Ⅰ 一級圓柱齒輪減速器設計說明書
計算過程及計算說明
一、傳動方案擬定
第三組:設計單級圓柱齒輪減速器和一級帶傳動
(1) 工作條件:使用年限8年,工作為二班工作制,載荷平穩,環境清潔。
(2) 原始數據:滾筒圓周力F=1000N;帶速V=2.0m/s;
滾筒直徑D=500mm;滾筒長度L=500mm。
二、電動機選擇
1、電動機類型的選擇: Y系列三相非同步電動機
2、電動機功率選擇:
(1)傳動裝置的總功率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.982×0.97×0.99×0.96
=0.85
(2)電機所需的工作功率:
P工作=FV/1000η總
=1000×2/1000×0.8412
=2.4KW
3、確定電動機轉速:
計算滾筒工作轉速:
n筒=60×1000V/πD
=60×1000×2.0/π×50
=76.43r/min
按手冊P7表1推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』a=3~6。取V帶傳動比I』1=2~4,則總傳動比理時范圍為I』a=6~24。故電動機轉速的可選范圍為n』d=I』a×
n筒=(6~24)×76.43=459~1834r/min
符合這一范圍的同步轉速有750、1000、和1500r/min。
根據容量和轉速,由有關手冊查出有三種適用的電動機型號:因此有三種傳支比方案:如指導書P15頁第一表。綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,可見第2方案比較適合,則選n=1000r/min 。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為Y132S-6。
其主要性能:額定功率:3KW,滿載轉速960r/min,額定轉矩2.0。質量63kg。
三、計算總傳動比及分配各級的偉動比
1、總傳動比:i總=n電動/n筒=960/76.4=12.57
2、分配各級偉動比
(1) 據指導書P7表1,取齒輪i齒輪=6(單級減速器i=3~6合理)
(2) ∵i總=i齒輪×I帶
∴i帶=i總/i齒輪=12.57/6=2.095
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=n電機=960r/min
nII=nI/i帶=960/2.095=458.2(r/min)
nIII=nII/i齒輪=458.2/6=76.4(r/min)
2、 計算各軸的功率(KW)
PI=P工作=2.4KW
PII=PI×η帶=2.4×0.96=2.304KW
PIII=PII×η軸承×η齒輪=2.304×0.98×0.96
=2.168KW
3、 計算各軸扭矩(N
Ⅱ 一級減速器課程設計
一級直齒輪減速器說明書和裝配
技術數據
滾筒圓周力:F=1200N
帶速:V=2.1M/S
滾筒直徑:D=400mm
全題目:一級圓柱直齒輪減速器
參考書目:《機械設計基礎》任成高
《簡明機械零件設計實用手冊》 胡家秀
其他也可發給我參考啊
萬分感謝!!!也把它發到我的郵箱裡面看看吧。。[email protected]
不過你也可以到我的博客裡面看看哦。 http://edzyxwb.blogcn.com/ 機械設計課程--帶式運輸機傳動裝置中的同軸式1級圓柱齒輪減速器 目 錄
設計任務書……………………………………………………1
傳動方案的擬定及說明………………………………………4
電動機的選擇…………………………………………………4
計算傳動裝置的運動和動力參數……………………………5
傳動件的設計計算……………………………………………5
軸的設計計算…………………………………………………8
滾動軸承的選擇及計算………………………………………14
鍵聯接的選擇及校核計算……………………………………16
連軸器的選擇…………………………………………………16
減速器附件的選擇……………………………………………17
潤滑與密封……………………………………………………18
設計小結………………………………………………………18
參考資料目錄…………………………………………………18
機械設計課程設計任務書
題目:設計一用於帶式運輸機傳動裝置中的同軸式二級圓柱齒輪減速器
一. 總體布置簡圖
1—電動機;2—聯軸器;3—齒輪減速器;4—帶式運輸機;5—鼓輪;6—聯軸器
二. 工作情況:
載荷平穩、單向旋轉
三. 原始數據
鼓輪的扭矩T(N•m):850
鼓輪的直徑D(mm):350
運輸帶速度V(m/s):0.7
帶速允許偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 設計內容
1. 電動機的選擇與運動參數計算;
2. 斜齒輪傳動設計計算
3. 軸的設計
4. 滾動軸承的選擇
5. 鍵和連軸器的選擇與校核;
6. 裝配圖、零件圖的繪制
7. 設計計算說明書的編寫
五. 設計任務
1. 減速器總裝配圖一張
2. 齒輪、軸零件圖各一張
3. 設計說明書一份
六. 設計進度
1、 第一階段:總體計算和傳動件參數計算
2、 第二階段:軸與軸系零件的設計
3、 第三階段:軸、軸承、聯軸器、鍵的校核及草圖繪制
4、 第四階段:裝配圖、零件圖的繪制及計算說明書的編寫
傳動方案的擬定及說明
由題目所知傳動機構類型為:同軸式二級圓柱齒輪減速器。故只要對本傳動機構進行分析論證。
本傳動機構的特點是:減速器橫向尺寸較小,兩大吃論浸油深度可以大致相同。結構較復雜,軸向尺寸大,中間軸較長、剛度差,中間軸承潤滑較困難。
電動機的選擇
1.電動機類型和結構的選擇
因為本傳動的工作狀況是:載荷平穩、單向旋轉。所以選用常用的封閉式Y(IP44)系列的電動機。
2.電動機容量的選擇
1) 工作機所需功率Pw
Pw=3.4kW
2) 電動機的輸出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.電動機轉速的選擇
nd=(i1』•i2』…in』)nw
初選為同步轉速為1000r/min的電動機
4.電動機型號的確定
由表20-1查出電動機型號為Y132M1-6,其額定功率為4kW,滿載轉速960r/min。基本符合題目所需的要求
計算傳動裝置的運動和動力參數
傳動裝置的總傳動比及其分配
1.計算總傳動比
由電動機的滿載轉速nm和工作機主動軸轉速nw可確定傳動裝置應有的總傳動比為:
i=nm/nw
nw=38.4
i=25.14
2.合理分配各級傳動比
由於減速箱是同軸式布置,所以i1=i2。
因為i=25.14,取i=25,i1=i2=5
速度偏差為0.5%<5%,所以可行。
各軸轉速、輸入功率、輸入轉矩
項 目 電動機軸 高速軸I 中間軸II 低速軸III 鼓 輪
轉速(r/min) 960 960 192 38.4 38.4
功率(kW) 4 3.96 3.84 3.72 3.57
轉矩(N•m) 39.8 39.4 191 925.2 888.4
傳動比 1 1 5 5 1
效率 1 0.99 0.97 0.97 0.97
傳動件設計計算
1. 選精度等級、材料及齒數
1) 材料及熱處理;
選擇小齒輪材料為40Cr(調質),硬度為280HBS,大齒輪材料為45鋼(調質),硬度為240HBS,二者材料硬度差為40HBS。
2) 精度等級選用7級精度;
3) 試選小齒輪齒數z1=20,大齒輪齒數z2=100的;
4) 選取螺旋角。初選螺旋角β=14°
2.按齒面接觸強度設計
因為低速級的載荷大於高速級的載荷,所以通過低速級的數據進行計算
按式(10—21)試算,即
dt≥
1) 確定公式內的各計算數值
(1) 試選Kt=1.6
(2) 由圖10-30選取區域系數ZH=2.433
(3) 由表10-7選取尺寬系數φd=1
(4) 由圖10-26查得εα1=0.75,εα2=0.87,則εα=εα1+εα2=1.62
(5) 由表10-6查得材料的彈性影響系數ZE=189.8Mpa
(6) 由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限σHlim1=600MPa;大齒輪的解除疲勞強度極限σHlim2=550MPa;
(7) 由式10-13計算應力循環次數
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8
N2=N1/5=6.64×107
(8) 由圖10-19查得接觸疲勞壽命系數KHN1=0.95;KHN2=0.98
(9) 計算接觸疲勞許用應力
取失效概率為1%,安全系數S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
2) 計算
(1) 試算小齒輪分度圓直徑d1t
d1t≥ = =67.85
(2) 計算圓周速度
v= = =0.68m/s
(3) 計算齒寬b及模數mnt
b=φdd1t=1×67.85mm=67.85mm
mnt= = =3.39
h=2.25mnt=2.25×3.39mm=7.63mm
b/h=67.85/7.63=8.89
(4) 計算縱向重合度εβ
εβ= =0.318×1×tan14 =1.59
(5) 計算載荷系數K
已知載荷平穩,所以取KA=1
根據v=0.68m/s,7級精度,由圖10—8查得動載系數KV=1.11;由表10—4查的KHβ的計算公式和直齒輪的相同,
故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42
由表10—13查得KFβ=1.36
由表10—3查得KHα=KHα=1.4。故載荷系數
K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6) 按實際的載荷系數校正所得的分度圓直徑,由式(10—10a)得
d1= = mm=73.6mm
(7) 計算模數mn
mn = mm=3.74
3.按齒根彎曲強度設計
由式(10—17 mn≥
1) 確定計算參數
(1) 計算載荷系數
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96
(2) 根據縱向重合度εβ=0.318φdz1tanβ=1.59,從圖10-28查得螺旋角影響系數 Yβ=0。88
(3) 計算當量齒數
z1=z1/cos β=20/cos 14 =21.89
z2=z2/cos β=100/cos 14 =109.47
(4) 查取齒型系數
由表10-5查得YFa1=2.724;Yfa2=2.172
(5) 查取應力校正系數
由表10-5查得Ysa1=1.569;Ysa2=1.798
(6) 計算[σF]
σF1=500Mpa
σF2=380MPa
KFN1=0.95
KFN2=0.98
[σF1]=339.29Mpa
[σF2]=266MPa
(7) 計算大、小齒輪的 並加以比較
= =0.0126
= =0.01468
大齒輪的數值大。
2) 設計計算
mn≥ =2.4
mn=2.5
4.幾何尺寸計算
1) 計算中心距
z1 =32.9,取z1=33
z2=165
a =255.07mm
a圓整後取255mm
2) 按圓整後的中心距修正螺旋角
β=arcos =13 55』50」
3) 計算大、小齒輪的分度圓直徑
d1 =85.00mm
d2 =425mm
4) 計算齒輪寬度
b=φdd1
b=85mm
B1=90mm,B2=85mm
5) 結構設計
以大齒輪為例。因齒輪齒頂圓直徑大於160mm,而又小於500mm,故以選用腹板式為宜。其他有關尺寸參看大齒輪零件圖。
軸的設計計算
擬定輸入軸齒輪為右旋
II軸:
1.初步確定軸的最小直徑
d≥ = =34.2mm
2.求作用在齒輪上的受力
Ft1= =899N
Fr1=Ft =337N
Fa1=Fttanβ=223N;
Ft2=4494N
Fr2=1685N
Fa2=1115N
3.軸的結構設計
1) 擬定軸上零件的裝配方案
i. I-II段軸用於安裝軸承30307,故取直徑為35mm。
ii. II-III段軸肩用於固定軸承,查手冊得到直徑為44mm。
iii. III-IV段為小齒輪,外徑90mm。
iv. IV-V段分隔兩齒輪,直徑為55mm。
v. V-VI段安裝大齒輪,直徑為40mm。
vi. VI-VIII段安裝套筒和軸承,直徑為35mm。
2) 根據軸向定位的要求確定軸的各段直徑和長度
1. I-II段軸承寬度為22.75mm,所以長度為22.75mm。
2. II-III段軸肩考慮到齒輪和箱體的間隙12mm,軸承和箱體的間隙4mm,所以長度為16mm。
3. III-IV段為小齒輪,長度就等於小齒輪寬度90mm。
4. IV-V段用於隔開兩個齒輪,長度為120mm。
5. V-VI段用於安裝大齒輪,長度略小於齒輪的寬度,為83mm。
6. VI-VIII長度為44mm。
4. 求軸上的載荷
66 207.5 63.5
Fr1=1418.5N
Fr2=603.5N
查得軸承30307的Y值為1.6
Fd1=443N
Fd2=189N
因為兩個齒輪旋向都是左旋。
故:Fa1=638N
Fa2=189N
5.精確校核軸的疲勞強度
1) 判斷危險截面
由於截面IV處受的載荷較大,直徑較小,所以判斷為危險截面
2) 截面IV右側的
截面上的轉切應力為
由於軸選用40cr,調質處理,所以
([2]P355表15-1)
a) 綜合系數的計算
由 , 經直線插入,知道因軸肩而形成的理論應力集中為 , ,
([2]P38附表3-2經直線插入)
軸的材料敏感系數為 , ,
([2]P37附圖3-1)
故有效應力集中系數為
查得尺寸系數為 ,扭轉尺寸系數為 ,
([2]P37附圖3-2)([2]P39附圖3-3)
軸採用磨削加工,表面質量系數為 ,
([2]P40附圖3-4)
軸表面未經強化處理,即 ,則綜合系數值為
b) 碳鋼系數的確定
碳鋼的特性系數取為 ,
c) 安全系數的計算
軸的疲勞安全系數為
故軸的選用安全。
I軸:
1.作用在齒輪上的力
FH1=FH2=337/2=168.5
Fv1=Fv2=889/2=444.5
2.初步確定軸的最小直徑
3.軸的結構設計
1) 確定軸上零件的裝配方案
2)根據軸向定位的要求確定軸的各段直徑和長度
d) 由於聯軸器一端連接電動機,另一端連接輸入軸,所以該段直徑尺寸受到電動機外伸軸直徑尺寸的限制,選為25mm。
e) 考慮到聯軸器的軸向定位可靠,定位軸肩高度應達2.5mm,所以該段直徑選為30。
f) 該段軸要安裝軸承,考慮到軸肩要有2mm的圓角,則軸承選用30207型,即該段直徑定為35mm。
g) 該段軸要安裝齒輪,考慮到軸肩要有2mm的圓角,經標准化,定為40mm。
h) 為了齒輪軸向定位可靠,定位軸肩高度應達5mm,所以該段直徑選為46mm。
i) 軸肩固定軸承,直徑為42mm。
j) 該段軸要安裝軸承,直徑定為35mm。
2) 各段長度的確定
各段長度的確定從左到右分述如下:
a) 該段軸安裝軸承和擋油盤,軸承寬18.25mm,該段長度定為18.25mm。
b) 該段為軸環,寬度不小於7mm,定為11mm。
c) 該段安裝齒輪,要求長度要比輪轂短2mm,齒輪寬為90mm,定為88mm。
d) 該段綜合考慮齒輪與箱體內壁的距離取13.5mm、軸承與箱體內壁距離取4mm(採用油潤滑),軸承寬18.25mm,定為41.25mm。
e) 該段綜合考慮箱體突緣厚度、調整墊片厚度、端蓋厚度及聯軸器安裝尺寸,定為57mm。
f) 該段由聯軸器孔長決定為42mm
4.按彎扭合成應力校核軸的強度
W=62748N.mm
T=39400N.mm
45鋼的強度極限為 ,又由於軸受的載荷為脈動的,所以 。
III軸
1.作用在齒輪上的力
FH1=FH2=4494/2=2247N
Fv1=Fv2=1685/2=842.5N
2.初步確定軸的最小直徑
3.軸的結構設計
1) 軸上零件的裝配方案
2) 據軸向定位的要求確定軸的各段直徑和長度
I-II II-IV IV-V V-VI VI-VII VII-VIII
直徑 60 70 75 87 79 70
長度 105 113.75 83 9 9.5 33.25
5.求軸上的載荷
Mm=316767N.mm
T=925200N.mm
6. 彎扭校合
滾動軸承的選擇及計算
I軸:
1.求兩軸承受到的徑向載荷
5、 軸承30206的校核
1) 徑向力
2) 派生力
3) 軸向力
由於 ,
所以軸向力為 ,
4) 當量載荷
由於 , ,
所以 , , , 。
由於為一般載荷,所以載荷系數為 ,故當量載荷為
5) 軸承壽命的校核
II軸:
6、 軸承30307的校核
1) 徑向力
2) 派生力
,
3) 軸向力
由於 ,
所以軸向力為 ,
4) 當量載荷
由於 , ,
所以 , , , 。
由於為一般載荷,所以載荷系數為 ,故當量載荷為
5) 軸承壽命的校核
III軸:
7、 軸承32214的校核
1) 徑向力
2) 派生力
3) 軸向力
由於 ,
所以軸向力為 ,
4) 當量載荷
由於 , ,
所以 , , , 。
由於為一般載荷,所以載荷系數為 ,故當量載荷為
5) 軸承壽命的校核
鍵連接的選擇及校核計算
代號 直徑
(mm) 工作長度
(mm) 工作高度
(mm) 轉矩
(N•m) 極限應力
(MPa)
高速軸 8×7×60(單頭) 25 35 3.5 39.8 26.0
12×8×80(單頭) 40 68 4 39.8 7.32
中間軸 12×8×70(單頭) 40 58 4 191 41.2
低速軸 20×12×80(單頭) 75 60 6 925.2 68.5
18×11×110(單頭) 60 107 5.5 925.2 52.4
由於鍵採用靜聯接,沖擊輕微,所以許用擠壓應力為 ,所以上述鍵皆安全。
連軸器的選擇
由於彈性聯軸器的諸多優點,所以考慮選用它。
二、高速軸用聯軸器的設計計算
由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以考慮選用彈性柱銷聯軸器TL4(GB4323-84),但由於聯軸器一端與電動機相連,其孔徑受電動機外伸軸徑限制,所以選用TL5(GB4323-84)
其主要參數如下:
材料HT200
公稱轉矩
軸孔直徑 ,
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
三、第二個聯軸器的設計計算
由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以選用彈性柱銷聯軸器TL10(GB4323-84)
其主要參數如下:
材料HT200
公稱轉矩
軸孔直徑
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M16
起吊裝置
採用箱蓋吊耳、箱座吊耳
放油螺塞
選用外六角油塞及墊片M16×1.5
潤滑與密封
一、齒輪的潤滑
採用浸油潤滑,由於低速級周向速度為,所以浸油高度約為六分之一大齒輪半徑,取為35mm。
二、滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
三、潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用L-AN15潤滑油。
四、密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。
密封圈型號按所裝配軸的直徑確定為(F)B25-42-7-ACM,(F)B70-90-10-ACM。
軸承蓋結構尺寸按用其定位的軸承的外徑決定。
設計小結
由於時間緊迫,所以這次的設計存在許多缺點,比如說箱體結構龐大,重量也很大。齒輪的計算不夠精確等等缺陷,我相信,通過這次的實踐,能使我在以後的設計中避免很多不必要的工作,有能力設計出結構更緊湊,傳動更穩定精確的設備。
Ⅲ 一級減速器設計,其中的電動機選擇,
1)電動機類型和結構的選擇: 因為本傳動的工作狀況是:平穩、清潔、小批量生產。所以選用三相非同步電動機,封閉式結構電壓 380v.Y系列的電動機。 2) 選擇電動機功率: 滾筒所需有效功率:P w=FV/1000=3.36kw. 傳動裝置總效率:η=η齒2η承4η聯2η滾按表4.2-9取: 齒輪嚙合效率:η齒=0.97(齒輪精度8級) 滾動軸承效率:η承=0.99 連軸器效率:η聯=0.99 滾筒效率:η滾=0.96 則傳動效率:η=0.972x0.944x0.992x0.96=0.85. 所需電動機功率:Pr=Pw/η=3.95kw查表4.12-1可選櫻隱Y系列三相非同步電動機Y112M-4額襪頌絕定功率為Po=4kw;或是選Y系列三相非同步電動機Y132M-6額定功率Po=4kw. 3)確定電動機轉數 滾筒轉速:Nw=60v/πD=60x1.6/πx0.28=109.13r/min。 現以同步轉速為1500 r/min、1000 r/min。二種方案進行比較、由表4.12-1查得電動機數據,計算出總的傳動比,列下表: 方案號電動機型號額定功率/kw同步轉速/( r/min)滿載轉速/(r/min)總傳動比 1Y112M-441500144013.1952Y132M-6410009608.797比較以上方案,選擇方案1,電動機型號為Y112M-4,告姿額定功率為4 kw,同步轉速為1500 r/min,滿載轉速1440r/min。
Ⅳ 單級減速器總效率
單級減速器總效率。具缺陪有高剛性、高精度(單級可滲爛做到1分以內)、高傳動叢扮漏效率(單級在97%-98%)、高的扭矩/體積比、終身免維護等特點
Ⅳ 傳動裝置的總效率計算
總效率抄η=運輸機傳送帶效率η襲1×運輸機軸承效率η2×運輸機與減速器間聯軸器效率η3×減速器內3對滾動軸承效率η4×2對圓柱齒輪嚙合傳動效率η5×電動機與減速器間聯軸器效率η6;
傳動系統的組成和布置形式是隨發動機的類型、安裝位置,以及汽車用途的不同而變化的。例如,越野車多採用四輪驅動,則在它的傳動系中就增加了分動器等總成。而對於前置前驅的車輛,它的傳動系中就沒有傳動軸等裝置。
汽車傳動系的基本功能就是將發動機發出的動力傳給驅動車輪。它的首要任務就是與汽車發動機協同工作,以保證汽車能在不同使用條件下正常行駛,並具有良好的動力性和燃油經濟性,為此,汽車傳動系都具備以下的功能:
減速和變速
我們知道,只有當作用在驅動輪上的牽引力足以克服外界對汽車的阻力時,汽車才能起步和正常行駛。由實驗得知,即使汽車在平直得瀝青路面上以低速勻速行駛,也需要克服數值約相當於1.5%汽車總重力得滾動阻力。
減速作用
為解決這些矛盾,必須使傳動系具有減速增距作用(簡稱減速作用),亦即使驅動輪的轉速降低為發動機轉速的若干分之一,相應地驅動輪所得到的扭距則增大到發動機扭距的若干倍。
Ⅵ 傳動裝置總效率怎麼算
總傳動效率的計算方法:總效率η=輸送帶效率η1×輸送機軸承效率η2×聯軸器效率η3×減速機中三對滾動軸承的耦合效率η4×2η5×電機與減速機之間的耦合效率η6。傳動裝置將動力裝置的動力傳遞給工作機構等中間設備。傳動系統的基本功能是將發動機的動力傳遞給汽車的驅動輪產生驅動力,使汽車能夠以一定的速度行駛。汽車傳動系統的基本功能是將動力從發動機傳遞到驅動輪。
Ⅶ 一級減速器i和ii軸的效率為多少
效率=(輸入功率-損耗功率)/輸入功率 減速機御雀讓損耗功率主要包括兩方面:軸承損耗和歲轎齒輪損耗也就是齒輪嚙合效率X軸承效率 一鎮局般一對齒輪嚙合效率為0。98,一對滾動軸承運轉效率為0。99則一級齒輪傳動減速機效率為=0。98X0。99=0。97
Ⅷ 機械設計,一級齒輪減速器
僅供參考
一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.
六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm
II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)
Ⅸ 一級斜齒輪減速器怎麼選電動機型號
一級圓柱斜齒輪減宴兄握猜速器
二、電動機選擇 1、電動機類型的選擇: Y 系列三晌皮襲相非同步電動機 2、電動機功率選擇: (1)傳動裝置的總功率: η總=η 帶×η2 軸承×η 齒輪×η 聯軸器×η滾筒 =0.96×0.982×0.97×0.99×0.96 =0.85 (2)電機所需的工作功率: P 工作