導航:首頁 > 裝置知識 > 啟動機傳動裝置的總體設計

啟動機傳動裝置的總體設計

發布時間:2023-06-14 03:59:30

機械設計任務書

這個是我好不容易才找到的,一個東東啊,你可以自己看看啊,就差不多能自己理解了。。。給我你的郵箱發給你啊!我的是[email protected]

目 錄
設計任務書…………………………………………………2
第一部分 傳動裝置總體設計……………………………4
第二部分 V帶設計………………………………………6
第三部分 各齒輪的設計計算……………………………9
第四部分 軸的設計………………………………………13
第五部分 校核……………………………………………19
第六部分 主要尺寸及數據………………………………21

設 計 任 務 書

一、 課程設計題目:
設計帶式運輸機傳動裝置(簡圖如下)

原始數據:
數據編號 3 5 7 10
運輸機工作轉矩T/(N.m) 690 630 760 620
運輸機帶速V/(m/s) 0.8 0.9 0.75 0.9
捲筒直徑D/mm 320 380 320 360

工作條件:
連續單向運轉,工作時有輕微振動,使用期限為10年,小批量生產,單班制工作(8小時/天)。運輸速度允許誤差為 。
二、 課程設計內容
1)傳動裝置的總體設計。
2)傳動件及支承的設計計算。
3)減速器裝配圖及零件工作圖。
4)設計計算說明書編寫。

每個學生應完成:
1) 部件裝配圖一張(A1)。
2) 零件工作圖兩張(A3)
3) 設計說明書一份(6000~8000字)。

本組設計數據:
第三組數據:運輸機工作軸轉矩T/(N.m) 690 。
運輸機帶速V/(m/s) 0.8 。
捲筒直徑D/mm 320 。

已給方案:外傳動機構為V帶傳動。
減速器為兩級展開式圓柱齒輪減速器。

第一部分 傳動裝置總體設計

一、 傳動方案(已給定)
1) 外傳動為V帶傳動。
2) 減速器為兩級展開式圓柱齒輪減速器。
3) 方案簡圖如下:
二、該方案的優缺點:
該工作機有輕微振動,由於V帶有緩沖吸振能力,採用V帶傳動能減小振動帶來的影響,並且該工作機屬於小功率、載荷變化不大,可以採用V帶這種簡單的結構,並且價格便宜,標准化程度高,大幅降低了成本。減速器部分兩級展開式圓柱齒輪減速,這是兩級減速器中應用最廣泛的一種。齒輪相對於軸承不對稱,要求軸具有較大的剛度。高速級齒輪常布置在遠離扭矩輸入端的一邊,以減小因彎曲變形所引起的載荷沿齒寬分布不均現象。原動機部分為Y系列三相交流 非同步電動機。
總體來講,該傳動方案滿足工作機的性能要求,適應工作條件、工作可靠,此外還結構簡單、尺寸緊湊、成本低傳動效率高。
計 算 與 說 明 結果
三、原動機選擇(Y系列三相交流非同步電動機)
工作機所需功率: =0.96 (見課設P9)

傳動裝置總效率: (見課設式2-4)

(見課設表12-8)

電動機的輸出功率: (見課設式2-1)

選擇電動機為Y132M1-6 m型 (見課設表19-1)
技術數據:額定功率( ) 4 滿載轉矩( ) 960
額定轉矩( ) 2.0 最大轉矩( ) 2.0
Y132M1-6電動機的外型尺寸(mm): (見課設表19-3)
A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235
四、傳動裝置總體傳動比的確定及各級傳動比的分配
1、 總傳動比: (見課設式2-6)

2、 各級傳動比分配: (見課設式2-7)

初定

第二部分 V帶設計

外傳動帶選為 普通V帶傳動
1、 確定計算功率:
1)、由表5-9查得工作情況系數
2)、由式5-23(機設)
2、選擇V帶型號
查圖5-12a(機設)選A型V帶。
3.確定帶輪直徑
(1)、參考圖5-12a(機設)及表5-3(機設)選取小帶輪直徑
(電機中心高符合要求)
(2)、驗算帶速 由式5-7(機設)

(3)、從動帶輪直徑

查表5-4(機設) 取
(4)、傳動比 i

(5)、從動輪轉速

4.確定中心距 和帶長
(1)、按式(5-23機設)初選中心距


(2)、按式(5-24機設)求帶的計算基礎准長度L0

查圖.5-7(機設)取帶的基準長度Ld=2000mm
(3)、按式(5-25機設)計算中心距:a

(4)、按式(5-26機設)確定中心距調整范圍

5.驗算小帶輪包角α1
由式(5-11機設)

6.確定V帶根數Z
(1)、由表(5-7機設)查得dd1=112 n1=800r/min及n1=980r/min時,單根V帶的額定功率分呷為1.00Kw和1.18Kw,用線性插值法求n1=980r/min時的額定功率P0值。

(2)、由表(5-10機設)查得△P0=0.11Kw
(3)、由表查得(5-12機設)查得包角系數
(4)、由表(5-13機設)查得長度系數KL=1.03
(5)、計算V帶根數Z,由式(5-28機設)

取Z=5根
7.計算單根V帶初拉力F0,由式(5-29)機設。

q由表5-5機設查得
8.計算對軸的壓力FQ,由式(5-30機設)得

9.確定帶輪的結構尺寸,給制帶輪工作圖
小帶輪基準直徑dd1=112mm採用實心式結構。大帶輪基準直徑dd2=280mm,採用孔板式結構,基準圖見零件工作圖。

第三部分 各齒輪的設計計算

一、高速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為占蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34 則Z2=Z1i=34×2.62=89
2.設計計算。
(1)設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)

T1=9.55×106×P/n=9.55×106×5.42/384=134794 N•mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極限應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n, at=60×(8×360×10)=6.64×109
N2= N1/u=6.64×109/2.62=2.53×109
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力

將有關值代入式(7-9)得

則V1=(πd1tn1/60×1000)=1.3m/s
( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.42 ,修正
M=d1/Z1=1.96mm
由表7-6取標准模數:m=2mm
(3) 計算幾何尺寸
d1=mz1=2×34=68mm
d2=mz2=2×89=178mm
a=m(z1+z2)/2=123mm
b=φddt=1×68=68mm
取b2=65mm b1=b2+10=75
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.

二、低速級減速齒輪設計(直齒圓柱齒輪)
1.齒輪的材料,精度和齒數選擇,因傳遞功率不大,轉速不高,材料按表7-1選取,都採用45號鋼,鍛選項毛坯,大齒輪、正火處理,小齒輪調質,均用軟齒面。齒輪精度用8級,輪齒表面精糙度為Ra1.6,軟齒面閉式傳動,失效形式為點蝕,考慮傳動平穩性,齒數宜取多些,取Z1=34
則Z2=Z1i=34×3.7=104
2.設計計算。
(1) 設計准則,按齒面接觸疲勞強度計算,再按齒根彎曲疲勞強度校核。
(2)按齒面接觸疲勞強度設計,由式(7-9)

T1=9.55×106×P/n=9.55×106×5.20/148=335540 N•mm
由圖(7-6)選取材料的接觸疲勞,極限應力為
бHILim=580 бHILin=560
由圖 7-7選取材料彎曲疲勞極陰應力
бHILim=230 бHILin=210
應力循環次數N由式(7-3)計算
N1=60n at=60×148×(8×360×10)=2.55×109
N2= N1/u=2.55×109/3.07=8.33×108
由圖7-8查得接觸疲勞壽命系數;ZN1=1.1 ZN2=1.04
由圖7-9查得彎曲 ;YN1=1 YN2=1
由圖7-2查得接觸疲勞安全系數:SFmin=1.4 又YST=2.0 試選Kt=1.3
由式(7-1)(7-2)求許用接觸應力和許用彎曲應力

將有關值代入式(7-9)得

則V1=(πd1tn1/60×1000)=0.55m/s
( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s
查圖7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.則KH=KAKVKβKα=1.377 ,修正
M=d1/Z1=2.11mm
由表7-6取標准模數:m=2.5mm
(3) 計算幾何尺寸
d1=mz1=2.5×34=85mm
d2=mz2=2.5×104=260mm
a=m(z1+z2)/2=172.5mm
b=φddt=1×85=85mm
取b2=85mm b1=b2+10=95
3.校核齒根彎曲疲勞強度
由圖7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7
由式(7-12)校核大小齒輪的彎曲強度.

總結:高速級 z1=34 z2=89 m=2
低速級 z1=34 z2=104 m=2.5

第四部分 軸的設計
高速軸的設計
1.選擇軸的材料及熱處理
由於減速器傳遞的功率不大,對其重量和尺寸也無特殊要求故選擇常用材料45鋼,調質處理.
2.初估軸徑
按扭矩初估軸的直徑,查表10-2,得c=106至117,考慮到安裝聯軸器的軸段僅受扭矩作用.取c=110則:
D1min=
D2min=
D3min=
3.初選軸承
1軸選軸承為6008
2軸選軸承為6009
3軸選軸承為6012
根據軸承確定各軸安裝軸承的直徑為:
D1=40mm
D2=45mm
D3=60mm
4.結構設計(現只對高速軸作設計,其它兩軸設計略,結構詳見圖)為了拆裝方便,減速器殼體用剖分式,軸的結構形狀如圖所示.
(1).各軸直徑的確定
初估軸徑後,即可按軸上零件的安裝順序,從左端開始確定直徑.該軸軸段1安裝軸承6008,故該段直徑為40mm。2段裝齒輪,為了便於安裝,取2段為44mm。齒輪右端用軸肩固定,計算得軸肩的高度為4.5mm,取3段為53mm。5段裝軸承,直徑和1段一樣為40mm。4段不裝任何零件,但考慮到軸承的軸向定位,及軸承的安裝,取4段為42mm。6段應與密封毛氈的尺寸同時確定,查機械設計手冊,選用JB/ZQ4606-1986中d=36mm的毛氈圈,故取6段36mm。7段裝大帶輪,取為32mm>dmin 。
(2)各軸段長度的確定
軸段1的長度為軸承6008的寬度和軸承到箱體內壁的距離加上箱體內壁到齒輪端面的距離加上2mm,l1=32mm。2段應比齒輪寬略小2mm,為l2=73mm。3段的長度按軸肩寬度公式計算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和軸承6008同寬取l5=15mm。l6=55mm,7段同大帶輪同寬,取l7=90mm。其中l4,l6是在確定其它段長度和箱體內壁寬後確定的。
於是,可得軸的支點上受力點間的跨距L1=52.5mm,L2=159mm,L3=107.5mm。
(3).軸上零件的周向固定
為了保證良好的對中性,齒輪與軸選用過盈配合H7/r6。與軸承內圈配合軸勁選用k6,齒輪與大帶輪均採用A型普通平鍵聯接,分別為16*63 GB1096-1979及鍵10*80 GB1096-1979。
(4).軸上倒角與圓角
為保證6008軸承內圈端面緊靠定位軸肩的端面,根據軸承手冊的推薦,取軸肩圓角半徑為1mm。其他軸肩圓角半徑均為2mm。根據標准GB6403.4-1986,軸的左右端倒角均為1*45。。
5.軸的受力分析
(1) 畫軸的受力簡圖。
(2) 計算支座反力。
Ft=2T1/d1=
Fr=Fttg20。=3784
FQ=1588N
在水平面上
FR1H=
FR2H=Fr-FR1H=1377-966=411N
在垂直面上
FR1V=
Fr2V=Ft- FR1V=1377-352=1025N
(3) 畫彎矩圖
在水平面上,a-a剖面左側
MAh=FR1Hl3=966 52.5=50.715N•m
a-a剖面右側
M』Ah=FR2Hl2=411 153=62.88 N•m
在垂直面上
MAv=M』AV=FR1Vl2=352×153=53.856 N•m
合成彎矩,a-a剖面左側

a-a剖面右側

畫轉矩圖
轉矩 3784×(68/2)=128.7N•m
6.判斷危險截面
顯然,如圖所示,a-a剖面左側合成彎矩最大、扭矩為T,該截面左側可能是危險截面;b-b截面處合成灣矩雖不是最大,但該截面左側也可能是危險截面。若從疲勞強度考慮,a-a,b-b截面右側均有應力集中,且b-b截面處應力集中更嚴重,故a-a截面左側和b-b截面左、右側又均有可能是疲勞破壞危險截面。
7.軸的彎扭合成強度校核
由表10-1查得

(1)a-a剖面左側
3=0.1×443=8.5184m3
=14.57
(2)b-b截面左側
3=0.1×423=7.41m3
b-b截面處合成彎矩Mb:
=174 N•m
=27
8.軸的安全系數校核:由表10-1查得 (1)在a-a截面左側
WT=0.2d3=0.2×443=17036.8mm3
由附表10-1查得 由附表10-4查得絕對尺寸系數 ;軸經磨削加工, 由附表10-5查得質量系數 .則
彎曲應力
應力幅
平均應力
切應力

安全系數

查表10-6得許用安全系數 =1.3~1.5,顯然S> ,故a-a剖面安全.
(2)b-b截面右側
抗彎截面系數 3=0.1×533=14.887m3
抗扭截面系數WT=0.2d3=0.2×533=29.775 m3
又Mb=174 N•m,故彎曲應力

切應力

由附表10-1查得過盈配合引起的有效應力集中系數 。 則

顯然S> ,故b-b截面右側安全。
(3)b-b截面左側
WT=0.2d3=0.2×423=14.82 m3
b-b截面左右側的彎矩、扭矩相同。
彎曲應力

切應力

(D-d)/r=1 r/d=0.05,由附表10-2查得圓角引起的有效應力集中系數 。由附表10-4查得絕對尺寸系數 。又 。則

顯然S> ,故b-b截面左側安全。

第五部分 校 核
高速軸軸承

FR2H=Fr-FR1H=1377-966=411N

Fr2V=Ft- FR1V=1377-352=1025N
軸承的型號為6008,Cr=16.2 kN
1) FA/COr=0
2) 計算當量動載荷

查表得fP=1.2徑向載荷系數X和軸向載荷系數Y為X=1,Y=0
=1.2×(1×352)=422.4 N
3) 驗算6008的壽命

驗算右邊軸承

鍵的校核
鍵1 10×8 L=80 GB1096-79
則強度條件為

查表許用擠壓應力
所以鍵的強度足夠
鍵2 12×8 L=63 GB1096-79
則強度條件為

查表許用擠壓應力
所以鍵的強度足夠

聯軸器的選擇
聯軸器選擇為TL8型彈性聯軸器 GB4323-84
減速器的潤滑
1.齒輪的潤滑
因齒輪的圓周速度<12 m/s,所以才用浸油潤滑的潤滑方式。
高速齒輪浸入油里約0.7個齒高,但不小於10mm,低速級齒輪浸入油高度約為1個齒高(不小於10mm),1/6齒輪。
2.滾動軸承的潤滑
因潤滑油中的傳動零件(齒輪)的圓周速度V≥1.5~2m/s所以採用飛濺潤滑,

第六部分 主要尺寸及數據
箱體尺寸:
箱體壁厚
箱蓋壁厚
箱座凸緣厚度b=15mm
箱蓋凸緣厚度b1=15mm
箱座底凸緣厚度b2=25mm
地腳螺栓直徑df=M16
地腳螺栓數目n=4
軸承旁聯接螺栓直徑d1=M12
聯接螺栓d2的間距l=150mm
軸承端蓋螺釘直徑d3=M8
定位銷直徑d=6mm
df 、d1 、d2至外箱壁的距離C1=18mm、18 mm、13 mm
df、d2至凸緣邊緣的距離C2=16mm、11 mm
軸承旁凸台半徑R1=11mm
凸台高度根據低速軸承座外半徑確定
外箱壁至軸承座端面距離L1=40mm
大齒輪頂圓與內箱壁距離△1=10mm
齒輪端面與內箱壁距離△2=10mm
箱蓋,箱座肋厚m1=m=7mm
軸承端蓋外徑D2 :凸緣式端蓋:D+(5~5.5)d3
以上尺寸參考機械設計課程設計P17~P21
傳動比
原始分配傳動比為:i1=2.62 i2=3.07 i3=2.5
修正後 :i1=2.5 i2=2.62 i3=3.07
各軸新的轉速為 :n1=960/2.5=3.84
n2=384/2.61=147
n3=147/3.07=48
各軸的輸入功率
P1=pdη8η7 =5.5×0.95×0.99=5.42
P2=p1η6η5=5.42×0.97×0.99=5.20
P3=p2η4η3=5.20×0.97×0.99=5.00
P4=p3η2η1=5.00×0.99×0.99=4.90
各軸的輸入轉矩
T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65
T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68
T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25
T4= T3 η2η1=954.23×0.99×0.99=935.26
軸號 功率p 轉矩T 轉速n 傳動比i 效率η
電機軸 5.5 2.0 960 1 1
1 5.42 128.65 384 2.5 0.94
2 5.20 323.68 148 2.62 0.96
3 5.00 954.25 48 3.07 0.96
工作機軸 4.90 935.26 48 1 0.98

齒輪的結構尺寸
兩小齒輪採用實心結構
兩大齒輪採用復板式結構
齒輪z1尺寸
z=34 d1=68 m=2 d=44 b=75
d1=68
ha=ha*m=1×2=2mm
hf=( ha*+c*)m=(1+0.25)×2=2.5mm
h=ha+hf=2+2.5=4.5mm
da=d1+2ha=68+2×2=72mm
df=d1-2hf=68-2×2.5=63
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
齒輪z2的尺寸
由軸可 得d2=178 z2=89 m=2 b=65 d4=49
ha=ha*m=1×2=2mm
h=ha+hf=2+2.5=4.5mm
hf=(1+0.5)×2=2.5mm
da=d2+2ha=178+2×2=182
df=d1-2hf=178-2×2.5=173
p=πm=6.28mm
s=πm/2=3.14×2/2=3.14mm
e=πm/2=3.14×2/2=3.14mm
c=c*m=0.25×2=0.5mm
DT≈
D3≈1.6D4=1.6×49=78.4
D0≈da-10mn=182-10×2=162
D2≈0.25(D0-D3)=0.25(162-78.4)=20
R=5 c=0.2b=0.2×65=13

齒輪3尺寸
由軸可得, d=49 d3=85 z3=34 m=2.5 b=95
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.125=5.625
hf=(ha*+c*)m=(1+0.25)×2.5=3.125
da=d3+2ha=85+2×2.5=90
df=d1-2hf=85-2×3.125=78.75
p=πm=3.14×2.5=7.85
s=πm/2=3.14×2.5/2=3.925
e=s c=c*m=0.25×2.5=0.625
齒輪4寸
由軸可得 d=64 d4=260 z4=104 m=2.5 b=85
ha =ha*m=1×2.5=2.5
h=ha+hf=2.5+3.25=5.625
hf=(ha*+c*)m=(1+0.25)×0.25=3.125
da=d4+2ha=260+2×2.5=265
df=d1-2hf=260-2×3.125=253.75
p=πm=3.14×2.5=7.85
s=e=πm/2=3.14×2.5/2=3.925
c=c*m=0.25×2.5=0.625
D0≈da-10m=260-10×2.5=235
D3≈1.6×64=102.4

D2=0.25(D0-D3)=0.25×(235-102.4)=33.15
r=5 c=0.2b=0.2×85=17

參考文獻:
《機械設計》徐錦康 主編 機械工業出版社
《機械設計課程設計》陸玉 何在洲 佟延偉 主編
第3版 機械工業出版社
《機械設計手冊》
設計心得
機械設計課程設計是機械課程當中一個重要環節通過了3周的課程設計使我從各個方面都受到了機械設計的訓練,對機械的有關各個零部件有機的結合在一起得到了深刻的認識。
由於在設計方面我們沒有經驗,理論知識學的不牢固,在設計中難免會出現這樣那樣的問題,如:在選擇計算標准件是可能會出現誤差,如果是聯系緊密或者循序漸進的計算誤差會更大,在查表和計算上精度不夠准
在設計的過程中,培養了我綜合應用機械設計課程及其他課程的理論知識和應用生產實際知識解決工程實際問題的能力,在設計的過程中還培養出了我們的團隊精神,大家共同解決了許多個人無法解決的問題,在這些過程中我們深刻地認識到了自己在知識的理解和接受應用方面的不足,在今後的學習過程中我們會更加努力和團結。
由於本次設計是分組的,自己獨立設計的東西不多,但在通過這次設計之後,我想會對以後自己獨立設計打下一個良好的基礎。

㈡ 機械設計課程設計---設計盤磨機傳動裝置!!!

我也在做這個題也 老兄
我只能提供樣本給你哈 具體的還是得靠你自己啦
目 錄

一 課程設計書 2

二 設計要求 2

三 設計步驟 2

1. 傳動裝置總體設計方案 3
2. 電動機的選擇 4
3. 確定傳動裝置的總傳動比和分配傳動比 5
4. 計算傳動裝置的運動和動力參數 5
6. 齒輪的設計 8
7. 滾動軸承和傳動軸的設計 19
8. 鍵聯接設計 26
9. 箱體結構的設計 27
10.潤滑密封設計 30
11.聯軸器設計 30

四 設計小結 31
五 參考資料 32

一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級齒輪減速器.運輸機連續單向運轉,載荷有輕微沖擊,工作環境多塵,通風良好,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限10年(300天/年),三班制工作,滾筒轉速容許速度誤差為5%,車間有三相交流,電壓380/220V。
參數:
皮帶有效拉力F(KN) 3.2
皮帶運行速度V(m/s) 1.4
滾筒直徑D(mm) 400

二. 設計要求
1.減速器裝配圖1張(0號)。
2.零件工作圖2-3張(A2)。
3.設計計算說明書1份。
三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 齒輪的設計
6. 滾動軸承和傳動軸的設計
7. 鍵聯接設計
8. 箱體結構設計
9. 潤滑密封設計
10. 聯軸器設計
1.傳動裝置總體設計方案:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:

圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器。
傳動裝置的總效率
為V帶的傳動效率, 為軸承的效率,
為對齒輪傳動的效率,(齒輪為7級精度,油脂潤滑)
為聯軸器的效率, 為滾筒的效率
因是薄壁防護罩,採用開式效率計算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.電動機的選擇
電動機所需工作功率為: P =P/η =3200×1.4/1000×0.760=3.40kW
滾筒軸工作轉速為n= = =66.88r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。

方案 電動機型號 額定功 率
P
kw 電動機轉速

電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動 比 V帶傳 動 減速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90

3.確定傳動裝置的總傳動比和分配傳動比

(1)總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/66.88=17.05
(2)分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3(實際的傳動比要在設計V帶傳動時,由所選大、小帶輪的標準直徑之比計算),則減速器傳動比為
= =17.05/2.3=7.41
根據展開式布置,考慮潤滑條件,為使兩級大齒輪直徑相近,查圖得高速級傳動比為 =3.24,則 = =2.29

4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各軸輸入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
則各軸的輸出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各軸輸入轉矩
= × × N•m
電動機軸的輸出轉矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
輸出轉矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.40 22.55 1440
1軸 3.26 3.19 49.79 48.79 626.09
2軸 3.04 2.98 151.77 148.73 193.24
3軸 2.83 2.77 326.98 320.44 84.38
4軸 2.75 2.70 307.52 301.37 84.38
5.齒輪的設計
(一)高速級齒輪傳動的設計計算
1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1)齒輪材料及熱處理
① 材料:高速級小齒輪選用45#鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用45#鋼正火,齒面硬度為大齒輪 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。

2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計

確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26

②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5

[ ] = =0.96×450=432
許用接觸應力

⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d

=
②計算圓周速度

③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式

⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN•m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774
⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78
⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =

大齒輪的數值大.選用.
⑵ 設計計算
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的

(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用45鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用45鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度

6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN•m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y

(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的

查課本由 圖10-20c得齒輪彎曲疲勞強度極限

查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較

大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數

對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度

圓整後取

低速級大齒輪如上圖:

齒輪各設計參數附表
1. 各軸轉速n
(r/min)
(r/min)
(r/min)
(r/min)

626.09 193.24 84.38 84.38

2. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)

3.26 3.04 2.83 2.75

3. 各軸輸入轉矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)

49.79 151.77 326.98 307.52

6.傳動軸承和傳動軸的設計
1. 傳動軸承的設計
⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圓周力F ,徑向力F 及軸向力F 的方向如圖示:
⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取

輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取

因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑
⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.

D B

軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 從動軸的設計
對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.
④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則

至此,已初步確定了軸的各端直徑和長度.
5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.

傳動軸總體設計結構圖:

(從動軸)

(中間軸)

(主動軸)
從動軸的載荷分析圖:

6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全
7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力

截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:


經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以

綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅳ左側的彎矩M為 M=133560
截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.鍵的設計和計算
①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50
②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:

名稱 符號 計算公式 結果
箱座壁厚

10
箱蓋壁厚

9
箱蓋凸緣厚度

12
箱座凸緣厚度

15
箱座底凸緣厚度

25
地腳螺釘直徑

M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑

M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚

9 8.5

軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離

120(1軸)125(2軸)
150(3軸)
10. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
11.聯軸器設計
1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器.
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm

㈢ 1)試總結歸納機械傳動系統設計的一般方法和步驟。 (2)說明傳動系統方案是如何確定的,有何特點

第一部分為電動機選擇及傳動系統總的傳動比分配;主要確定電動機類型和結構形式、工作機主動軸功率、電動輸出功率及傳動系統總的傳動比分配。第二部分為傳動裝置的運動和動力參數計算,主要確定各軸轉速、各軸的輸入功率、及各軸轉矩。第三部分為有關錐齒輪的計算,選擇齒輪、材料、精度、等級、確定齒輪齒數、轉矩、載荷系數、輪寬系數及齒根彎曲疲勞強度校核。第四部分為帶輪的設計包括帶輪類型的選擇、帶輪尺寸參數的確定。第五部分為聯軸器類型的選擇及聯軸器尺寸(型號)的確定 。
該變速器主要由齒輪、軸、軸承、箱體等組成。為方便減速器的製造、裝配及使用 ,還在減速器上設置一系列附件,如檢查孔、透氣孔、油標尺或油麵指示器、吊鉤及起蓋螺釘等。在原動機於變速器間採用是機械設備中應用較多的傳動裝置帶傳動,主要有主動輪、從動輪和傳動帶組成。工作時靠帶與帶輪間的摩擦或嚙合實現主、從動輪間運動和動力的傳遞,具有結構簡單、傳動平穩、價格低廉、緩沖吸振及過載打滑以保護其他零件的優點。
設計者以嚴謹務實的認真態度進行了此次設計,但由於知識水平與實際經驗有限。在設計中難免會出現一些錯誤、缺點和疏漏,誠請位評審老師能給於批評和指正。
摘 要
這次畢業設計是由封閉在剛性殼內所有內容的齒輪傳動是一獨立完整的機構。通過這一次設計可以初步掌握一般簡單機械的一套完整的設計及方法,構成減速器的通用零部件。
這次畢業設計主要介紹了減速器的類型作用及構成等,全方位的運用所學過的知識。如:機械制圖,金屬材料工藝學公差等已學過的理論知識。在實際生產中得以分析和解決。減速器的一般類型有:圓柱齒輪減速器、圓錐齒輪減速器、齒輪-蝸桿減速器,軸裝式減速器、組裝式減速器、聯體式減速器。
在這次設計中進一步培養了工程設計的獨立能力,樹立正確的設計思想,掌握常用的機械零件,機械傳動裝置和簡單機械設計的方法
和步驟,要求綜合的考慮使用經濟工藝性等方面的要求。確定合理的設計方案

㈣ 實際載荷系數寬高怎麼算

齒輪系數即載荷系數k,包括使用系數ka、動載系數kv、齒間載荷分配系數kα及齒向載荷分布系數kβ,即 k=kakvkαkβ 使用系數ka是考慮齒輪嚙合時外部因素引起的附加動載荷影響的系數。這種動載荷取決於原動機和從動機械的特性、質量比、聯軸器類型以及運行狀態等。

100v輪胎實際載重?

100指載荷系數,代表著標准速度下的最大負載是800kg。v是速度符號,代表著標准負載下的最大速度是240km/h。

負荷指數是把1條輪胎所能承受的最大負荷以代號的形式表示的。 例如:負荷指數為100的1條輪胎的最大負荷是800kg。輪胎的側面,每一條輪胎都有。有的車主認為車身的自重越大,就應該選擇斷面寬 的輪胎。其實這是一種誤區,以轎車原輪胎的一種規則標示指數為例:195/60R1486H,這里的195表示斷面 寬,60表示扁平率,R表示輪胎構造標記,14表示輪輞 直徑,86表示負荷指數,H表示速度記號。

載荷系數標准?

載荷系數是計算載荷與額定載荷的比值。在機械設計中,額定載荷是機械及其零件在給定工作條件下按設計規定所能承受的載荷。計算載荷為額定載荷乘以載荷系數,是設計計算的依據。通常,載荷系數主要是指動載荷下與速度和速度改變有關的系數,習慣上稱為動載系數。

載荷系數

動載系數的選用應考慮機械繫統的下列載荷性質:①所用動力機的載荷特性,如:電動機工作平穩,多缸內燃機有輕度沖擊,單缸內燃機有中等程度沖擊,等等。②傳動的載荷特性,如:內燃機帶動液力傳動時工作平穩;但內燃機帶動機械傳動時就有沖擊,反復啟動停車或正反轉操作時沖擊就更大。③工作機的載荷特性,如:發電機和帶式輸送機等工作平穩,球磨機和多缸往復壓縮機等有中等沖擊,沖床和挖掘機等有較大沖擊。將動力機、傳動和工作機的載荷特性綜合考慮,再在有關書籍上查閱出設計所用載荷系數經驗推薦用值。對於簡單的機械繫統,動載系數也可用解析法求出。

對於帶傳動和起重機等,每天工作時間的長短影響到計算載荷的確定,所以載荷系數除動載系數外,還包括工作時間系數。

對於齒輪傳動,如齒面載荷分布不均勻和幾對嚙合齒之間的載荷分配不均勻,都會影響輪齒間載荷的傳遞。所以,齒輪傳動的載荷系數,除動載系數外,還應考慮單位齒寬上載荷分布不均勻和相嚙合的輪齒的載荷分配不均勻等因素

㈤ 設計用於帶式運輸機的一級直齒圓柱齒輪減速器輸送帶工作拉力1100,傳送帶速度1.5m/s,捲筒直徑250mm

一級直齒圓柱齒輪減速器傳動裝置分析設計

一、 課程設計的目的
1、通過機械設計課程設計,綜合運用機械設計課程和其它有關選修課程的理論和生產實際知識去
分析和解決機械設計問題,並使所學知識得到進一步地鞏固、深化和發展。
2、學習機械設計的一般方法。通過設計培養正確的設計思想和分析問題、解決問題的能力。
3、進行機械設計基本技能的訓練,如計算、繪圖、查閱設計資料和手冊,熟悉標准和規范。
二、 已知條件
1、展開式一級圓柱斜齒輪減速器產品。
3、動力來源:電壓為380V的三相交流電源。
4、原始數據 在任務書上。
5、使用期:10年,每年按365天計。
三、 工作要求
1、畫減速器裝配圖一張(A0圖紙);
2、零件工作圖二張(傳動零件、軸、等等);
3、對傳動系統進行結構分析、運動分析並確定電動機型號、工作能力分析;
4、對傳動系統進行精度分析,合理確定並標注配合與公差;
5、設計說明書一份。
四、 結題項目
1、檢驗減速能否正常運轉。
2、每人一套設計零件草圖。
3、減速器裝配圖:A0;每人1張。
4、零件工作圖:A3;每人2張、齒輪和軸各1張。
5、課題說明書:每人1份。
五、 完成時間 共4周
參考資料
【1】、《機械設計》張策 主編 機械工業出版社出版;
【2】、《機械設計課程設計》 陸玉 主編 機械工業出版社出版;
【3】、《機械制圖》劉小年 主編 機械工業出版社出版;
【4】、《課程設計圖冊》編 高等教育出版社出版;

計 算 及 說 明 結 果
一、 減速器結構分析
分析傳動系統的工作情況
1、傳動系統的作用:
作用:介於機械中原動機與工作機之間,主要將原動機的運動和動力傳給工作機,在此起減速作用,並協調二者的轉速和轉矩。
2、傳動方案的特點:
特點:結構簡單、效率高、容易製造、使用壽命長、維護方便。由於電動機、減速器與滾筒並列,導致橫向尺寸較大,機器不緊湊。但齒輪的位置不對稱,高速級齒輪布置在遠離轉矩輸入端,可使軸在轉矩作用下產生的扭轉變形和軸在彎矩作用下產生的彎曲變形部分地抵消,以減緩沿齒寬載荷分布有均勻的現象。
3、電機和工作機的安裝位置:
電機安裝在遠離高速軸齒輪的一端;
工作機安裝在遠離低速軸齒輪的一端。

圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。

計 算 及 說 明 結 果
二、 傳動裝置的總體設計
(一)、選擇電動機
1、選擇電動機系列
按工作要求及工作條件,選用三相非同步電動機,封閉式扇式結構,即:電壓為380V Y系列的三相交流電源電動機。
2、選電動機功率
(1)、傳動滾筒所需有效功率

(2)、傳動裝置總效率

(3)、所需電動機功率

3、確定電動機轉速

型 號 Y160L-4 Y180L-4 Y200L-8 Y160MZ-2
額定功率KW 15 15 15 15
電機滿載荷 轉速 轉/分 1460 970 730 293
滾筒轉速 轉/分 38.2 38.2 38.2 38.2
總傳動比 39.20 25.39 19.11 76.72

2 2 2 2

19.60 12.70 9.55 38.35
由此比較,應選Y160L-4,結構緊湊。由文獻[2]表2.10-2選取電動機的外形及安裝
尺寸D=42㎜,中心高度H=160㎜,軸伸長E=110㎜。
4、傳動比分配
(1)、兩級齒輪傳動比公式

(2)、減速器傳動比

5、運動條件及運動參數分析計算

計 算 及 說 明 結 果

(二)、定V帶型號和帶輪
1、工作情況系數
由文獻【1】由表11.5得
2、計算功率

3、選帶型號
由文獻【1】表11.15 選取B型
4、小帶輪直徑
由文獻【1】 表11.6 選取
5、大帶輪直徑

6、大帶輪轉速

7、驗算傳動比誤差

取B型

計 算 及 說 明 結 果
(1)、理論傳動比
(2)、實際傳動比
(3)、傳動比誤差 合適
(4)、驗算帶轉速 合適
8、計算帶長
(1)、求
(2)、求
(3)、初取中心距
(4)、帶長

(5)、基準長度
9、求中心距和包角
(1)、中心距

(2)、小帶輪包角

計 算 及 說 明 結 果

10、求帶根數
(1)、傳動比 由表11.8
由表11.7 ;由表11.12 ;由表11.10
(2)、帶根數

11、求軸上載荷
(1)、張緊力

(由表11.4 q=0.10kg/m)
(2)、軸上載荷
12、結構設計
小帶輪 ; 大帶輪
(三)、高速軸齒輪的設計與校核
1、選材 根據文獻【1】表12.7知 選小齒輪:40Cr,調質處理
選大齒輪:45鋼,調質處理
2、初步計算
(1)、轉矩
(2)、尺寬系數 由文獻【1】表12.13,取
(3)、接觸疲勞極限 由文獻【1】圖12.17c

取z=5根

計 算 及 說 明 結 果
由文獻【1】由表12.16,取

(4)、確定中心距
3、配湊中心距
取 合適
(1)、核算

由文獻【1】表12.3取 ;

(2)、驗算
所以取
4、接觸強度校核
(1)、圓周速度V

(2)、精度等級 由表12.6知:選8級精度

(3)、使用系數 由表12.9知:
(4)、動載系數 由圖12.9知: =1.12
(5)、齒間載荷分配系數 由表12.10知,先求:

8級精度

=1.12

計 算 及 說 明 結 果

由上所得:
(6)、齒向載荷分布系數 由文獻【1】表12、11

(7)、載荷系數
(8)、彈性系數 由文獻【1】表12、12
(9)、節點區域系數 由文獻【1】圖12、16
(10)、重合度系數

(11)、螺旋角系數
(12)、接觸最小安全系數
(13)、總工作時間
(14)、應力循環次數

=1.708
=2.114
=3.822
=

=2.06

=1.48273

=3.989

=0.765
=0.988

計 算 及 說 明 結 果

(15)、接觸壽命系數 由文獻【1】圖12、18
(16)、許用接觸應力 及驗算

計算結果表明,接觸疲勞強度足夠
5、彎曲疲勞強度驗算
(1)、齒數系數
(2)、應力修正系數

(3)、重合度系數
(4)、螺旋角系數

(5)齒間載荷分配系數

=

=0.69

=0.897

計 算 及 說 明 結 果
(6)、齒向載荷分布系數
(7)、載荷系數
(8)、彎曲疲勞極限 由圖12、13c得
(9)、彎曲最小安全系數
(10)、應力循環系數
(11)、彎曲壽命系數
(12)、尺寸系數
(13)、許用彎曲應力
(14)、驗算

6、幾何尺寸計算

K=3.71

=367MPa
=350MPa
=154MPa

=149MPa

計 算 及 說 明 結 果
(四)、中間軸齒輪的設計與校核
1、選材 根據文獻【1】表12.7知 選小齒輪:40Cr,調質處理
選大齒輪:45鋼,調質處理
2、初步計算
(1)、轉矩
(2)、尺寬系數 由文獻【1】表12.13,取
(3)、接觸疲勞極限 由文獻【1】圖12.17c

由文獻【1】由表12.16,取

(4)、確定中心距
3、配湊中心距
取 合適
(1)、核算

由文獻【1】表12.3取

計 算 及 說 明 結 果
(2)、驗算
所以取
4、接觸強度校核
(1)、圓周速度V

(2)、精度等級 由表12.6知:選8級精度

(3)、使用系數 由表12.9知:

(4)、動載系數 由圖12.9知: =1.10
(5)、齒間載荷分配系數 由表12.10知,先求:

(6)、齒向載荷分布系數 由文獻【1】表12、11

(7)、載荷系數

(8)、彈性系數 由文獻【1】表12、12

8級精度

=1.10

=1.4

=1.703
=2.00
=3.703

=

=1.51
=3.14

計 算 及 說 明 結 果
(9)、節點區域系數 由文獻【1】圖12、16
(10)、重合度系數

(11)、螺旋角系數
(12)、接觸最小安全系數
(13)、總工作時間
(14)、應力循環次數

(15)、接觸壽命系數 由文獻【1】圖12、18
(16)、許用接觸應力 及驗算

計算結果表明,接觸疲勞強度足夠
5、彎曲疲勞強度驗算
(1)、齒數系數
(2)、應力修正系數

=0.766
=0.989

=

計 算 及 說 明 結 果
(3)、重合度系數
(4)、螺旋角系數

(5)齒間載荷分配系數

(6)、齒向載荷分布系數

(7)、載荷系數
(8)、彎曲疲勞極限 由圖12、13c得
(9)、彎曲最小安全系數
(10)、應力循環系數
(11)、彎曲壽命系數
(12)、尺寸系數

(13)、許用彎曲應力
=0.694

=0.9

K=3.14

=367MPa
=350MPa

計 算 及 說 明 結 果
(14)、驗算

6、幾何尺寸計算

(五)、高速軸的設計與校核
1、選 材
C=102
2、初估直徑 軸上有單個鍵槽,軸徑應增加3% 所以 27.66×(1+3%)=28.49㎜ 圓整取d=30㎜
3、結構設計 由文獻【1】得初估軸得尺寸如下:

4、強度校核
(1)、確定力點與支反力與求軸上作用力(圖示附後)
(2)、齒輪上作用力

=171MPa

=165MPa

(3)、水平支反力 從上到下第二幅圖
(4)、垂直面內的支反力 從上到下第四幅圖

(5)、繪水平彎矩圖 第三幅圖,最高點彎矩為:
(6)、求垂直彎矩並繪垂直彎矩圖 第五幅圖,從左往右的突出點彎矩分別為: 291020N•㎜
168177N•㎜,117150N•㎜
(7)、合成彎矩圖 第六幅圖 從左往右的突出點的彎矩分別為: 295772N•㎜,259900N•㎜
286544N•㎜
(8)、繪扭矩圖 第七幅圖
(9)、求當量彎矩

計 算 及 說 明 結 果

(10)、確定危險截面校核軸徑尺寸,危險截面I,危險截面II

(六)、高速軸軸承校核
1、選軸承 根據文獻【1】附錄表18.1可得軸承的型號為:6208。其中軸承參數為:

D=80mm;B=18mm;Cr=29.5KN;Cor=18.0KN

(七)、中間軸的設計與強度校核
1、選 材
C=112
2、初估直徑 圓整d=50㎜

計 算 及 說 明 結 果
3、結構設計 由文獻【1】得初估軸得尺寸如下:

4、強度校核
(1)、確定力點與支反力與求軸上作用力(圖示附後)
(2)、齒輪上作用力

(3)、水平支反力 從上到下第二幅圖

(4)、垂直面內的支反力 從上到下第四幅圖

(5)、繪水平彎矩圖 第三幅圖;(如下所示)

(6)、求垂直彎矩並繪垂直彎矩圖 第五幅圖(如下所示)

(7)、合成彎矩圖 第六幅圖(如下所示)

(8)、繪扭矩圖 第七幅圖 (如下所示)

(9)、求當量彎矩

(10)、確定危險截面校核軸徑尺寸,危險截面A,危險截面B

計 算 及 說 明 結 果
(八)、中間軸軸承校核
1、選軸承 根據文獻【1】表18.1可得軸承的型號為:6310。D=110mm
B=27mm;Cr=61.8KN;Cor=38KN

說明書在此如要圖,請回復留言!

㈥ 機械設計課程設計設計帶式運輸機傳動裝置其中運輸帶工作拉力F=2900N V=1. 5滾筒直徑D=400滾筒效率0....

課程設計 帶式運輸機傳動裝置設計,共31頁,6698字
目錄
第一章 設計任務版書 1
第二章 傳動裝置的總體設權計 2
2.1 電動機的選擇 2
2.2 傳動裝置的總傳動比和傳動比分配 3
2.3傳動裝置的運動和動力參數計算 3
第三章 傳動零件的設計計算 5
3.1 V帶傳動的設計計算 5
3.2蝸輪輪蝸桿傳動的設計計算 6
第四章 軸的結構尺寸計算 8
4.1蝸輪轉軸的機構尺寸計算 8
4.2蝸桿軸的結構尺寸設計 8
第五章 軸的強度校核 10
5.1 蝸輪轉軸的強度校核 10
5.2 蝸桿軸的強度校核 12
第六章 滾動軸承的選擇和校核 16
6.1 蝸輪轉軸軸承選擇和校核 16
6.2蝸桿軸軸承選擇和校核 16
第七章 平鍵的選擇計算以及聯軸器的選擇 18
7.1 蝸桿轉軸與蝸輪接觸的鍵的選擇計算 18
7.2 周轉定向連軸起的鍵的選擇計算 18
7.4 聯軸器的選擇 19
第八章 減速器箱體設計及附件的選擇和說明 20
8.1箱體主要尺寸設計 20
8.2附屬零件的設計 20
第九章 潤滑與密封 21
第十章 課程設計小結 22
參考文獻 22

閱讀全文

與啟動機傳動裝置的總體設計相關的資料

熱點內容
電熱水器閥門那裡滴水怎麼回事 瀏覽:79
農殘200項檢測用什麼儀器 瀏覽:910
庫房閥門類怎麼擺放 瀏覽:702
筆記本機械內存什麼意思 瀏覽:860
地球是球體的模擬實驗裝置 瀏覽:212
洗車電機軸承怎麼拆卸 瀏覽:230
夜晚餐飲用什麼器材好 瀏覽:286
物流企業需要的設備有哪些 瀏覽:883
二手機械設備在哪個網站上找 瀏覽:729
溧陽製冷機服務方案多少錢 瀏覽:211
全自動半自動鉤緩裝置 瀏覽:633
排氣閥門關不死怎麼辦 瀏覽:799
煤氣閥門1000 瀏覽:495
儀表盤加電阻有什麼用 瀏覽:441
健身器材怎麼練後背 瀏覽:844
ecu在儀表中是什麼意思 瀏覽:266
為什麼逍客車空調不製冷 瀏覽:602
改裝閥門有什麼作用 瀏覽:819
什麼設備需三相電 瀏覽:421
受損車輛制動性能檢測裝置 瀏覽:221