㈠ 測定空氣中氧氣含量的裝置有哪些
確定氧氣含量的裝置:紅磷,廣口瓶,燃燒匙,導氣管,燒杯,止水夾。
收集氧回氣裝置:固加熱型:高錳答酸鉀,試管,酒精燈,鐵架台,棉花團,水槽,導氣管,集氣瓶
固液不加熱型:鐵架台,錐形瓶,二氧化錳,雙氧水,分液漏斗,導氣管,水槽,集氣瓶
㈡ 生活中常見的感測器有哪五種各有什麼作用
一、五種常用的感測器類型
(一)溫度感測器
該設備從源頭收集有關溫度的信息,並轉換成其他設備或人可以理解的形式。溫度感測器的最佳例證是玻璃水銀溫度計,會隨著溫度的變化而膨脹和收縮。外部溫度是溫度測量的來源,觀察者觀察汞的位置以測量溫度。溫度感測器有兩種基本類型:
● 接觸式感測器——這種類型的感測器需要與被感測對象或介質直接物理接觸。它們可以在很大的溫度范圍內監控固體、液體和氣體的溫度。
● 非接觸式感測器——這種類型的感測器不需要與被檢測的物體或介質發生任何物理接觸。它們監控非反射性固體和液體,但由於天然透明性,因此對氣體無用。這些感測器使用普朗克定律測量溫度。該定律處理從熱源輻射的熱量以測量溫度。
不同類型溫度感測器的工作原理及實例
(1)熱電偶——它們由兩根電線(每根均為不同的均勻合金或金屬)組成,通過在一端的連接形成測量接頭,該測量接頭對被測元件開放。電線的另一端端接到測量設備,在此形成參考結。由於兩個結點的溫度不同,電流流過電路,測量得到的毫伏來確定結點的溫度。熱電偶示意圖如下。
(2)電阻溫度檢測器(RTD)——這是一種熱電阻,其製造目的是隨著溫度的變化改變電阻,它們比任何其他溫度檢測設備都貴。電阻式溫度探測器示意圖如下。
(3)熱敏電阻——它們是另一種電阻,電阻的大變化與溫度的小變化成正比。
(二)、紅外感測器
該設備發射或檢測紅外輻射以感知環境中的特定相位。一般來說,熱輻射是由紅外光譜中的所有物體發出的,紅外感測器檢測到這種人眼看不見的輻射。
工作原理
其基本原理是利用紅外發光二極體向物體發射紅外光。同一類型的另一個紅外二極體將用於探測物體反射波。
當紅外接收器受到紅外光照射時,導線上會產生電壓差。由於產生的電壓很小,很難被檢測到,因此使用運算放大器(運放)來准確地檢測低電壓。
測量物體與接收感測器的距離:紅外感測器組件的電特性可用於測量物體的距離,當紅外接收器受到光照時,導線上會產生電位差。
(三)紫外線感測器
這些感測器測量入射紫外線的強度或功率。這種電磁輻射的波長比x射線長,但仍比可見光短。一種被稱為聚晶金剛石的活性材料正被用於可靠的紫外感測,紫外線感測器可以發現環境暴露在紫外線輻射下的情況。
工作原理
紫外線感測器接收一種類型的能量信號,並傳輸不同類型的能量信號。
為了觀察和記錄這些輸出信號,它們被導向電表。為了生成圖形和報告,輸出信號被傳輸到模數轉換器(ADC),然後再通過軟體傳輸到計算機。
(四)觸摸感測器
觸摸感測器根據觸摸位置充當可變電阻器。觸摸感測器作為可變電阻工作的圖。
原理與工作
部分導電材料反對電流的流動。線性位置感測器的主要原理是,當電流必須通過的材料長度越長時,電流就越相反。因此,材料的電阻通過改變其與完全導電材料接觸的位置而變化。
通常,軟體與觸摸感測器相連。在這種情況下,內存是由軟體提供的。當感測器被關閉時,他們可以記憶「最後一次接觸的位置」。一旦感測器被激活,他們就能記住「第一次接觸位置」,並理解與之相關的所有值。這個動作類似於移動滑鼠並將其定位在滑鼠墊的另一端,以便將游標移動到屏幕的遠端。
(五)接近感測器
接近感測器檢測幾乎沒有任何接觸點的物體的存在。由於感測器與被測物體之間沒有接觸,且缺少機械零件,因此這些感測器的使用壽命長,可靠性高。不同類型的接近感測器有感應式接近感測器、電容式接近感測器、超聲波接近感測器、光電感測器、霍爾效應感測器等。
工作原理
接近感測器發射電磁或靜電場或電磁輻射束(如紅外線),並等待返回信號或場中的變化,被感測的物體稱為接近感測器的目標。
● 感應式接近感測器——它們有一個振盪器作為輸入,通過接近導電介質來改變損耗電阻。這些感測器是首選的金屬目標。
● 電容式接近感測器——它們轉換檢測電極和接地電極兩側的靜電電容變化。這是通過以振盪頻率的變化接近附近的物體而發生的。為了檢測附近的目標,將振盪頻率轉換為直流電壓,並與預定閾值進行比較。這些感測器是塑料目標的首選。
㈢ 生活中最常用的感測器有哪些
1、氧感測器:當氧感測器故障時,ECU無法獲取這些信息,就不知道噴射的汽油量是否正確,而不合適的油氣空燃比會導致發動機功率降低,增加排放污染;
2、輪速感測器:它主要是收集汽車的轉速來判斷汽車有沒有打滑的徵兆,所以,就有一一個專門收集汽車輪速的感測器來完成這項工作,一般安裝在每個車輪的輪轂上,而一旦感測器損壞,ABS會失效;
3、水溫感測器:當水溫感測器故障後,往往冷車啟動時顯示的還是熱車時的溫度信號,ECU得不到正確的信號,只能供給發動機較稀薄的混合氣,所以發動機冷車不易啟動,且還會伴隨怠速運轉不穩定,加速動力不足的問題;
4、電子油門踏板位置感測器:當感測器失效後,ECU無法測得油門位置信號,無法獲得油門門踏板的正確位置,所以會出現發動機加速無力的現象,甚至出現發動機不能加速的情況;
5、進氣壓力感測器:進氣壓力感測器顧名思義就是隨著發動機不同的轉速負荷,感應一系列的電阻和壓力變化,轉換成電壓信號,供ECU修正噴油量和點火正時角度。一般安裝在節氣門邊上,假如故障了會引起點火困難、怠速不穩、加速無力等問題。
㈣ 檢測裝置的分類
增量式檢測方式只測量位移增量,每移動一個測量單位就發出一個測量信號。其優點是檢測裝置比較簡單,任何一個對中點都可以作為測量起點。移動距離是靠對測量信號計數後讀出的,一旦計數有誤,此後的測量結果將全錯。另外在發生故障時(如斷電等)不能再找到事故前的正確位置,事故排除後,必須將工作台移至起點重新計數才能找到事故前的正確位置。
絕對值式測量方式可以避免上述缺點,它的被測量的任一點的位置都以一個固定的零點作基準,每一被測點都有一個相應的測量值。採用這種方式,解析度要求愈高,結構也愈復雜。 數字式檢測是將被測量單位量化以後以數字形式表示,它的特點是:
①被測量量化後轉換成脈沖個數,便於顯示處理;
②測量精度取決於測量單位,與量程基本無關;
③檢測裝置比較簡單,脈沖信號抗干擾能力強。
模擬式檢測是將被測量用連續的變數來表示。在大量程內作精確的模擬式檢測在技術上有較高要求,數控機床中模擬式檢測主要用於小量程測量。它的主要特點是:
①直接對被測量進行檢測,無須量化;
②在小量程內可以實現高精度測量;
③可用於直接檢測和間接檢測。
對機床的直線位移採用直線型檢測裝置測量,稱為直接檢測。其測量精度主要取決於測量元件的精度,不受機床傳動精度的直接影響。但檢測裝置要與行程等長,這對大型數控機床來說,是一個很大的限制。
對機床的直線位移採用回轉型檢測元件測量,稱為間接測量。間接檢測可靠方便,無長度限制,缺點是在檢測信號中加大了直線轉變為旋轉運動的傳動鏈誤差,從而影響檢測精度。因此,為了提高定位精度,常常需要對機床的傳動誤差進行補償。
㈤ 日常生活中的感測器,它們檢測的各是什麼非電量
20V,30V的非電量。
感測器(英文名稱:transcer/sensor)是一種檢測裝置,能感受到被測量的信息,並能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。
感測器的特點包括:微型化、數字化、智能化、多功能化、系統化、網路化。它是實現自動檢測和自動控制的首要環節。感測器的存在和發展,讓物體有了觸覺、味覺和嗅覺等感官,讓物體慢慢變得活了起來。通常根據其基本感知功能分為熱敏元件、光敏元件、氣敏元件、力敏元件、磁敏元件、濕敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等十大類。