❶ 想搞核聚變,中科院等離子所(合肥)和成都核工業西南研究院哪個好
成都核工業西南研究院比較好,你看下我們的簡介。
核工業西南物理研究院建院於二十世紀六十年代中期,隸屬中國核工業集團公司,是我國最早從事核聚變能源開發的專業研究院。在國家有關部委的支持下,依託核工業體系,經過40多年的努力,擁有較完整的開展核聚變能源研發所需的學科及相關實驗室,先後承擔並出色完成國家「四五」重大科學工程項目「中國環流器一號裝置研製」及「十五」「中國環流器二號A(HL-2A)裝置工程建設項目」建設任務,取得了一批創新性的科研成果,實現了我國核聚變研究由原理探索到大規模裝置實驗的跨越發展,是我國磁約束核聚變領域首家獲得國家科技進步一等獎的單位。聚變研究和聚變相關技術的開發獲多項國家專利,具有原創性的分子束加料技術等研究成果在國際聚變一流雜志及國際聚變能源大會上發表。
本院原位於四川省樂山市郊區,「七五」期間部分遷至成都市,九十年代於成都市近郊新建了聚變研究實驗基地。全院現有職工1700餘人,科技人員1100餘人,其中中國科學院院士1人,研究員72人,副研究員及高級工程師155人,中級研究人員434人。
我國受控核聚變領域的第一個部級重點實驗室於1997年在我院建成並投入運行。本院主要科研方向是磁約束受控核聚變,包括等離子體約束、平衡、加熱實驗與理論研究以及高壓大電流、超高真空、強磁場、強流離子源、微波加熱、自動控制、復雜信息獲取與處理、低溫深冷、超導、大型電物理裝置設計建造與維護維修、聚變堆工藝與材料等方面的研究。經過40多年的艱苦奮斗,建成了22個受控核聚變等離子體實驗研究裝置,開展了一系列物理實驗。特別是1984年建成的中國環流器一號(HL-1)和1994年建成的中國環流器新一號(HL-1M)兩個中型托卡馬克裝置及其實驗研究成果,代表了當時我國磁約束聚變實驗研究的水平,處於國際上同類型、同規模裝置的先進行列,並在探索可控核聚變的道路上取得了重要進展。我國第一個具有偏濾器位形的托卡馬克裝置中國環流器二號 A(HL-2A)於 2002年建成,2003年在該裝置中首次實現偏濾器位形放電,把我國核聚變實驗研究的整體水平提升到一個新的高度。之後經過三年努力,完成了「中國環流器二號A裝置配套與完善建設項目」,使這一核聚變裝置具備了更為強大的加熱能力和時空分辨等離子體診斷系統,實驗裝置研究水平步入到一個新的台階,具備了開展近堆芯等離子體物理實驗的能力。近幾年在HL-2A裝置上成功開展了偏濾器位形下的高密度實驗、超聲脈沖分子束、低混雜波等專題改善約束實驗研究,在等離子體約束和輸運、大功率電子迴旋波加熱、加料及雜質控制等研究方面取得了一批創新性科研成果,充實了國際熱核聚變實驗堆(ITER)資料庫,為「十二五」核聚變能源開發和完成ITER計劃任務奠定了基礎。HL-2A已實現高參數條件下連續重復穩定的偏濾器位形放電,運行參數達到:縱場2.7T,等離子體電流450kA,等離子體存在時間6s,等離子體密度達0.8×1020 m-3,能量約束時間達150ms,等離子體總儲能達78kJ,電子溫度5keV(約5500萬度),獲得了我國目前托卡馬克裝置最高等離子體電子溫度,標志著我國磁約束核聚變研究再上新台階。在聚變堆設計與工藝材料研究方面也取得了一系列研究成果,初步具備了開展聚變堆物理設計、概念設計、工程設計以及聚變堆堆材料和聚變堆堆工藝的研發平台。2009年4月,HL- 2A 在國內托卡馬克裝置上首次實現高約束(H模)運行模式,獲得的等離子體儲能達40kJ,離子溫度達2.8keV以上,等離子體約束改善因子達2。這是我國磁約束聚變實驗研究史上具有里程碑意義的重大進展。
本院作為國家ITER計劃的技術支撐單位之一,自2003年以來,先後承擔了科技部國家磁約束核聚變能發展研究專項任務,承擔了ITER的磁體重力支撐結構、屏蔽包層模塊及第一壁、放電清洗與氚送氣系統、中子通量監測系統和偏濾器朗謬爾探針系統等研製任務,以及ITER氦冷固態實驗包層模塊的詳細設計與關鍵工藝技術研發任務,已經取得了重要進展。
80年代中期,本院部份科技人員轉向國民經濟建設主戰場,致力於核聚變與等離子體應用技術的成果轉化。研製了具有自主知識產權的復合滲注鍍技術集成試驗平台,成功開發出多種等離子體復合表面處理工藝;形成了離子鍍膜、離子注入、微弧氧化、低溫改性、等離子體炬和納米粉末制備等優勢項目,以及玻璃貼膜、中大功率特殊電源和數字真空計等優勢產品。這些新技術、新工藝、新產品已廣泛應用於工業、科研與日常生活等領域,創造了很好的經濟效益和社會效益。按歐盟標准設計、生產的表面處理設備出口歐盟,實現了整機出口發達國家零的突破。
本院的研究與開發工作堅持高起點、高標准,瞄準國際前沿課題與先進水平,廣泛利用國際合作,取得了一大批具有特色的科技成果。目前已與國際原子能機構及美國、德國、日本、俄羅斯、英國、法國等30多個國際組織和國家的科研機構、大學及企業建立了合作關系。我院成功舉辦了第二十一屆世界聚變能源大會、第十三屆「國際托卡馬克物理活動」(ITPA)診斷會議、第九屆「中日聚變/裂變及先進能源系統材料會議」等國際會議。每年都有外藉科學家來院講學、進行學術交流或短期技術合作。自改革開放以來我院先後派出600多人次赴國外工作、進修和學術交流。隨著ITER計劃的實施,我院不斷派出人員參加ITER計劃國際合作與交流以及到ITER國際組織任職和工作。建院40多年來,全院已取得了5000多項科研成果,獲部省級成果獎400多項,獲國家科技進步獎18項,其中國家科技進步一等獎1項,二等獎3項。
本院十分注重人才培養,分別於1978年和1986年經國務院學位委員會和國家教育部批准招收、培養碩士研究生和博士研究生,並於1999年經全國博士後管理委員會批准建立博士後流動站,已培養出300多名碩士、100餘名博士研究生。此外,我院通過廣泛的國際合作與交流以及參加ITER計劃,造就和培養了一批具有國際視野的科研人才和聚變工程技術骨幹。
2000年本院與成都理工大學合作在樂山基地創辦了「成都理工大學樂山學院」,該學院2003年發展為「成都理工大學工程技術學院」。 成都理工大學工程技術學院主要從事本、專科學歷教育。
根據國家核能開發規劃,「十二五」期間,我院將以「十一五」形成的能力和技術為基礎,充分抓住ITER建造期間的良好的國際合作機遇,充分利用HL-2A及其升級改造後的裝置以及承擔的ITER計劃項目,發展聚變關鍵技術,培養專業人才,建設聚變堆設計和關鍵技術研發平台,為我國開發核聚變能源奠定基礎。同時,大力發展等離子體應用技術和非核優勢技術,創造更好的經濟效益和社會效益。
本院的發展受到了黨和國家領導人的關注,得到了國家有關部委、地方各級政府以及業內專家的大力支持,也獲得了國際機構、外國政府和組織以及國際友人的幫助。我們一定不辜負他們的希望,不懈努力,與時俱進,在本世紀內升起中國的「人造太陽」,造福子孫後代!
❷ 托卡馬克裝置的加熱溫度是多少度
現在石油和煤炭價格飛速上漲,而且使用這些能源會導致環境污染,造成全球變暖,因此人們將目光更多地投到核能上。核反應分為裂變和聚變兩種。目前人類利用的只有裂變能,主要燃料是鈾和釷,但這兩種元素的地球儲量都不多,勉強只夠人類使用數百年。聚變能就不同了,它的主要燃料是氚和氚。氚可從海水中提取,氚則是在反應堆中用中子照射鋰後製得的。地球上的氚和鋰儲量非常豐富,足夠人類使用數十億年。
不過要實現核聚變反應,首先需要外部能量來克服原子核之間的靜電排斥力,加熱溫度須達上億攝氏度,這也是為什麼氫彈爆炸時需要先用一個小型原子彈來引爆的原因。但爆炸產生的能量過於巨大和迅速,難以用來發電。為此,各國科學家們一直在努力探索,希望研製出一種類似核裂變反應堆的裝置,用來控制聚變反應的速度,使其長期穩定地逐漸釋放出能量。如果解決了這項技術,核能將真正成為人類取之不盡、用之不竭的持久能源。
目前科學家們已克服了如何加熱的難題,接下來的難題是如何控制這些具有上億攝氏度、已全部變成高溫等離子體的氚和氚,因為世界上沒有任何容器能夠盛裝它們。
所謂等離子體其實就是在高溫下失去部分電子的原子與脫離原子的正負電子共同組成的氣態帶電物質。20世紀40年代,科學家們提出用封閉的磁場來約束高溫等離子體的建議,因為磁力線是無形的,所以不懼怕高溫。1954年,前蘇聯科學家建成第一個採用磁約束方法實現個別聚變反應的「托卡馬克」裝置,又稱「環流器」。20世紀80年代初,美國和德國科學家首次研製出可以在很短的瞬間輸出微小聚變能量的托卡馬克裝置。
目前世界上最大的托卡馬克裝置是位於英國牛津郡卡勒姆科學中心的「聯合歐洲環」,由歐洲20個國家合作研製。它採用超導電磁線圈環形磁場約束方式,將燃料噴入後可以加熱到1億℃以上的高溫。位於美國新澤西州普林斯頓等離子物理實驗室中的托卡馬克裝置,可以將氚和氚的等離子混合體最高加熱到5.1億℃,比太陽中心的溫度還要熱30倍。但它們輸出的聚變能量都不大,遠小於所消耗的能量。中國也在積極發展自己的核聚變實驗裝置,1984年建成「中國環流器1號」,2006年又建成世界上第一個實現穩態運行的實驗型超導托卡馬克裝置。
由於研製聚變反應堆成本高昂,全世界任何國家都難以獨自承受,歐盟、中國、美國、日本、韓國、俄羅斯和印度科學家在2006年共同決定,合作建造一座「國際熱核聚變反應堆」,地點選在法國南部的普羅旺斯,並希望在2035年建造世界上第一座具有實用價值的示範性核聚變發電站。也許到2050年前後,我們就可以首次用以上核聚變方式發出的電力了。
❸ 核工業西南物理研究院的主要業績
經過40多年的艱苦奮斗,建成了22個受控核聚變等離子體實驗研究裝置,開展了一系列物理實驗。特別是1984年建成的中國環流器一號(HL-1)和1994年建成的中國環流器新一號(HL-1M)兩個中型托卡馬克裝置及其實驗研究成果,代表了當時我國磁約束聚變實驗研究的水平,處於國際上同類型、同規模裝置的先進行列,並在探索可控核聚變的道路上取得了重要進展。我國第一個具有偏濾器位形的托卡馬克裝置中國環流器二號 A(HL-2A)於 2002年建成,2003年在該裝置中首次實現偏濾器位形放電,把我國核聚變實驗研究的整體水平提升到一個新的高度。之後經過三年努力,完成了「中國環流器二號A裝置配套與完善建設項目」,使這一核聚變裝置具備了更為強大的加熱能力和時空分辨等離子體診斷系統,實驗裝置研究水平步入到一個新的台階,具備了開展近堆芯等離子體物理實驗的能力。近幾年在HL-2A裝置上成功開展了偏濾器位形下的高密度實驗、超聲脈沖分子束、低混雜波等專題改善約束實驗研究,在等離子體約束和輸運、大功率電子迴旋波加熱、加料及雜質控制等研究方面取得了一批創新性科研成果,充實了ITER資料庫,為「十一五」核聚變能源開發和完成ITER計劃任務奠定了基礎。HL-2A已實現高參數條件下連續重復穩定的偏濾器位形放電,運行參數達到:縱場2.7T,等離子體電流433kA,等離子體放電時間3.15s,平頂時間2.5s,輔助加熱功率2.5MW,等離子體線平均密度大於6×1019 m-3,電子溫度4.93keV(約5500萬度),獲得了我國目前托卡馬克裝置最高等離子體電子溫度,標志著我國磁約束核聚變研究再上新台階。在聚變堆設計與工藝材料研究方面也取得了一系列研究成果,初步具備了開展聚變堆物理設計、概念設計、工程設計以及聚變堆堆材料和聚變堆堆工藝的研發平台。
❹ 中國最大的核聚變研究中心在哪
我國自行設計和研製的最大的受控核聚變實驗裝置「中國環流器一號」,已在四川省樂山地區建成,並於1984年9月順利啟動,它標志著我國研究受控核聚變的實驗手段,又有了新的發展和提高,並將為人類探求新能源事業做出貢獻。美中兩國科學家分別於1993年和1994年在這個領域的研究和實驗中取得新成果。
目前,美、英、俄、德、法、日等國都在競相開發核聚變發電廠,科學家們估計,到2025年以後,核聚變發電廠才有可能投入商業運營。2050年前後,受控核聚變發電將廣泛造福人類。
核聚變反應燃料是氫的同位素氘、氚及惰性氣體3He(氦-3),氘和氚在地球上蘊藏極其豐富,據測,每1升海水中含30毫克氘,而30毫克氘聚變產生的能量相當於300升汽油,這就是說,1升海水可產生相當於300升汽油的能量。一座100萬千瓦的核聚變電站,每年耗氘量只需304千克。
氘的發熱量相當於同等煤的2000萬倍,天然存在於海水中的氘有45億噸,把海水通過核聚變轉化為能源,按目前世界能源消耗水平,可供人類用上億年。鋰是核聚變實現純氘反應的過渡性輔助「燃料」,地球上的鋰足夠用1萬年~2萬年,我國羌塘高原鋰礦儲量佔世界的一半。
科學家們發現,以3He為燃料的核聚變反應比氘氚聚變更清潔,效益更高,而且與放射性的氘氚不同的是3He是一種惰性氣體,操作安全。獲得過諾貝爾獎金的科學家博格、美國總統軍備控制顧問保羅·尼采1991年曾撰文說,沒有其它能源能像3He那樣幾乎無污染。
下世紀初,人類將在月球上開采地球上不存在的3He礦藏,用於代替氚,從而使目前世界各地建造的實驗性聚變反應可以攻克關鍵性的難關,使其走上商用成為可能。地球上並不存在天然的3He,作為核武器研究的副產品,美國每年生產大約20千克,但一台實驗性反應堆就需要至少40千克。月球上的鈦礦中蘊藏著豐富的3He資源。
月球表面的鈦金屬能吸收太陽風刮來的3He粒子。據估計,月球誕生的40億年間,鈦礦吸收了大約100萬噸3He,其能量相當於地球上有史以來所有開發礦物燃料的10倍以上。1994年日本宣布了去月球開發3He的計劃項目,日本比美國在3He聚變項目上的投資要多出100倍。
1986年起美國威斯康星州的麥迪遜就成了3He研究中心。只要從月球上運回25噸3He,就可滿足美國大約一年的能源需要。目前,全球每年的能源消費大約1000萬兆瓦,聯合國1990年公布的數字,到2050年時將會猛增至3000萬兆瓦,每年從月球上開采1500噸3He,就能滿足世界范圍內對能源的需求。
按上述開采量推算,月球上的3He至少可供地球上使用700年。但木星和土星上的3He幾乎是取之不盡、用之不竭的。綜上所述,可以看出,核聚變為人類擺脫能源危機展現了美好的前景。
❺ 報載中國建成全球首個人造太陽,有無更多詳情
鳳凰衛視消息:目前世界上第一個全超導核聚變「人造太陽」實驗裝置,已在安徽合肥進入總裝。
據香港大公報報道,在地球上模擬太陽,利用熱核聚變為人類提供源源不斷的清潔能源,中國的科學家們正朝這一理想加快前進步伐。今日,國家大科學工程EAST的由二十五位國際顧問組成的委員會通過報告和在中科院等離子體物理研究所實地考察,了解了EAST的使命、設計、研發、工程、建設進展以及未來的計劃。委員會認會,EAST使中國聚變研究和中科院等離子體所的研究能力向前邁出了一大步。
EAST是「先進超導托卡馬克實驗裝置(Experimental Advanced superconcting tokmak)」的英文縮寫。
委員會評估認為它將是世界上第一個同時具有全超導磁體和主動冷卻結構的托卡馬克,能實現穩態運行。委員會對工程進展速度、研製質量和對關鍵部件的測試,尤其是對全部由等離子體所自行研製的超導磁體,留下了非常深刻的印象。委員會強烈吁請中國科學院和國家科技部給予長期的、充足的、持續的支持。
人們認識熱核聚變是從氫彈爆炸開始的。氫彈爆炸時釋放出極大的能量,給人類帶來的是災難。而科學家們卻希望發明一種裝置,可以有效地控制「氫彈爆炸」的過程,讓能量持續穩定的輸出。科學家們把這類裝置比喻為「人造太陽」,因為它可以像太陽一樣,為人類提供一種無限的、清潔的和安全的能源。
中科院等離子體物理研究所研製的「EAST」裝置就是這樣的一種實驗設備。據有關專家介紹,等離子體長時間穩定運行是實現控制核聚變的前提條件之一,但在目前世界上的「人造太陽」實驗裝置上,等離子體穩定運行的時間都很短,短的只有幾秒鍾,最長的也只有四分多鍾,而「EAST」裝置由於採用了先進的非圓切面和全超導技術,等離子體穩定運行的時間可達十六分鍾,是迄今為止世界上能讓等離子體運行時間最長的「人造太陽」實驗裝置。目前,這一裝置的主要技術問題已被攻克,正進入總裝階段,計劃於二○○五年建成。
專家們認為,這一實驗裝置可為歐、美、日、中等七方正在談判籌建中的「國際熱核聚變實驗堆」建設提供直接經驗,並為未來聚變實驗堆提供重要的工程和物理實驗基礎。
中科院等離子體物理研究所所長李建剛說,雖然「人造太陽」的奇觀在實驗室中已經出現,但離真正的商業運行還有相當長的距離,「人造太陽」所發出的電能在短時間內還不可能進入人們的家中。但他預測,根據目前世界各國的研究狀況,這一夢想最快有可能在五十年後實現。
❻ 中國的:''人造太陽''
晨報記者:作為世界第一台全超導的「人造太陽」,它的建成對人類的未來意味著什麼?
萬元熙:它將為人類未來建造工業應用的聚變電站搭起一座橋梁。目前,在托卡馬克裝置上進行聚變反應已經獲得不小的成功,但要實現穩態、長時間地運行還有很長的路要走,我們就是想通過全超導技術來解開這個「死結」,讓它運行的時間更長,從實驗逐步走向應用。
一旦聚變電站成功運行,帶給世界的變化將是革命性的。各國之間再也不用為中東的石油而發生戰爭。沒了石油、煤礦開采帶來的污染,二氧化碳的溫室效應、南極冰面的萎縮、海岸線的增高等等一系列現在人類頭疼的問題都會消失。它將給人類帶來無限清潔的能源,就像太陽給我們的一樣。
晨報記者:目前世界通行的「人造太陽」能工作多長時間?我們這台中國「人造太陽」又能突破到怎麼樣的高度?
萬元熙:世界目前的平均水平只有300多秒,如果正常運行,我們的「人造太陽」可以達到上千秒,隨著技術的成熟,未來可能達到一個星期,甚至一個月。到那時,將是非常了不起的。
晨報記者:目前,困擾「人造太陽」從實驗走向現實應用的難題有哪些?
萬元熙:除了剛才所說的穩態運行問題外,材料也是一大難題,現在沒有哪種材料能保證在上億度環境下不會被損壞,這個問題還得靠科學家經過無數次的實驗研製出合適的材料。
晨報記者:說到這套設備我們悉頃還是不得不提到安全問題,因為採用裂變反應技術的核電站泄漏令人們不安,你們如何保證「人造太陽」裝置不會產生輻射和巨大的爆炸?
萬元熙:這是所有人關心的問題,不過,大家可以放心。「人造太陽」完全不同於裂變核電站,它採用的原料是氫和它的同位素氘,這種原料本身就沒有輻射性,雖然聚變過程中等離子體碰撞產生中子是一種輻射,但它是短暫的,一旦放電結束就不會再產生中子了,放電過程中產生的中子也是可防護睜肢陸的,通常都不能穿過我們1.5米厚的牆。
而爆炸的可能性根本不存在。雖然等離子體經過聚變能達到上億度,但都被磁場緊緊約束住,不會膨脹。即使設備出現了問題,等離子體也會在瞬間消失,不會發生爆炸。
晨報記者:人們都很關心「人造太陽」何時可以運用到日常生活中?
萬元熙:我們的裝置建成後雖然可以大大地推進研究進展,但距離實際的工業應用還有很長的路要走,樂觀估計也要30到50年。由中國、美國、歐盟、日本、俄羅斯、韓國參加的國際熱核反應堆合作計劃(ITER)是一個更先進的裝置,它需要10年才能建成;材料的發明、製造需要10年;建立示範堆,檢驗它在實際應用中的效率問題等等,這又要10年。此外,還取決於各國政府在能源問題上的認識和態度,如果都非常支持,時間就短些,否則會更長。
距離當年氫彈爆炸50多年了,盡管世界上許多國家建起了核電站,人類仍然沒有看到一座核聚變發電站的出現。核聚變電站的誘人前景依然是人們心中一個割捨不去的夢。50年來,全世界都在為建立一個能夠控制核聚變的裝置而努力。在30多個國家建造的大大小小上百個實驗裝置上,每一次放電時間的延長人們都為之興奮;每一次溫度的提高人們都為之歡呼。因為這看似小小的進步意味著我們離聚變能的應用更近了一步。前不久,中科院等離子物理所建成的全超導的托克馬克試驗裝置調試成功,掀起了全世界對未來「人造太陽」的極大關注。
中國「人造太陽」引發世界沖擊波
「人造太陽」調試成功飢廳聽到這樣的消息人們難免心生疑問:太陽可以人造嗎?在大多數人眼中,「人造太陽」是人類復制的一個新太陽。「人造太陽」真能掛在天上嗎?它究竟是個什麼樣子?中國剛剛調試成功的「人造太陽」實驗裝置又是什麼呢?這個答案只有親自造太陽的人知道。
據國家「九五」重大科學工程EAST建設項目總負責人萬元熙教授介紹,引起人們猜測的「人造太陽」,就是中科院等離子物理研究所經過8年艱苦奮斗建造成的全超導的托克馬克試驗裝置。「未來的『人造太陽』基本上是這樣,可能會更大些」。
「簡單地理解,之所以被稱作『人造太陽』,是因為這個裝置產生能量的原理和太陽產生能量的原理一樣。」萬元熙解釋,太陽能夠發出強光,輻射到宇宙空間中去,巨大的能量來自於核聚變反應。
氫彈是瞬間的,而「人造太陽」則能持續不斷地產生巨大能量。我們把這種研究稱為受控熱核聚變反應。這種反應在兩條途徑中正在迅速發展。一條途徑就是造出各式各樣的磁容器來,其中一類磁容器叫做托克馬克。經過全世界60年的努力,這類托克馬克聚變裝置已取得巨大成功。在這種裝置上已經可以把氘的聚變燃料加熱到4億-5億度的高溫區,在這樣的溫度下發生大量的聚變反應。
據悉,世界上最大的托克馬克裝置歐洲聯合環的聚變功率輸出達16兆-17兆瓦,但仍只能短暫地運行。也就是說,這個磁籠只能存在幾秒、十幾秒鍾,從加熱到實現聚變反應只有幾秒鍾的時間。現在,科學家們正在力求實現讓托克馬克裝置連續不斷地反應。
「一方面我們獲得了巨大進展,另一方面,能否走向穩態運行是未來的聚變反應堆所需要的。」萬元熙表示。「我們建造的這個全超導的托克馬克試驗裝置最大的特點就是,把托克馬克已經取得的進展過渡到穩態運行狀態,為未來實現真正的『人造太陽』做出重要貢獻。」
據悉,今年七八月,全部裝置裝好僅僅是物理實驗的開始。這個物理實驗已經引起全世界同行的很大關注和極高的興趣,因為這是到目前為止第一個全超導的、可以穩態運行的托克馬克裝置。
萬元熙還解釋說,目前全世界所有的聚變裝置還不能被稱之為「人造太陽」。從所有裝置上得到的各種研究結果都是為未來建造真實的受控熱核聚變反應堆、聚變能電站做出重要的貢獻,奠定工程和物理基礎。沒有這些工程和物理基礎,未來建造真實的聚變反應電站是不可想像的。完美能源不是夢根據1998年世界能源組織公布的數據,地球上所蘊藏的鈾礦作為燃料只能用60年左右。不僅如此,使用鈾礦的過程中還會產生一些高放射性廢物,這些廢物的壽命非常長,幾千年、幾萬年仍然有放射性,對人類的環境造成另外一種污染。相比之下,聚變能源的燃料則來自於海水,1升海水中所含氫的同位素氘如果全部提取出來,放到未來的人造太陽中發生聚變反應,放出來的能量等同於燃燒300公升的汽油的能量。
可以想像,到那時人類需要的一次性的能源將是無窮盡的,不會為可持續發展而操心,不會為能源的短缺發生政治、軍事等沖突,最重要的是不會因為使用化石燃料及其他燃料污染環境。
早在氫彈爆炸成功時,前蘇聯和美國就以絕密的形式進行受控熱核聚變能的研究。由於原子彈爆炸後,十幾年的時間就研製出裂變電站,人們可以利用原子彈的裂變能量;氫彈爆炸後,我們即將獲得巨大的、無限的清潔能源。這些國家便認為,能夠成功爆炸氫彈,也可以用5年、10年或者15年的時間造出一個聚變能電站。專家表示:「我們對此非常樂觀。」
受控熱核聚變的條件是必須加熱燃料到億萬度的高溫,把燃料約束到一個局部的小空間中。什麼物質的器皿能夠盛裝上億度的高溫燃料?這成為當前最主要的難題。耐火磚、不銹鋼都不可行,必須採用特殊方式來約束聚變燃料。
如果沒有物質的器皿盛裝上億度高溫的等離子體聚變燃料,可否用磁場構造一個磁的容器來盛裝?這就產生了托克馬克這類磁約束聚變裝置。使用這個裝置,其外面大量的大線圈和磁體會產生一個環形的磁容器,在這個磁容器裡面約束、加熱聚變的燃料,讓它發生聚變反應。
過去的60年,近100個大大小小的托克馬克一點點地貢獻了不同特點的技術,才使得我們敢於去建造越來越大的托克馬克聚變裝置。背景鏈接托克馬克
如何克服巨大的靜電斥力將原子核聚到一起,還要將它們的密度維持在一定水平以防不安全的能量爆發(如氫彈就是不可控的核聚變)?前蘇聯科學家在20世紀50年代初率先提出磁約束的概念,並在1954年建成了第一個磁約束裝置—形如中空麵包圈的環形容器「托克馬克(Tokamak)」,又稱環流器。一般情況下,在超過10萬攝氏度的磁場中,原子中的電子就脫離了原子核的束縛,形成等離子體。帶電粒子會沿磁力線做螺旋式運動,所以等離子體就這樣被約束在這種環形的磁場中,也叫磁籠。人造太陽
億萬年來,地球上的萬物靠著太陽源源不斷的能量維持自身的發展。在太陽的中心,溫度高達1500萬攝氏度,氣壓達到3000多億個大氣壓。在這樣的高溫高壓條件下,氫原子核聚變成氦原子核,並放出大量能量。幾十億年來,太陽猶如一個巨大的核聚變反應裝置,無休止地向外輻射著能量。
核聚變能是兩個較輕的原子核結合成一個較重的原子核時釋放的能量,產生聚變的主要燃料之一是氫的同位素氘。氘廣泛分布在水中,每升水約含30毫克氘,通過聚變反應產生的能量相當於300升汽油的熱能。採集氘並使之與相關物質聚變產生能量,就是「人造太陽」的原理。
根據科學家的分析,如果我們未來能建成一座1000兆瓦的核聚變電站,每年只需從海水中提取304公斤的氘就可產生1000兆瓦的電量。照此計算,地球上僅在海水中就含有45萬億噸氘,足夠人類使用上百億年,比太陽的壽命還要長。
1952年,當第一顆氫彈爆炸之後,人類製造核聚變反應成為現實,但那隻是不可控制的瞬間爆炸。從那個時候開始,科學家們一直在尋找途徑,把氫彈爆炸在某個試驗裝置上加以控制,然後源源不斷地取出它的核聚變能。50多年過去了,這個夢想一直沒能實現。
美國、前蘇聯等國在20世紀80年代中期發起了耗資100億歐元的國際熱核實驗反應堆�ITER 計劃,旨在建立世界上第一個受控熱核聚變實驗反應堆,中國於2003年加入該計劃。中科院等離子物理研究所是這個國際科技合作計劃的國內主要承擔單位。
1994年底,中科院等離子物理研究所建成中國第一台超導托卡馬克裝置HT-7,使中國成為繼俄、法、日之後第四個擁有同類實驗裝置的國家。在此基礎上,專家著手研製中國「九五」重大科學工程之一—EAST。從2003年開始,EAST開始進入總裝。據介紹,該工程立項時國家投資1.65億元人民幣。推進國際合作實現人類夢想據悉,由於商業利益巨大,以及對人類可持續發展的重要性,一直以來所有關於「人造太陽」的試驗一直處在絕密狀態。但是,事實上,當從事這些絕密研究數十年後,所有國家都發現想要實現目標太困難了。因此發展到現在,受控熱核聚變的研究在全世界成為最廣泛的國際合作研究項目,已經不再保密。
據悉,我國科學家在20世紀50年代中期就開始了可控核聚變的研究。1984年,中國核工業總公司西南物理研究院曾建成中國最大的研究核聚變的托克馬克裝置。2006年3月,中科院等離子物理研究所建造的「人造太陽」實驗裝置調試成功,意味著能夠穩態運行的實驗裝置已經具備實驗能力。
中科院等離子物理研究所所長李建剛說:「我們這一代科學家已經做了50年還沒有建成『人造太陽』。並不是說我們太笨,因為這件事情太難了,難到靠任何一個國家的財力、物力和科學技術都不可能達到。我最大的願望就是希望有生之年能夠看到一個燈泡是用聚變能點亮的。但是客觀地講,這種願望可能實現不了,因為太難了。」
雖然中科院研製的「人造太陽」實驗裝置還沒有進行真正的核聚變實驗,但是他們的調試成功已經得到了國際聚變界的關注和稱贊。在國家「九五」重大科學工程EAST建設項目總負責人萬元熙教授看來,和30年前剛剛開始這項研究相比,國際聚變界態度的轉變讓人頗有感觸。
萬元熙談道:「過去我們與其他國家討論國際交流合作的時候,某些國家的官員總說『我們跟你沒合作,沒有什麼可獲得的』。現在,世界上許多著名的研究所都主動、積極地要求與中科院等離子物理研究所、中國磁約束聚變界進行廣泛合作。10多年來,隨著我國國力的強盛和改革開放的深入,一批有才乾的、本土的聚變人才已經迅速成長起來,這對中國未來聚變研究是至關重要的。中國的聚變研究不是一代人能夠實現的,『人造太陽』的夢不是一代人能夠完成的,這個夢要幾代人連續不斷的努力才能夠實現。」
萬元熙回憶:「我們宣傳受控熱核聚變的時候,許多領導會緊接著問『我們什麼時候能拿到聚變能?我們什麼時候能夠發電?』我告訴他們,可能還要30-50年時間。『哦,看來是太長了。』我要說的是,與人類歷史發展的長河相比,30年、50年算什麼!50年的時間中國發生了翻天覆地的變化,如果再來30-50年,我們能夠一勞永逸地解決人類可持續發展最重要的清潔能源,無限的清潔能源,30-50年不成問題。」
據了解,研究建設「人造太陽」是一項極其耗費人力、物力、財力、時間的事業。比如,在托克馬克已經取得巨大成功的基礎上,國際聚變界曾在1984年聯合進行下一個試驗聚變堆的設計和研究。當時有幾個不同的版本。第一個版本是用100億歐元把這個試驗反應堆建造起來,國際聚變界、各國政府都覺得花錢太多;之後改成第二個版本,用50億歐元建造,現在已經得到各個國家政府的批准,中國也決定加入進來。50億歐元也僅僅能夠建造一個試驗反應堆,而這個試驗反應堆將會產生500兆-700兆瓦的聚變功力。
萬元熙介紹,中科院2月份進行試驗調試的時候,大概每天的電費就達5萬元左右,還不包括其他易損件的補充、更替和人力等。這樣一個裝置如果正常運行起來,每天運行和試驗的費用應當在10萬元左右。「幸運的是我們的工程調試非常成功,對於裝置的運行我們有95%的成功把握。聽到我們工程調試成功的消息後,世界上主要研究所著名科學家紛紛來電祝賀,並將於今年10月來參加我們的第二次國際顧問委員會。這就是說,我們的投入得到了非常好的回報」。
❼ 受控核聚變實驗裝置是什麼裝置
如同某些重原子能發生裂變,同時釋放出巨大的能量一樣,某些輕核也能聚變成較重的核,並釋放出比裂變時大幾倍甚至幾十倍的能量。因此,輕核聚變將是人類獲得核能的另一條更有遠大前景的途徑。人們開展了很多這方面的研究,力求在人為可控的條件下將輕原子核(主要為氘、氚等)聚合成較重的原子核,同時釋放出巨大能量——這就是所謂的受控核聚變。由於氘在地球的海水中藏量豐富,多達40萬億噸,且反應產物是無放射性污染的氦,因此它具有釋放能量密度高、燃料豐富、成本低廉、與環境兼容性強、安全性好等優點。
然而由於聚變反應能夠自持進行的條件十分苛刻,要首先使燃料處於等離子體狀態,並使等離子體的溫度達到幾千萬度甚至幾億度並持續足夠長的熱能約束時間,原子核才可以克服斥力聚合在一起,所以受控核聚變的實現極其艱難。目前這方面的研究分慣性約束和磁約束兩種途徑。慣性約束是利用超高強度的激光在極短的時間內輻照靶板來產生聚變;磁約束是利用強磁場可以很好的約束帶電粒子的特性,構造一個特殊的磁容器,建成聚變反應堆。20世紀下半葉,聚變能的研究取得了重大進展,利用一種環行磁約束裝置——托卡馬克研究領先於其他途徑。
中國一直很重視這方面的研究。中國核工業西南物理學院於1986年自行研製成功托卡馬克研究裝置——「中國環流器一號」。1994年他們又研製成「中國環流器新一號裝置」,更在2002年12月研製成功「中國環流器二號A裝置」。位於中國安徽省合肥市的中國科學院等離子體物理研究所承擔的HT一7超導托卡馬克實驗在2002年至2003年冬季取得了重大進展,該裝置是將超導技術成功應用於產生托卡馬克磁場的線圈上,使得磁約束的連續穩態運行成為現實。這是受控核聚變研究的一次重大突破。中科院等離子體所的HT-7托卡馬克實驗裝置成功的實現了在低雜波驅動下電子溫度超過500萬度、中心密度大於1.0×1019/m3、長達20秒可重復的高溫等離子體放電;實現了電子溫度超過1000萬度、中心密度大於1.2×1.0 x 1019/m3、超導10秒的等離子體放電。在離子伯恩斯波和低雜波協同作用下,實現放電脈沖長度大於100倍能量約束時間、電子溫度2000萬度的高約束穩態運行;最高電子溫度超過3000萬度。
等離子所取得的重大進展表明,HT-7超導托卡馬克裝置已經成為世界上第二個放電長度達到1000倍熱能約束時間。溫度為1000萬度以上,能對穩態先進運行模式展開深入的物理和相關工程技術研究的超導裝置,在穩態高約束運行長度上已達到世界領先水平。