『壹』 數控機床檢測裝置的種類有哪些
●按工藝用途分類
金屬切削類數控機床,包括數控車床,數控鑽床,數控銑床,數控磨床,數控鏜床發及加工中心。這些機床都有適用於單件、小批量和多品種和零件加工,具有很好的加工尺寸的一致性、很高的生產率和自動化程度,以及很高的設備柔性。
金屬成型類數控機床;這類機床包括數控折彎機
,數控組合沖床、數控彎管機、數控回轉頭壓力機等。
數控特種加工機床;這類機床包括數控線(電極)切割機床、數控電火花加工機床、數控火焰切割機、數控激光切割機床、專用組合機床等。
其他類型的數控設備;非加工設備採用數控技術,如自動裝配機、多坐標測量機、自動繪圖機和工業機器人等。
●按運動方式分類
點位控制;點位控制數控機床的特點是機床的運動部件只能夠實現從一個位置到另一個位置的精確運動,在運動和定位過程中不進行任何加工工序。如數控鑽床、數按坐標鏜床、數控焊機和數控彎管機等。
直線控制;點位直線控制的特點是機床的運動部件不僅要實現一個坐標位置到另一個位置的精確移動和定位,而且能實現平行於坐標軸的直線進給運動或控制兩個坐標軸實現斜線進給運動。
輪廓控制;輪廓控制數控機床的特點是機床的運動部件能夠實現兩個坐標軸同時進行聯動控制。它不僅要求控制機床運動部件的起點與終點坐標位置,而且要求控制整個加工過程每一點的速度和位移量,即要求控制運動軌跡,將零件加工成在平面內的直線、曲線或在空間的曲面。
●按控制方式分類
開環控制;即不帶位置反饋裝置的控制方式。
半閉環控制;指在開環控制伺服電動機軸上裝有角位移檢測裝置,通過檢測伺服電動機的轉角間接地檢測出運動部件的位移反饋給數控裝置的比較器,與輸入的指令進行比較,用差值控制運動部件。
閉環控制;是在機床的最終的運動部件的相應位置直接直線或回轉式檢測裝置,將直接測量到的位移或角位移值反饋到數控裝置的比較器中與輸入指令移量進行比較,用差值控制運動部件,使運動部件嚴格按實際需要的位移量運動。
●按數控制機床的性能分類
經濟型數控機床;
中檔數控機床;
高檔數控機床;
●按所用數控裝置的構成方式分類
硬線數控系統;軟線數控系統;
『貳』 閉環數控機床的檢測裝置在哪裡
半閉環控制數控系統:
位置檢測元件被安裝在電動機軸端(伺服電機編碼器)或絲杠軸端(編碼器),通過角位移的測量間接計算出機床工作台的實際運行位置(直線位移),並將其與CNC裝置計算出的指令位置(或位移)相比較,用差值進行控制。由於閉環的環路內不包括絲杠、螺母副及機床工作台這些大慣性環節,由這些環節造成的誤差不能由環路所矯正,其控制精度不如閉環控制數控系統,但其調試方便,可以獲得比較穩定的控制特性,因此在實際應用中,這種方式被廣泛採用。
全閉環控制數控系統:
位置檢測裝置安裝在機床工作台上(光柵尺),用以檢測機床工作台的實際運行位置(直線位移),並將其與CNC裝置計算出的指令位置(或位移)相比較,用差值進行控制,這類控制方式的位置控制精度很高,但由於它將絲杠、螺母副及機床工作台這些大慣性環節放在閉環內,調試時,其系統穩定狀態比較難調試。
數控程序代碼標准(ISO EIA) :
數控程序代碼,由於各個數控機床生產廠家所用的標准尚未完全統一,其所用的代碼、指令及其含義不完全相同,因此在編製程序時必須按所用數控機床編程手冊中的規定進行。為了滿足設計、製造、維修和普及的需要,在輸入代碼、坐標系統,加工指令、輔助功能及程序格式等方面,國際上已經形成了兩種通用的標准:
即國際標准化組織(ISO)標准和美國電子工業學會(EIA)標准。
在ISO 代碼中程序段結束符號為LF,在EIA 代碼中程序段結束符號為CR,
我國機械工業部根據ISO標准制定了:
JB3050-82《數字控制機床用七單位編碼字元》
JB3051-1999《數字控制機床坐標和運動方向的命名》
JB3208-1999《數字控制機床穿孔帶程序段格式中的准備功能G和輔助功能M代碼》。
詳細看:http://ke..com/view/4205044.htm
『叄』 數控機床在開機之前,為什麼要進行零點回歸
這里詳細地介紹了發那克,三菱,西門子幾種常用數控系統參考點的工作原理、調整和設定方法,並舉例說明參考點的故障現象,解決方法。
相對位置檢測系統
絕對位置檢測系統
前言:
當數控機床更換、拆卸電機或編碼器後,機床會有報警信息:編碼器內的機械絕對位置數據丟失了,或者機床回參考點後發現參考點和更換前發生了偏移,這就要求我們重新設定參考點,所以我們對了解參考點的工作原理十分必要。
參考點是指當執行手動參考點回歸或加工程序的G28指令時機械所定位的那一點,又名原點或零點。每台機床有一個參考點,根據需要也可以設置多個參考點,用於自動刀具交換(ATC)、自動拖盤交換(APC)等。通過G28指令執行快速復歸的點稱為第一參考點(原點),通過G30指令復歸的點稱為第二、第三或第四參考點,也稱為返回浮動參考點。由編碼器發出的柵點信號或零標志信號所確定的點稱為電氣原點。機械原點是基本機械坐標系的基準點,機械零件一旦裝配好,機械參考點也就建立了。為了使電氣原點和機械原點重合,將使用一個參數進行設置,這個重合的點就是機床原點。
機床配備的位置檢測系統一般有相對位置檢測系統和絕對位置檢測系統。相對位置檢測系統由於在關機後位置數據丟失,所以在機床每次開機後都要求先回零點才可投入加工運行,一般使用擋塊式零點回歸。絕對位置檢測系統即使在電源切斷時也能檢測機械的移動量,所以機床每次開機後不需要進行原點回歸。由於在關機後位置數據不會丟失,並且絕對位置檢測功能執行各種數據的核對,如檢測器的回饋量相互核對、機械固有點上的絕對位置核對,因此具有很高的可信性。當更換絕對位置檢測器或絕對位置丟失時,應設定參考點,絕對位置檢測系統一般使用無擋塊式零點回歸。
一:使用相對位置檢測系統的參考點回歸方式:
1 發那克系統:
1)工作原理:
當手動或自動回機床參考點時,首先,回歸軸以正方向快速移動,當擋塊碰上參考點接近開關時,開始減速運行。當擋塊離開參考點接近開關時,繼續以FL速度移動。當走到相對編碼器的零位時,回歸電機停止,並將此零點作為機床的參考點。
『肆』 數控機床4種回零方式是什麼有何特點
【數控機床4種回零方式及特點】
1、手動回原點時,回原點軸先以參數設置的快速移動速度向原點方向移動;當減速擋塊壓下原點減速開關時,回原點軸減速到系統參數設置的較慢參考點定位速度,繼續向前移動;當減速開關被釋放後,數控系統開始檢測編碼器的柵點或零脈沖;當系統檢測到第一個柵點或零脈沖後,電動機馬上停止轉動,當前位置即為機床零點。
2、回原點軸先以參數設置的快速移動的速度向原點方向移動;當減速擋塊壓下原點減速開關時,回零軸減速到系統參數設置較慢的參考點定位速度,軸向相反方向移動;當減速開關被釋放後,數控系統開始檢測編碼器的柵點或零脈沖;當系統檢測到第一個柵點或零脈沖後,電動機馬上停止轉動,當前位置即為機床零點。
3、回原點軸先以參數設置的快速移動的速度向原點方向移動;當減速擋塊壓下原點減速開關時,回零軸減速到系統參數設置較慢的參考點定位速度,軸向相反方向移動;當減速開關被釋放後,回零軸再次反向;當減速開關再次被壓下後,回零軸以尋找零脈沖速度運行,數控系統開始檢測編碼器的柵點或零脈沖;當系統檢測到第一個柵點或零脈沖後,電動機馬上停止轉動,當前位置即為機床零點。
4、回原點軸接到回零信號後,就在當前位置以一個較慢的速度向固定的方向移動,同時數控系統開始檢測編碼器的柵點或零脈沖;當系統檢測到第一個柵點或零脈沖後,電動機馬上停止轉動,當前位置即為機床零點。
【回零】就是讓機床知道機床的參考點在哪裡。每次數控機床斷電開機必要完成的操作。參考點是機床上的一個固定不變的極限點,其位置由機械擋塊或行程開關來確定。通過回機械零點來確認機床坐標系。數控機床每次開機後都必須首先讓各坐標軸回到機床一個固定點上,重新建立機床坐標系,這一固定點就是機床坐標系的原點或零點,也稱為機床參考點,使機床回到這一固定點的操作稱為回參考點或回零操作。
『伍』 數控機床精度靠什麼裝置保證
精度靠數控系統,驅動,和伺服電機。以及機床的機械精度。
先講機械精度吧:那個只有造光機的零件加工的好一點,裝配的的人牛一點。裝配完了就注意保養。
系統的影響:系統負責插補的運算,還有位置環也在系統裡面。當然對精度有決定性的影響。
驅動的影響:直接控制電機的傢伙,整個系統的電流環個速度環都在那裡面。你說對精度有沒有影響呢。
伺服電機:速度環和位置環的反饋元件都在上面呢(半閉環)。
能有那些類型呢。就兩個類型,絕對式的和增量式。兩者區別你應該知道,不知道就實在說不過去了。
絕對式:一般用在床子上的就是光柵尺和絕對式光電旋轉編碼器。現在的SIEMENS 802DSL好多都帶絕對式旋轉編碼器。看過FANUC的一些系統帶的絕對編碼器?那些是不是要加個電池在驅動上面的啊,其實那個不是真正意義上的絕對編碼器,那種編碼器的碼盤其實還是增量式的碼盤。
增量式:在床子上用的一般用的就是增量式光電旋轉編碼器。這種編碼器常用的有TTL,sin/cos兩種型號在床子上用的比較多。
其實一個編碼器的精度如何不能單看這個編碼器的線數(就是跑一圈發多少個脈沖),還要看這個編碼器的分頻倍數。編碼器的精度=線數*分頻數。TTL只能四分頻,而SIN/COS的能做到16分頻。你見到的基本上就是TTL的,SIN/COS是在 SIEMENS 810D和840D用的較多。
把PWM的原理看看會,再實踐下,你就能知道更多了。下午正好閑著沒事,就給你講這些了。其它的影響不多給你講了。記得要加分。這些足夠忽悠你的老師了。
『陸』 數控機床回零的主要作用是什麼
回零就是讓機床知道機床的參考點在哪裡。每次數控機床斷電開機必要完成的操作。數控系統通過檢測機床本體上的原點信號(如開關信號,磁開關信號等),根據不同的回零方式確定機床原點。數控機床回零有柵點法和磁開關法,又分絕對脈沖編碼器方式回零和以增量脈沖編碼器方式回零。
現代數控機床一般都採用了增量式的旋轉編碼器或增量式的光柵尺作為位置檢測反饋元件,他們在機床斷電後就失去了對各坐標位置的記憶,因此在每次開機後都必須首先讓各坐標軸回到機床一個固定點上,重新建立機床坐標系。
(6)數控機床回零哪個裝置檢測擴展閱讀
按機床檢測元件檢測原點信號方式的不同,返回機床參考點的方法有兩種。一種為柵點法,另一種為磁開關法。在柵點法中,檢測器隨著電機一轉信號同時產生一個柵點或一個零位脈沖,在機械本體上安裝一個減速撞塊及一個減速開關後,數控系統檢測到的第一個柵點或零位信號即為原點。
能否正確地返回基準點,將會影響到產品的加工質量。簡單地說,回參考點是為了每次上電開機後,在機床上建立一個唯一的坐標系。顯然,回參考點是必不可少的。
『柒』 數控機床測量裝置主要有哪些
數控機床常用的檢測裝置有脈沖編碼器、旋轉變壓器、感應同步器、光柵和磁尺等。
『捌』 數控車床怎麼進行回原點操作
按機床檢測元件檢測原點信號方式的不同,數控車床返回原點的方法有兩種。一種為柵點法,另一種為磁開關法。
1、柵點法:在柵點法中,檢測器隨著電機一轉信號同時產生一個柵點或一個零位脈沖,在機械本體上安裝一個減速撞塊及一個減速開關後,數控系統檢測到的第一個柵點或零位信號即為原點。柵點方法的特點是如果接近原點速度小於某一固定值,則伺服電機總是停止於同一點,也就是說,在進行回原點操作後,機床原點的保持性好。
2、磁開關法:在磁開關法中,在機械本體上安裝磁鐵及磁感應原點開關,當磁感應原點開關檢測到原點信號後,伺服電機立即停止,該停止點被認作原點。磁開關法的特點是軟體及硬體簡單,但原點位置隨著伺服電機速度的變化而成比例地漂移,即原點不確定。
目前,幾乎所有的機床都採用柵點法。
『玖』 數控機床常用的位置檢測裝置有哪些類型有何特點
1)從檢測信號的類型來分可分為數字式或模擬式。同一檢測原件既可以做成數字式,也可以做成模擬式,主要取決於使用方式和測量線路。2)從測量方式可分為增量式與絕對式。增量式檢測的是相對位移量,增量檢測元件是反映相對機床固定參考點的增量值。增量式裝置比較簡單,應用較廣。絕對式檢測是位移的絕對位置,檢測沒有積累誤差,一旦切斷電源後位置信息也不丟失,但結構復雜。3)就檢測元件本身來說,可分為旋轉型和直線型。旋轉型可以採用檢測電動機的旋轉角度來間接測量得工作台的移動量,使用方便可靠,測量精度略低些。直線型就是對機床工作台的直線移動採用的直線檢測,直觀地反映其位移量,所構成的位置檢測系統是全閉環控制系統,其檢測裝置要與行程等長,常用於精度要求較高的中小型數控機床上。
『拾』 數控機床常用的檢測元件有哪些 簡答
間接測量常用的檢測元件一般包括:脈沖編碼器、旋轉變壓器、圓感應同步回器、圓光柵和圓磁柵答。
間接測量裝置是將檢測裝置安裝在滾珠絲杠或驅動電動機軸上,通過檢測轉動件的角位移來間接測量執行部件的直線位移。
位置檢測裝置安裝在執行部件前面的傳動元件或驅動電動機軸上,測量其角位移,經過傳動比變換以後才能得到執行部件的直線位移量,這樣可以構成閉環伺服進給系統,如將脈沖編碼器裝在電動機軸上。
間接測量使用可靠、方便,無長度限制;其缺點是,在檢測信號中加入了直線轉變為旋轉運動的傳動鏈誤差,從而影響測量精度。一般需對數控機床的傳動誤差進行補償,才能提高定位精度。
除了以上位置檢測裝置,伺服系統中往往還包括檢測速度的元件,用以檢測和調節發動機的轉速。常用的元件是測速發電機。