A. 機械原理課程設計自動蓋章機的設計
不同的機器往往由有限的幾種常用機構組成,如內燃機、壓縮機和沖床等的主體機構都是曲柄滑塊機構。這些機構的運動不同於一般力學上的運動,它只與其幾何約束有關,而與其受力、構件質量和時間無關。1875年 ,德國的 F.勒洛把上述共性問題從一般力學中獨立出來,編著了《理論運動學》一書,創立了機構學的基礎。書中提出的許多概念、觀點和研究方法至今仍在沿用。1841年,英國的R.威利斯發表《機構學原理》。19世紀中葉以來,機械動力學也逐步形成。進入20世紀,出現了把機構學和機械動力學合在一起研究的機械原理。1934年,中國的劉仙洲所著《機械原理》一書出版。1969年,在波蘭成立了國際機構和機器原理協會,簡稱IFTOMM。
機構學的研究對象是機器中的各種常用機構,如連桿機構、凸輪機構、齒輪機構、螺旋機構和間歇運動機構(如棘輪機構、槽輪機構等)以及組合機構等。它的研究內容是機構結構的組成原理和運動確定性,以及機構的運動分析和綜合。機構學在研究機構的運動時僅從幾何的觀點出發,而不考慮力對運動的影響。
機械動力學的研究對象是機器或機器的組合。研究內容是確定機器在已知力作用下的真實運動規律及其調節、摩擦力和機械效率、慣性力的平衡等問題。
按機械原理的傳統研究方式,一般不考慮構件接觸面間的間隙、構件的彈性或溫差變形以及製造和裝配等所引起的誤差。這對低速運轉的機械一般是可行的。但隨著機械向高速、高精度方向發展,還必須研究由上述因素引起的運動變化。因而從40年代開始,又提出了機構精確度問題。由於航天技術以及機械手和工業機器人的飛速發展,機構精確度問題已越來越引起人們的重視,並已成為機械原理的不可缺少的一個組成部分。
課程設計包括兩個層面:一是側重於技術層面,是課程工作者從事的一切活動,包括他對達成課程目標所需的各種因素、技術和程序,進行構想、計劃、選擇的慎思過程;另一個層面更為側重具體設計前的理論研究和准備。教育科研機構的專家學者對課程的研究並擬訂出課程學習方案,為決策部門服務,擬訂教育教學的目的任務,確定選材范圍和教學科目,編寫教科書等都屬於課程設計活動。課程設計的過程中涉及到很多方面的課程要素,最主要的課程要素包括課程目標、課程內容、學生的學習活動以及課程評價等。
B. 誰知道機械原理中雙曲柄機構、曲柄搖桿機構和曲柄搖桿機構怎麼判斷!
1、雙曲柄機構:在鉸鏈四桿機構中,兩連架桿均為曲柄;常見的還有平行四版邊形機構和反平行四權邊形機構。利用曲柄機構的變速運動原理可以製作慣性篩等。
2、曲柄搖桿機構:具有一個曲柄和一個搖桿的鉸鏈四桿機構。通常,曲柄為主動件且等速轉動,而搖桿為從動件作變速往返擺動,連桿作平面復合運動。
(2)機械原理課程設計搖桿裝置擴展閱讀:
雙曲柄機構中的平行四邊形機構,兩個曲柄長度相等,且連桿和機架的長度也相等,呈平行四邊形,兩曲柄的轉動速度和方向相同。平行四邊形機構在機器中的應用較為廣泛,如機車車輪機構,其內含有一個虛約束,以防止在曲柄與機架共線時運動不確定。
平行四邊形機構有一個位置不確定問題,通常解決方法為:加慣性輪利用慣性維持從動曲柄轉向不變;加虛約束通過虛約束保持平行四邊形,如機車車輪聯動的平行四邊形機構。
在機構中,有些運動副的約束與另外的運動副的約束可能是重復的。因而,這些約束對於機構的運動實際上並沒有起到約束的作用。
C. 機械原理課程設計 攪拌機
自己做吧
不難,但是很麻煩,計算量大
D. 機械原理課程設計—由電動機驅動的往復式給煤機
往復式給煤機由機架、給料槽 、傳動平台、漏斗、閘門及托輪組成。按結構和用途不同分為:帶漏斗和不帶漏斗、帶閘門和不帶閘門、採用防爆電機和不採用防爆電機等多種型式。往復式給煤機的工作原理:在煤倉下口設一給料槽 ,給料槽底板(也稱給煤板)為活動式,它安放在托輪上,通過曲臂(或稱搖桿、拉桿、連桿)與曲柄連接,曲柄固定在減速器上與電動機相連。當電動機帶動減速器轉動時,減速器輸出軸上的曲柄就帶動曲臂使底板在托輪上做往復運動,從而把煤倉內的煤送出煤倉口,裝到輸送機上。
E. 收集的幾種連桿機構:機器人行走背後的機械原理(一)
機器人概念已經紅紅火火好多年了,目前確實有不少公司已經研製出了性能非常優越的機器人產品,我們比較熟悉的可能就是之前波士頓動力的「大狗」和會空翻的機器人了,還有國產宇樹科技的機器狗等,這些機器人動作那麼敏捷,背後到底隱藏了什麼高科技呢,控制技術太過復雜,一般不太容易了解,不過其中的機械原理倒是相對比較簡單,大部分都是一些連桿機構。
連桿機構(Linkage Mechanism)
又稱低副機構,是機械的組成部分中的一類,指由若干(兩個以上)有確定相對運動的構件用低副(轉動副或移動副)聯接組成的機構。低副是面接觸,耐磨損;加上轉動副和移動副的接觸表面是圓柱面和平面,製造簡便,易於獲得較高的製造精度。
由若干剛性構件用低副聯接而成的機構稱為連桿機構,其特徵是有一作平面運動的構件,稱為連桿,連桿機構又稱為低副機構。其廣泛應用於內燃機、攪拌機、輸送機、橢圓儀、機械手爪、牛頭刨床、開窗、車門、機器人、折疊傘等。
主要特徵
連桿機構構件運動形式多樣,如可實現轉動、擺動、移動和平面或空間復雜運動,從而可用於實現已知運動規律和已知軌跡。
優點:
(1)採用低副:面接觸、承載大、便於潤滑、不易磨損,形狀簡單、易加工、容易獲得較高的製造精度。
(2)改變桿的相對長度,從動件運動規律不同。
(3)兩構件之間的接觸是靠本身的幾何封閉來維系的,它不像凸輪機構有時需利用彈簧等力封閉來保持接觸。
(4)連桿曲線豐富,可滿足不同要求。
缺點:
(1)構件和運動副多,累積誤差大、運動精度低、效率低。
(2)產生動載荷(慣性力),且不易平衡,不適合高速。
(3)設計復雜,難以實現精確的軌跡。
網路的相關詞條圖片如下
下面我們就看看一般都有什麼連桿機構適於用於行走(或者移動)的。
平面四桿機構是由四個剛性構件用低副鏈接組成的,各個運動構件均在同一平面內運動的機構。機構類型有曲柄搖桿機構、鉸鏈四桿機構、雙搖桿機構等。
1、曲柄搖桿機構(Crank rocker mechanism )
曲柄搖桿機構是指具有一個曲柄和一個搖桿的鉸鏈四桿機構。通常,曲柄為主動件且等速轉動,而搖桿為從動件作變速往返擺動,連桿作平面復合運動。曲柄搖桿機構中也有用搖桿作為主動構件,搖桿的往復擺動轉換成曲柄的轉動。曲柄搖桿機構是四桿機構最基本的形式 。主要應用有:牛頭刨床進給機構、雷達調整機構、縫紉機腳踏機構、復擺式顎式破碎機、鋼材輸送機等。
2、雙曲柄機構(Double crank mechanism )
具有兩個曲柄的鉸鏈四桿機構稱為雙曲柄機構。其特點是當主動曲柄連續等速轉動時,從動曲柄一般做不等速轉動。在雙曲柄機構中,如果兩對邊構件長度相等且平行,則成為平行四邊形機構。這種機構的傳動特點是主動曲柄和從動曲柄均以相同的角速度轉動,而連桿做平動。
雙曲柄機構類型分類
【1】不等長雙曲柄機構
說明:曲柄長度不等的雙曲柄機構。
結構特點:無死點位置,有急回特性。
應用實例:慣性篩
【2】平行雙曲柄機構
說明:連桿與機架的長度相等且兩曲柄長度相等、曲柄轉向相同的雙曲柄機構。
結構特點:有2個死點位置,無急回特性。
應用實例:天平
【3】反向雙曲柄機構
說明:連桿與機架的長度相等且兩曲柄長度相等、曲柄轉向相反的雙曲柄機構。
結構特點:無死點位置,無急回特性。
運動特點:以長邊為機架時,雙曲柄的回轉方向相反;以短邊為機架時,雙曲柄回轉方向相同,兩種情況下曲柄角速度均不等。
應用實例:汽車門啟閉系統
3、鉸鏈四桿機構(Hinge four-bar mechanism)
鉸鏈是一種連接兩個剛體,並允許它們之間能有相對轉動的機械裝置,比如門窗用的合頁,就是一種常見的鉸鏈。由鉸鏈連接的四連桿就叫鉸鏈四桿機構。所有運動副均為轉動副的四桿機構稱為鉸鏈四桿機構,它是平面四桿機構的基本形式,其他四桿機構都可以看成是在它的基礎上演化而來的。選定其中一個構件作為機架之後,直接與機架鏈接的構件稱為連架桿,不直接與機架連接的構件稱為連桿,能夠做整周回轉的構件被稱作曲柄,只能在某一角度范圍內往復擺動的構件稱為搖桿。如果以轉動副連接的兩個構件可以做整周相對轉動,則稱之為整轉副,反之稱之為擺轉副。
鉸鏈四桿機構可以通過以下方法演化成衍生平面四桿機構。
(1)轉動副演化成移動副。如引進滑塊等構件。以這種方式構成的平面四桿機構有曲柄滑塊機構、正弦機構等。
(2)選取不同構件作為機架。以這種方式構成的平面四桿機構有轉動導桿機構、擺動導桿機構、移動導桿機構、曲柄搖塊機構、正切機構等。
(3)變換構件的形態。
(4)擴大轉動副的尺寸,演化成偏心輪機構 。
4、雙搖桿機構(Double rocker mechanism)
雙搖桿機構就是兩連架桿均是搖桿的鉸鏈四桿機構,稱為雙搖桿機構。 機構中兩搖桿可以分別為主動件。當連桿與搖桿共線時,為機構的兩個極限位置。雙搖桿機構連桿上的轉動副都是周轉副,故連桿能相對於兩連架桿作整周回轉。
雙搖桿機構的兩連架桿都不能作整周轉動。三個活動構件均做變速運動,只是用於速度很低的傳動機構中 。雙搖桿機構在機械中的應用也很廣泛,手動沖孔機,就是雙搖桿機構的應用實例,比如說吧飛機起落架,鶴式起重機和汽車前輪轉向機構都是雙搖桿機構。
判別方法
1.最長桿長度+最短桿長度 ≤ 其他兩桿長度之和,連桿(機架的對桿)為最短桿時。
2. 如果最長桿長度+最短桿長度 >其他兩桿長度之和,此時不論以何桿為機架,均為雙搖桿機構。
5、連桿機構的理論應用
動力機的驅動軸一般整周轉動,因此機構中被驅動的主動件應是繞機架作整周轉動的曲柄在形成鉸鏈四桿機構的運動鏈中,a、b、c、d既代表各桿長度又是各桿的符號。當滿足最短桿和最長桿之和小於或等於其他兩桿長度之和時,若將最短桿的鄰桿固定其一,則最短桿即為曲柄。若鉸鏈四桿機構中最短桿與最長桿長度之和小於或等於其餘兩桿長度之和,則
a、 取最短桿的鄰桿為機架時,構成曲柄搖桿機構;
b、 取最短桿為機架時,構成雙曲柄機構;
c、 取最短桿為連桿時,構成雙搖桿機構;
若鉸鏈四桿機構中最短桿與最長桿長度之和大於其餘兩桿長度之和,則無曲柄存在,不論以哪一桿為機架,只能構成雙搖桿機構。
急回系數
在曲柄等速運動、從動件變速運動的連桿機構中,要求從動件能快速返回,以提高效率。即k稱為急回系數。曲柄存在條件參考圖
壓力角
如圖中的曲柄搖桿機構,若不計運動副的摩擦力和構件的慣性力,則曲柄a通過連桿b作用於搖桿c上的力P,與其作用點B的速度vB之間的夾角α稱為搖桿的壓力角,壓力角越大,P在vB方向的有效分力就越小,傳動也越困難,壓力角的餘角γ稱為傳動角。在機構設計時應限制其最大壓力角或最小傳動角。
死點
在曲柄搖桿機構中,若以搖桿為主動件,則當曲柄和連桿處於一直線位置時,連桿傳給曲柄的力不能產生使曲柄回轉的力矩,以致機構不能起動,這個位置稱為死點。機構在起動時應避開死點位置,而在運動過程中則常利用慣性來過渡死點。
6、平面四桿機構一些案例
切比雪夫連桿機構其實是和霍肯連桿機構是屬於同一種形式的四連桿機構,其軌跡點都是在連桿兩端誰在的直線上。霍肯連桿機構的軌跡點是在兩端點連線的延伸線上,而切比雪夫連桿機構的軌跡點是在兩端點連線的中間。如下:
切比雪夫連桿機構的動態演示
1、切比雪夫(1821~1894)
俄文原名Пафну́тий Льво́вич Чебышёв,俄羅斯數學家、力學家。切比雪夫在概率論、數學分析等領域有重要貢獻。在力學方面,他主要從事這些數學問題的應用研究。他在一系列專論中對最佳近似函數進行了解析研究,並把成果用來研究機構理論。他首次解決了直動機構(將旋轉運動轉化成直線運動的機構)的理論計算方法,並由此創立了機構和機器的理論,提出了有關傳動機械的結構公式。他還發明了約40餘種機械,製造了有名的步行機(能精確模仿動物走路動作的機器)和計算器,切比雪夫關於機構的兩篇著作是發表在1854年的《平行四邊形機構的理論》和1869年的 《論平行四邊形》。
理論聯系實際是切比雪夫科學工作的一個鮮明特點。他自幼就對機械有濃厚的興趣,在大學時曾選修過機械工程課。就在第一次出訪西歐之前,他還擔任著彼得堡大學應用知識系(准工程系)的講師。這次出訪歸來不久,他就被選為科學院應用數學部主席,這個位置直到他去世後才由李雅普諾夫接任。應用函數逼近論的理論與演算法於機器設計,切比雪夫得到了許多有用的結果,它們包括直動機的理論、連續運動變為脈沖運動的理論、最簡平行四邊形法則、絞鏈杠桿體系成為機械的條件、三絞鏈四環節連桿的運動定理、離心控制器原理等等。他還親自設計與製造機器。據統計,他一生共設計了40餘種機器和80餘種這些機器的變種,其中有可以模仿動物行走的步行機,有可以自動變換船槳入水和出水角度的劃船機,有可以度量大圓弧曲率並實際繪出大圓弧的曲線規,還有壓力機、篩分機、選種機、自動椅和不同類型的手搖計算機。他的許多新發明曾在1878年的巴黎博覽會和1893年的芝加哥博覽會上展出,一些展品至今仍被保存在蘇聯科學院數學研究所、莫斯科歷史博物館和巴黎藝術學院里。
2、切比雪夫連桿機構經常被用於模擬機器人的行走
根據公式i=3n-2m
(n為活動構件數目,m為低副數目)
可得自由度i=1
3、切比雪夫連桿機構被廣泛運用在機器人步態模擬上,從動圖上也能看出,它的軌跡底部較為平穩,步態方式非常像四足動物,收腿動作有急回特性。根據下圖WORKING MODEL模擬分析可得,在X軸上,也能看出它的急回特點。
4、嵌入汽缸的切比雪夫直線機構的運動
動圖
5、使用切比雪夫連桿機構的行走桌子
常見到有人遛狗溜貓,但你絕對沒見過人溜桌子的,拜荷蘭設計師Wouter Scheublin的腦洞所賜,荷蘭人民倒是有幸見到過這一奇葩景象,有人推著一張桌子在路上行走,而有著八條腿的桌子就運動著自己的腿,走的蹭蹭蹭的,場景怪異中帶著搞笑,讓人印象深刻。那麼桌子是怎麼行走的呢?其實並沒有用上什麼高科技,它只是通過精細的機械傳動機構動起來而已。設計師受到俄羅斯數學家切比雪夫的理論啟發,並將它應用到桌子中,所以這張160斤重的桌子輕輕推拉就能走,而且走的異常平穩,不比輪子差。
每條桌腿與桌板之間,都採用精細的木質結構打造。當用手推動桌子時,給力的一方會使桌腿不斷前進,通過力臂的搖擺和連接處木質結構,會把力傳遞到對面的桌腿使之向前移動,然後桌子就能滿街跑了。
F. 機械原理 曲柄搖桿機構中,當曲柄作為主動件時,該機構可能存在死點位置! 這個應該是正確的! 為什麼
因為曲柄作為主動件時,曲柄的運動為往復直線運動,當曲柄的中心與搖桿的旋轉中心重合時,此時即為死點位置,在此位置時,搖桿只受到徑向力,而沒有圓周方向分力,因此搖桿不具備旋轉條件。在實際運用中,一般是給搖桿增加飛輪裝置,靠飛輪的慣性力使搖桿轉過死點位置。