⑴ 機車傳動裝置的分類
利用原動機驅動離心泵,使獲得能量的工作液體(機車用油)沖擊渦輪從而驅動車輪來實現傳遞動力的裝置。1902年德國的費廷格提出了液力循環元件(液力耦合器和液力變扭器)的方案,即將泵輪和渦輪組合在同一殼體內,工作液體在殼體內循環流動。採用這種元件大大提高了液力傳動裝置的效率。液力傳動首先用於船舶。1932年製成第一台約60千瓦的液力傳動柴油動車。
液力耦合器有相對布置的一個泵輪和一個渦輪。泵輪軸和渦輪軸的扭矩相等。渦輪轉速略低於泵輪轉速,二者轉速之比即為液力耦合器的效率。液力耦合器用於機車主傳動時,效率約為97%。液力變扭器除泵輪和渦輪外,還有固定的導向輪。渦輪與泵輪的扭矩之比稱變扭比,轉速比越小則變扭比越大。在同樣的泵輪轉速下,渦輪轉速越低則渦輪扭矩越大。因此機車速度越低則牽引力越大,機車起動時的牽引力最大。液力變扭器的效率只在最佳工況下達到最大值。現代機車用的液力變扭器效率可達90%~91%。但當轉速比低於或高於最佳工況時,效率曲線即呈拋物線形狀下降。為使機車在常用速度范圍內都有較高的傳動效率,機車的液力傳動裝置一般採用不止一個簡單的液力變扭器。機車液力傳動裝置如梅基特羅型、克虜伯型、蘇里型、SRM型、ΓΤК型等,都是將一個液力變扭器與某種機械傳動裝置結合使用。福伊特型則是採用 2~3個液力變扭器(最佳工況點的轉速比一般並不相同)或液力耦合器(圖1),利用充油和排油換檔,在各種機車速度下都使當時效率最佳的那一液力循環元件充油工作。換檔時,前一元件排油和後一元件充油有一段重疊時間,所以換檔過程中的機車牽引力只是稍有起伏而不中斷。和其他類型相比,福伊特型液力傳動裝置的重量較大,但有結構簡單、可靠性較高的優點。到60年代,經驗證明:對於1500千瓦以上的液力傳動裝置,福伊特型較為適用。中國機車所用的液力傳動裝置都是這一類型的。
大功率增壓柴油機車的液力傳動裝置都不用液力耦合器,但燃氣輪機車的液力傳動裝置則用一個啟動變扭器,並在高速時用一個液力耦合器。
液力循環元件傳遞功率P的能力也像其他液力機械一樣,與工作液體重度r的一次方、泵輪轉速n的三次方和元件尺寸D的五次方成正比,即P∝rnD。在柴油機車上,為了減小傳動裝置的尺寸,柴油機都不直接驅動液力循環元件的泵輪,而是通過一對增速齒輪,在軸承和其他旋轉件容許線速度的限制范圍內,盡可能提高泵輪轉速。燃氣輪機車由於轉速很高,所以用一級甚至兩級減速齒輪來驅動泵輪。同一種傳動裝置,只要改變這種齒輪的增速比或減速比,即可在經濟合理的范圍內應用於不同功率的機車。
液力傳動裝置通常包括一組使輸出軸能改變轉向的換向齒輪和離合器機構。輸出軸通過適當的機械部件(萬向軸和車軸齒輪箱,或曲拐和連桿等)驅動機車車輪。液力傳動系統還可包括一組工況機構,使機車具有兩種最高速度,在高速檔有較高的行車速度,在低速檔有較高的效率和較大的起動牽引力和加速能力。因此同一機車既可用於客運,也可用於貨運,或者既可用於調車,也可用作小運轉機車。而當調車工況的最高速度定得較低時,機車在起動和低速運行時的牽引力可以超過同功率的電力傳動柴油調車機車。
1965年出現的液力換向柴油調車機車,傳動裝置有兩組液力變扭器,每個行車方向各用一組,換向動作也用充油排油的方式來完成。當機車正在某一方向行駛時改用另一方向的液力變扭器充油工作,由於變扭器的渦輪轉向與泵輪相反,對機車即起制動作用。機車換向不必先停車。只要司機改換行車方向手把的位置,機車即可自動地完成從牽引狀態經過制動、停車,又立即改換行車方向的全部過程。
液力傳動裝置不用銅,重量輕,成本低,可靠性高,維修量少,並具有隔振、無級調速和恆功率特性好等優點,因而得到廣泛採用。聯邦德國和日本的柴油機車全部採用液力傳動。 把機車原動機的動力變換成電能,再變換成機械能以驅動車輪而實現傳遞動力的裝置。電力傳動裝置按發展的順序有直-直流電力傳動裝置、交-直流電力傳動裝置、交-直-交流電力傳動裝置、交-交流電力傳動裝置四種。它們所用的牽引發電機、變換器(指整流器、逆變器、循環變頻器等)和牽引電動機類型各不相同。
直-直流電力傳動裝置
1906年美國製造的150千瓦汽油動車最先採用了直-直流電力傳動裝置。1965年以前,世界各國單機功率75~2200千瓦的電傳動機車都採用這種電力傳動裝置。這是因為同步牽引發電機無法高效變流,非同步牽引電動機難於變頻調速,只能採用直流電機。直-直流電力傳動原理是基於直流電機是一種電能和機械能的可逆換能器,其原理見圖 2。原動機G為柴油機,通過聯軸器驅動直流牽引發電機ZF,後者把柴油機軸上的機械能變換成可控的直流電能,通過電線傳送給1台或多台串並聯或全並聯接線的直流牽引電動機ZD,直流牽引電動機將電能變換成轉速和轉矩都可調節的機械能,經減速齒輪驅動機車動輪,實現牽引。此外設有自控裝置。自控裝置由既對柴油機調速又對牽引發電機調磁的聯合調節器、牽引發電機磁場和牽引電動機磁場控制裝置等組成,用來保證直-直流電力傳動裝置接近理想的工作特性。
交-直流電力傳動裝置
直流牽引發電機受整流子限制,不能製造出大功率電力傳動裝置。60年代前期,美國發明大功率硅二極體和可控硅,為製造大功率的電力傳動裝置准備了條件。1965年法國研製成 1765千瓦交-直流電力傳動裝置,它是世界各國單機功率 700~4400千瓦機車普遍採用的電力傳動裝置。
交-直流和直-直流電力傳動原理相似。由圖3可以看出兩者差異在於柴油機 G驅動同步牽引發電機TF,經硅二極體整流橋ZL,把增頻三相交流電變換成直流電,事實上TF和ZL組成等效無整流子直流電機。其餘部分和自控裝置主要工作原理與直-直流電力傳動裝置相同。
交-直-交流電力傳動裝置
非同步牽引電動機結構簡單,體積小,工作可靠,在變頻調壓電源控制下,能提供優良調速性能。聯邦德國於 1971年研製成實用的交-直-交流電力傳動裝置,如圖4所示。
交-直-交流電力傳動原理如下:柴油機 G驅動同步牽引發電機TF,產生恆頻可調壓三相交流電(柴油機恆速時),經硅整流橋ZL變換成直流電,再經過可控硅逆變器 N(具有分諧波調制功能)再將直流電逆變成三相變頻調壓交流電,通過三根電線傳輸給多台全並聯接線的非同步牽引電動機AD。AD將交流電能變換成轉速和轉矩可調的機械能,驅動機車動軸,實現牽引。它的自控裝置由聯合調節器以及對同步牽引發電機磁場、變換器、非同步牽引電動機作脈沖、數模或邏輯控制的裝置組成,從而提供接近理想的工作特性。
交-交流電力傳動裝置
交-直-交變頻調壓電能經二次變換,降低了傳動裝置的效率,而且逆變器用可控硅需要強迫關斷,對主電路技術有較高的要求。為提高效率,在交-交流電力傳動裝置中採用了自然關斷可控硅相控循環變頻器(圖5)。60~70年代,美國在重型汽車上,蘇聯在電力機車上都採用了交-交流電力傳動裝置。不過美國用的是非同步牽引電動機牽引,蘇聯用的是同步牽引電動機牽引。
交-交流電力傳動原理如圖5所示。柴油機G驅動同步牽引發電機TF,發出增頻可調壓交流電,經相控循環變頻器FB變換成可變頻調壓的三相交流電(降頻),輸給多台全並聯接線的非同步牽引電動機AD。AD將交流電能變換成轉速和轉矩可調的機械能,驅動動輪實現牽引。它的自控裝置也是由聯合調節器、脈沖、數模、邏輯電路等裝置構成(但對可控硅導通程序要求嚴格),同樣能保證優良的工作特性。
⑵ 汽車傳動系統的電力式傳動系統是怎麼樣的
電力傳動是很早採用的一種無級傳動裝置(見圖)。
電力式傳動系統示意圖1—發動機;2—發電機;3—車輪;4—逆變裝置;5—可控硅整流器
由汽車發動機帶動發電機發電
⑶ 飛機的電動傳動是什麼
電傳操縱系統:是將飛行員的操縱信號,經過變換器變成電信號,通過電纜直接傳輸到自主式舵機的一種系統。
它去掉了傳統的飛機操縱系統中布滿飛機內部的從操縱桿到舵機之間的機械傳動裝置和液壓管路。
電傳操縱系統的主要組成部分包括運動感測器、中央計算機、作動器和電源等。為保證飛行的可靠性,電傳操縱系統都採用冗餘度設計:
即四套獨立的電傳操縱系統,實行「少數服從多數」原則。
一旦出現故障,有一套不工作,另外三套還可操縱飛機正常飛行。
如果一套「亂來」,出現錯誤,另外三套可以把它糾正過來。
四餘度操縱系統的優點是它可以允許有「第二次故障」。
但是該系統技術復雜,研製成本高,機務維修量大,目前只有少數國家掌握。
●較為規范的名稱是:三軸四餘度數字式電傳/主動控制系統。四餘度電傳控制技術在西方國家已發展成熟並應用到他們的第三代和第四代戰機上。
●三軸四餘度數字式電傳/主動控制系統:所謂三軸是指縱軸、橫滾軸和偏航軸,四餘度是指三條數字信道與一條備用模擬式信道。
●講通俗一點,『三軸四餘度』就是採用計算機控制的飛機,即不再用機械操縱桿,而採用純數字式電傳操縱系統。
●
電傳操縱系統:是將飛行員的操縱信號,經過變換器變成電信號,通過電纜直接傳輸到自主式舵機的一種系統。它去掉了傳統的飛機操縱系統中布滿飛機內部的從操
縱桿到舵機之間的機械傳動裝置和液壓管路。電傳操縱系統的主要組成部分包括運動感測器、中央計算機、作動器和電源等。為保證飛行的可靠性,電傳操縱系統都
採用冗餘度設計。:即四套獨立的電傳操縱系統,實行「少數服從多數」原則。一旦出現故障,有一套不工作,另外三套還可操縱飛機正常飛行。如果一套「亂
來」,出現錯誤,另外三套可以把它糾正過來。四餘度操縱系統的優點是它可以允許有「第二次故障」。但是該系統技術復雜,研製成本高,機務維修量大,目前只
有少數國家掌握。
●我國從1991年開始進行三軸四餘度數字式電傳/主動控制系統的開發,採用該技術的J-8IIACT驗證機在1996年12月29日實現首飛。
●現在殲10、殲-7MF、FC-1均採用電傳操縱系統。
⑷ 3.電空傳動裝置有何優點
2.電磁傳動裝置一般由什麼組成?3.電磁鐵一般有幾種分類?4.串聯電磁鐵有何特點?並聯電磁鐵有何特點?5.交流電磁鐵的吸力有什麼特點?6.簡述閉式電空閥的工作原理。電空傳動裝置由電磁傳動裝置的吸力特性可知,電磁吸力隨氣隙的增加而下降,因此在需要長行程,大傳動力的場合,用電磁傳動裝置就不適宜了。而電空傳動裝置卻能將較大的力傳遞較遠
⑸ 電力傳動裝置
傳動裝置的分類[2]
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
⑹ 機車電傳動系統的功用
將發動機發出的動力傳給汽車的驅動車輪,產生驅動力,使汽車能在一定速度上行駛。
傳動系統一般由離合器、變速器、萬向傳動裝置、主減速器、差速器和半軸等組成。
傳動系統的作用如下:1、實現降速增矩:發動機轉速高而相應的轉矩(牽引力)小,汽車驅動輪無法直接與發動機相連接,而要通過傳動系統降低轉速、增加轉矩。
2、保證汽車能倒車行駛:汽車在某些情況下需倒車,因發動機不能倒轉,這需要通過變速器的倒檔實現。
3、在必要時中斷動力的傳遞:起動發動機或汽車換檔、制動時都要暫時中斷動力的傳遞,此功能由離合器實現。在汽車長時間停車,或汽車雖停車但發動機還不熄火的情況下,都要求傳動系統較長時間保持中斷,這個功能由變速器的空檔實現。
4、實現兩側驅動輪差速轉動:汽車轉彎時,兩側車輪通過的距離不相等,外側車輪應比內側車輪轉得快,由差速器來實現。
⑺ 火車上的電傳動和液力傳動分別指什麼呀
電傳動:機車上使用柴油內燃機產生動力,動力經發電機轉化成電力,再由電動機驅動車輪
液力傳動:葉輪將動力機(內燃機、電動機、渦輪機等)輸入的轉速、力矩加以轉換,經輸出軸帶動機器的工作部分。液體與裝在輸入軸、輸出軸、殼體上的各葉輪相互作用,產生動量矩的變化,從而達到傳遞能量的目的。液力傳動與靠液體壓力能來傳遞能量的液壓傳動在原理、結構和性能上都有很大差別。液力傳動的輸入軸與輸出軸之間只靠液體為工作介質聯系,構件間不直接接觸,是一種非剛性傳動。液力傳動的優點是:能吸收沖擊和振動,過載保護性好,甚至在輸出軸卡住時動力機仍能運轉而不受損傷,帶載荷起動容易,能實現自動變速和無級調速等。因此它能提高整個傳動裝置的動力性能。
⑻ 常見的傳動裝置有哪些
齒輪傳動(機械手錶),鏈條傳動(自行車),皮帶傳動(汽車起動機)。
⑼ 電動汽車傳動裝置的作用是什麼
傳動裝置電動汽車傳動裝置的作用是將電動機的驅動轉矩傳給汽車的驅動軸,當採用電動輪驅動時,傳動裝置的多數部件常常可以忽略。因為電動機可以帶負載啟動,所以電動汽車上無需傳統內燃機汽車的離合器
⑽ electric actuator是什麼意思
電力傳動裝置,電動執行機構