0.02)×150=
1.05~3
取標准模數m=2
小齒輪齒數
齒輪分度圓直徑
齒輪齒頂圓直徑:
齒輪基圓直徑: mm
mm
圓周速度
由文獻[2]表5-6 取齒輪精度為8級
按電機驅動,載荷平穩,而工作機載荷微振,由文獻[2]表5-3 取 KA=1.25
按8級精度和 取KV=1.02
齒寬 b= ,取標准b=53mm
由文獻[2]圖5-7(a)按b/d1=53/100=0.53,取Kβ=1.03
由文獻[2]表5-4,Kα=1.1
載荷系數K= KAKVKβKα=
計算端面重合度:
安全。
③校核齒根彎曲疲勞強度
按z1=50, z2=100,由文獻[2]圖5-14得YFa1=2.36 ,YFa2=2.22
由文獻[2]圖5-15得YSa1= 1.71,YSa2=1.80。
Yε=0.25+0.75/ εα=0.25+0.75/1.804=0.666
由文獻[2]圖5-18(b),σFlim1=290Mp, σFlim2=152Mp
由文獻[2]圖5-19,YN1= YN2=1.0,因為m=4〈5mm,YX1= YX2=1.0。
取YST=2.0,SFmin=1.4。
計算許用彎曲應力:
[σF1]= σFlim1YST YN1 YX1/SFmin=414Mp
[σF2]= σFlim2YST YN2 YX2/SFmin=217Mp
計算齒根彎曲應力:
σF1=2KT1YFa1YSa1Yε/bd1m=2×1.445×136283×2.36×1.71×0.666/53×100×2=99.866Mp〈[σF1]
σF2=σF1 YFa2YSa2/ YFa1YSa1=98.866Mp〈[σF2]
均安全。
五.軸的結構設計和軸承的選擇
a1=112mm, a2=150mm,
bh2=45mm, bh1= bh2+(5~10)=50mm
bl2=53mm, bl1= bl2+(5~10)=60mm
(h----高速軸,l----低速軸)
考慮相鄰齒輪沿軸向不發生干涉,計入尺寸s=10mm,考慮齒輪與箱體內壁沿軸向不發生干涉,計入尺寸k=10mm,為保證滾動軸承放入箱體軸承座孔內,計入尺寸c=5mm,初取軸承寬度分別為n1=20mm,n2=22,n3=22mm,3根軸的支撐跨距分別為:
計算內容
低速級直齒輪主要參數:
m=2
z1=50, z1=50 z2=100
u=2.034
d1=100mm
d2=200mm
da1=104mm
da2=204mm
df1=
d1-2(ha*+ c*) m=95mm
df2=
d2-2(ha*+ c*) m=195mm
a=1/2(d2+ d1)=150mm
齒寬b2 =b=53mm
b1=b2+
(5~10)=60mm
計算結果
l1=2(c+k)+bh1+s+bl1+n1=2×(5+10)+50+10+60+20=170mm
l2=2(c+k)+bh1+s+bl1+n2=2×(5+10)+50+10+60+20=
172mm
l3=2(c+k)+bh1+s+bl1+n3=2×(5+10)+50+10+60+20=172mm
(2)高速軸的設計:
①選擇軸的材料及熱處理
由於高速軸小齒輪直徑較小,所以採用齒輪軸,選用40r鋼,
②軸的受力分析:
如圖1軸的受力分析:
lAB=l1=170mm,
lAC=n1/2+c+k+bh1/2=20/2+5+10+50/2=50mm
lBC= lAB- lAC=170-50=120mm
(a) 計算齒輪嚙合力:
Ft1=2000T1/d1=2000×51.687/61.091=162.131N
Fr1=Ft1tanαn/cosβ1692.13×tan20°/cos10.8441°=627.083N
Fa1= Ft1tanβ×tan10.8441°=324.141N
(b) 求水平面內支承反力,軸在水平面內和垂直面的受力簡圖如下圖:
RAx= Ft1 lBC/ lAB=1692.131×120/170=1194.445N
RBx= Ft1-RAx=1692.131-1194.445=497.686N
RAy=(Fr1lBC+Fa1d1/2)/lAB=(627.083×120+324.141×
61.091/2)/170=500.888N
RBy= Fr1-RAy=627.083-500.888=126.195N
(c) 支承反力
彎矩MA= MB=0,MC1= RA lAC=64760.85N.mm
MC2= RB lBC=61612.32N.mm
轉矩T= Ft1 d1/2=51686.987N.mm
計算內容
計算結果
d≥ ③軸的結構設計
按經驗公式,減速器輸入端軸徑A0 由文獻[2]表8-2,取A0=100
則d≥100 ,由於外伸端軸開一鍵槽,
d=17.557(1+5%)=18.435取d=20mm,由於da1<2d,用齒輪軸,根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
高速軸上軸承選擇:選擇軸承30205 GB/T297-94。
(2)中間軸(2軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
lAB=l2=172mm,
lAC=n2/2+c+k+bh1/2=22/2+5+10+50/2=51mm
lBC= lAB- lAC=172-51=121mm
lBD=n2/2+c+k+bl1/2=22/2+5+10+60/2=56mm
(a) 計算齒輪嚙合力:
Ft2=2000T2/d2=2000×136.283/162.909=1673.118N
Fr2=Ft2tanαn/cosβ=1673.118×tan20°/cos10.8441°=620.037N
Fa2=Ft2tanβ=1673.118×tan10.8441°=320.499N
Ft3=2000T2/d3=2000×136.283/100=2725.660N
Fr3=Ft3tanα=2725.660×tan20°=992.059N
(b)求水平面內和垂直面內的支反力
RAx=(Ft2lBC+Ft3lBD )/lAB=(1673.118×121+2725.660×56)/172=2064.443N
RBx=Ft2+Ft3-RAX=1673.118+2725.660-2064.443=2334.35N
RAY=(Fa2d2/2-Fr2lBC+Fr3lBD)/lAB=(320.449×162.909/2-620.037×121+992.059×56)=190.336N
RBY=Fr3-Fr2-RAY=992.059-620.037-190.336=
計算內容
計算結果
181.656N
RA=2073.191N, RB=2341.392N
③軸的結構設計
按經驗公式, d≥A0 由文獻[2]表8-2,取A0=110
則d≥110 ,取開鍵槽處d=35mm
根據軸上零件的布置、安裝和定位的需要,初定軸段直徑和長度,其中軸頸、軸的結構尺寸應與軸上相關零件的結構尺寸聯系起來考慮。
初定軸的結構尺寸如下圖:
中間軸上軸承選擇:選擇軸承6206 GB/T276-94。
(3)低速軸(3軸)的設計:
①選擇軸的材料及熱處理
選用45號綱調質處理。
②軸的受力分析:
如下圖軸的受力分析:
計算內容
計算結果
初估軸徑:
d≥A0 =110
聯接聯軸器的軸端有一鍵槽,dmin=33.5(1+3%)=34.351mm,取標准d=35mm
軸上危險截面軸徑計算:d=(0.3~0.4)a=(0.3~0.4)×150=45~60mm 最小值dmin =45×(1+3%)=46.35mm,取標准
計算內容 計算結果
50mm
初選6207GB/T276-94軸承,其內徑,外徑,寬度為40×80×18
軸上各軸徑及長度初步安排如下圖:
③低速級軸及軸上軸承的強度校核
a、 低速級軸的強度校核
①按彎扭合成強度校核:
轉矩按脈動循環變化,α≈0.6
Mca1= Mc=106962.324N.mm
Mca2=
Mca3=αT=159679.800N.mm
計算彎矩圖如下圖:
計算內容
計算結果
Ⅱ剖面直徑最小,而計算彎矩較大,Ⅷ剖面計算彎矩最大,所以校核Ⅱ,Ⅷ剖面。
Ⅱ剖面:σca= Mca3/W=159679.8/0.1×35³=37.243Mp
Ⅷ剖面:σca= Mca2/W=192194.114/0.1×50³=15.376Mp
對於45號綱,σB=637Mp,查文獻[2]表8-3得
[σb] -1=59
Mp,σca<[σb] -1,安全。
②精確校核低速軸的疲勞強度
a、 判斷危險截面:
各個剖面均有可能有危險剖面。其中,Ⅱ,Ⅲ,Ⅳ剖面為過度圓角引起應力集中,只算Ⅱ剖面即可。Ⅰ剖面與Ⅱ剖面比較,只是應力集中影響不同,可取應力集中系數較大者進行驗算。Ⅸ--Ⅹ面比較,它們直徑均相同,Ⅸ與Ⅹ剖面計算彎矩值小,Ⅷ剖面雖然計算彎矩值最大,但應力集中影響較小(過盈配合及鍵槽引起的應力集中均在兩端),所以Ⅵ與Ⅶ剖面危險,Ⅵ與Ⅶ剖面的距離較接近(可取5mm左右),承載情況也很接近,可取應力集中系數較大值進行驗算。
計算內容
計算結果
b.較核Ⅰ、Ⅱ剖面疲勞強度:Ⅰ剖面因鍵槽引
起的應力集中系數由文獻[2]附表1-1查得:kσ=1.76, kτ=1.54
Ⅱ剖面配合按H7/K6,引起的應力集中系數由文獻[2]附表1-1得:kσ=1.97, kτ=1.51。Ⅱ剖面因過渡圓角引起的應力集中系數查文獻[2]附表1-2(用插入法): (過渡圓角半徑根據D-d由文獻[1]表4.2-13查取) kτ=1.419,故應按過渡圓角引起的應力集中系數驗算Ⅱ剖面
Ⅱ剖面產生的扭應力、應力幅、平均應力為:
τmax =T/ WT=266.133/0.2×35³=31.036Mp,
τa=τm =τmax /2=15.52Mp
絕對尺寸影響系數查文獻[2]附表1-4得:εσ =0.88,ετ =0.81,表面質量系數查文獻[2]附表1-5:βσ =0.92,βτ =0.92
Ⅱ剖面安全系數為:
S=Sτ=
取[S]=1.5~1.8,S>[S] Ⅱ剖面安全。
b、 校核Ⅵ,Ⅶ剖面:
Ⅵ剖面按H7/K6配合,引起的應力集中系數查附表1-1,kσ=1.97, kτ=1.51
Ⅵ剖面因過渡圓角引起的應力集中系數查附表1-2, ,kσ=1.612,kτ=1.43
Ⅶ剖面因鍵槽引起的應力集中系數查文獻[2]附表1-1得:kσ=1.82, kτ=1.62。故應按過渡圓角引起
計算內容
計算結果
的應力集中系數來驗算Ⅵ剖面
MVⅠ=113 RA=922.089×113=104196.057N.mm, TVⅠ=266133N.mm
Ⅵ剖面產生的正應力及其應力幅、平均應力:
σmax= MVⅠ/W=104196.057/0.1×50³=8.336Mp
σa=σmax=8.366 σm=0
Ⅵ剖面產生的扭應力及其應力幅,平均應力為:
τmax =TⅥ/ WT=266133/0.2×50³
絕對尺寸影響系數由文獻[2]附表1-4得:εσ =0.84,ετ
=0.78
表面質量系數由文獻[2]附表1-5查得:βσ =0.92,βτ =0.92
Ⅵ剖面的安全系數:
Sσ =
Sτ=
S=
取[S]= 1.5~1.8,S>[S] Ⅵ剖面安全。
六.各個軸上鍵的選擇及校核
1.高速軸上鍵的選擇:
初選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp,σp= 滿足要求;
計算內容
高速軸上
選A型6×32 GB1095-79:b=6mm,L=32mm,l=26mm
中間軸
選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm,
計算結果
2.中間軸鍵的選擇:
A處:初選A型10×32 GB1095-79:b=10mm,h=8mm,L=32mm,l=22mm, [σp]=110Mp
σp= 滿足要求;
B處:初選A型10×45 GB1095-79:
b=10mm,h=8mm,L=32mm,l=22mm,[σp]=110Mp
σp= 滿足要求.
3. 低速軸上鍵的選擇:
a.聯軸器處選A型普通平鍵
初選A型10×50 GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm,查文獻[2]表2-10,許用擠壓應力[σp]=110Mp
σp= 滿足要求.
b. 齒輪處初選A型14×40 GB1096-79:b=14mm,h=9mm,L=40mm,l=26mm, [σp]=110Mp
σp= 滿足要求.
七.聯軸器的選擇
根據設計題目的要求,減速器只有低速軸上放置一聯軸器。
查表取工作情況系數K=1.25~1.5 取K=1.5
計算轉矩 Tc=KT=1.5×266.133=399.200Mp
選用HL3型聯軸器:J40×84GB5014-85,[T]=630N.m, Tc<[T],n<[n],所選聯軸器合適。
低速軸
聯軸器處選A型10×50GB1096-79:b=10mm,h=8mm,L=50mm,l=40mm
低速軸
齒輪處初選A型14×40GB1096-79:
b=14mm,h=9mm,L=40mm,l=26mm
選用HL3型聯軸器:J40×84GB5014-85
參考資料:機械課程設計,理論力學
H. 機械設計的課程設計 帶式輸送機傳動裝置 已知運輸帶的有效拉力F=4000N,線速度1.5米/S 捲筒直徑D=300MM
這個計算很簡單的,而且老師基本上也不會看計算的這部分、
麻煩的在於 後面的 畫圖!而且老師最後主要看的也是這個
說實話 1個星期 自己做也得加班加點才行 ,找人代做恐怕難了點,
這個課程設計每年的題目一般是不變的,你可以找高年級的學長,他們或許有當年和你題目一樣的哦
時間不多了,抓緊吧。
I. 機械設計課程設計的圖書目錄
第一部分 機械設計課程設計基礎知識
第1章 概述 (1)
1.1 課程設計的目的、內容和任務 (1)
1.2 課程設計的一般步驟 (2)
1.3 課程設計中應正確對待的幾個問題 (3)
第2章 機械傳動系統的總體設計 (4)
2.1 擬定傳動系統方案 (4)
2.2 原動機類型與參數的選擇 (6)
2.2.1 選擇電動機的類型和結構形式 (7)
2.2.2 選擇電動機的容量 (7)
2.2.3 確定電動機的轉速 (8)
2.3 機械傳動系統的總傳動比及各級傳動比的分配 (8)
2.3.1 傳動比分配的一般原則 (8)
2.3.2 傳動比分配的參考數據 (9)
2.4 機械傳動系統運動和動力參數的計算 (10)
2.5 機械傳動系統的總體設計示例 (11)
第3章 減速器的構造、潤滑及密封 (15)
3.1 減速器的類型、特點及應用 (15)
3.2 減速器的結構 (17)
減速器的箱體結構 (17)
3.3 減速器的潤滑 (20)
3.3.1 齒輪和蝸桿傳動的潤滑 (20)
3.3.2 滾動軸承的潤滑 (23)
3.4 減速器的密封 (25)
3.4.1 軸端的密封 (25)
3.4.2 軸承室內側的密封 (26)
3.4.3 其他處的密封 (27)
3.5 減速器的附件 (27)
第4章 傳動零件設計計算 (29)
4.1 外傳動零件設計 (29)
4.2 內傳動零件設計計算 (31)
第5章 減速器裝配草圖的設計 (38)
5.1 減速器裝配工作圖設計概述 (38)
5.2 初繪減速器裝配草圖 (39)
5.3 軸、軸承的校核計算 (44)
5.4 完成減速器裝配草圖設計 (45)
第6章 減速器零件工作圖設計 (59)
6.1 零件工作圖的基本要求 (59)
6.2 軸零件工作圖設計 (60)
6.3 齒輪類零件工作圖設計 (61)
6.4 箱體零件工作圖設計 (63)
6.5 減速器附件設計 (68)
第7章 減速器裝配工作圖設計 (73)
7.1 對減速器裝配工作圖視圖的要求 (73)
7.2 減速器裝配圖內容 (73)
第8章 設計計算說明書編寫及答辯 (78)
8.1 設計計算說明書的要求 (78)
8.2 設計計算說明書的內容 (78)
8.3 設計計算說明書的書寫格式 (79)
8.4 課程設計答辯 (81)
8.4.1 課程設計總結 (81)
8.4.2 課程設計答辯目的、准備工作與問題題目 (82)
第9章 設計題目 (86)
9.1 設計帶式輸送機的動力和傳動裝置部分 (86)
9.2 設計螺旋輸送機的動力和傳動裝置部分 (88)
9.3 設計卷揚機的動力和傳動裝置部分 (90)
9.4 設計NGW行星齒輪減速器 (91)
第二部分 機械設計課程設計常用標准和規范
第10章 常用數據和一般標准 (93)
10.1 常用數據 (93)
10.1.1 常用材料的密度(表10-1) (93)
10.1.2 常用材料的彈性模量及泊松比(表10-2) (94)
10.1.3 金屬材料熔點、熱導率及比熱容(表10-3) (94)
10.1.4 常用材料的線膨脹系數(表10-4) (94)
10.1.5 常用材料極限強度的近似關系(表10-5) (95)
10.1.6 硬度值對照表(表10-6) (95)
10.1.7 常用標准代號(表10-7) (96)
10.1.8 常用法定計量單位及換算(表10-8) (96)
10.1.9 常用材料的摩擦系數(表10-9,表10-10) (97)
10.1.10 機械傳動和軸承的效率概略值和傳動比范圍(表10-11,表10-12) (98)
10.1.11 希臘字母(表10-13) (99)
10.2 一般標准 (100)
10.2.1 圖樣比例、幅面及格式(表10-14,表10-15) (100)
10.2.2 裝配圖中零部件序號及編排方法 (101)
10.2.3 優先數系和標准尺寸(表10-16) (102)
10.2.4 中心孔(表10-17,表10-18) (103)
10.2.5 軸肩與軸環尺寸(表10-19) (104)
10.2.6 零件倒圓與倒角(表10-20) (105)
10.2.7 砂輪越程槽(表10-21) (105)
10.2.8 退刀槽、齒輪加工退刀槽(表10-22,表10-23,表10-24) (106)
10.2.9 刨削、插削越程槽(表10-25) (107)
10.2.10 齒輪滾刀外徑尺寸(表10-26) (108)
10.2.11 錐度與錐角系列(表10-27) (108)
10.2.12 機器軸高和軸伸(表10-28~表10-31) (109)
10.2.13 鑄件最小壁厚和最小鑄孔尺寸(表10-33,表10-34,表10-35) (113)
10.2.14 鑄造過度斜度與鑄造斜度(表10-36,表10-37) (115)
10.2.15 鑄造內圓角(表10-38) (115)
10.2.16 鑄造外圓角(表10-39) (116)
10.2.17 焊接符號及應用示例(表10-40,表10-41) (117)
第11章 機械工程材料 (119)
11.1 黑色金屬材料 (119)
11.1.1 灰鑄鐵(表11-1) (119)
11.1.2 球墨鑄鐵(表11-2) (120)
11.1.3 鑄鋼(表11-3) (121)
11.1.4 普通碳素結構(表11-4) (122)
11.1.5 優質碳素結構鋼(表11-5) (122)
11.1.6 合金結構鋼(表11-6) (125)
11.2 有色金屬材料 (127)
11.2.1 鑄造銅合金(表11-7) (127)
11.2.2 鑄造鋁合金(表11-8) (129)
11.2.3 鑄造軸承合金(表11-9) (131)
11.3 型鋼與型材 (132)
11.3.1 冷軋鋼板和鋼帶 (132)
11.3.2 熱軋鋼板 (134)
11.3.3 熱軋圓鋼(表11-25) (138)
11.3.4 冷拉圓鋼、方鋼、六角鋼(表11-26) (140)
11.3.5 熱軋等邊角鋼(表11-27) (141)
11.3.6 熱軋不等邊角鋼(表11-28) (144)
11.3.7 熱軋槽鋼(表11-29) (148)
11.3.8 熱軋L形鋼(表11-30) (149)
11.3.9 熱軋工字鋼(表11-31) (150)
第12章 電動機 (152)
12.1 Y系列三相非同步電動機 (152)
12.2 YZR、YZ系列冶金及起重用三相非同步電動機 (165)
第13章 連接件和緊固件 (170)
13.1 螺紋 (170)
13.2 螺栓 (173)
13.3 螺柱 (177)
13.4 螺釘 (178)
13.5 螺母 (183)
13.6 墊圈 (185)
13.7 螺紋零件的結構要素 (187)
13.8 擋圈 (190)
13.9 鍵連接 (194)
13.10 銷連接 (197)
第14章 聯軸器與離合器 (199)
14.1 聯軸器 (199)
14.1.1 常用聯軸器的類型選擇 (199)
14.1.2 常用聯軸器 (200)
14.2 離合器 (210)
14.2.1 機械離合器的類型選擇(表14-10) (210)
14.2.2 簡易傳動矩形牙嵌式離合器(表14-11) (211)
第15章 滾動軸承 (212)
15.1 常用滾動軸承 (212)
15.2 滾動軸承的配合和游隙 (224)
15.2.1 滾動軸承與軸和外殼的配合 (224)
15.2.2 滾動軸承的游隙要求 (228)
第16章 公差配合、幾何公差、表面粗糙度 (231)
16.1 極限與公差、配合 (231)
16.1.1 術語和定義 (231)
16.1.2 標准公差等級 (232)
16.1.3 公差帶的選擇 (234)
16.1.4 配合的選擇 (235)
16.2 幾何公差 (247)
16.2.1 術語和定義 (247)
16.2.2 幾何公差的類別和符(代)號 (248)
16.2.3 幾何公差的注出公差值及應用舉例 (249)
16.3 表面粗糙度 (253)
16.3.1 評定表面粗糙度的參數及其數值系列 (253)
16.3.2 表面粗糙度的符號及標注方法 (253)
16.3.3 不同加工方法可達到的表面粗糙度(表16-19) (255)
第17章 齒輪、蝸桿傳動精度 (258)
17.1 漸開線圓柱齒輪精度 (258)
17.1.1 定義與代號 (258)
17.1.2 等級精度及其選擇 (259)
17.1.3 極限偏差(表17-6) (260)
17.2 圓錐齒輪精度 (264)
17.2.1 錐齒輪、齒輪副誤差及側隙的定義和代號 (264)
17.2.2 精度等級 (266)
17.2.3 公差組與檢驗項目 (266)
17.2.4 齒輪副側隙 (271)
17.2.5 圖樣標注 (274)
17.2.6 錐齒輪的齒坯公差 (275)
17.3 圓柱蝸桿、蝸輪的精度 (276)
17.3.1 蝸桿、蝸輪、蝸桿副術語定義和代號 (276)
17.3.2 精度等級和公差組 (278)
17.3.3 蝸桿、蝸輪及傳動的公差 (279)
17.3.4 蝸桿傳動的側隙 (282)
17.3.5 齒坯公差和蝸桿、蝸輪的表面粗糙度 (284)
17.3.6 圖樣標注 (285)
第18章 潤滑與密封 (287)
18.1 潤滑劑 (287)
18.2 潤滑裝置 (288)
18.2.1 間歇式潤滑常用的潤滑裝置 (288)
18.2.2 油標和油標尺 (290)
18.3 密封裝置 (292)
第三部分 減速器參考圖例
第19章 減速器裝配圖 (297)
第20章 減速器零件圖 (300)
參考文獻 (312)