導航:首頁 > 裝置知識 > 溫度測量裝置設計方案

溫度測量裝置設計方案

發布時間:2023-04-13 05:08:43

1. 如何用導線,電阻,萬用表,電池設計一件可以測量水溫的裝置

可以直接利用導線的電阻率隨溫度不同的特點測溫。
例如,當銅導線足夠細長(繞成線繞電阻),導線電阻達到幾十歐姆,利用萬用表的電阻檔測量其阻值變化,就可以通過導線的溫度-電阻關系算出溫度。

2. 基於單片機的溫度監測系統設計的總體大概的講一下測溫和無線傳輸顯示的過程

感測器DS18B20具有體積更小、精度更高、適用電壓更寬、採用一線匯流排、可組網等優點,在實際應用中取得了良好的測溫效果[7]。
美國Dallas半導體公司的數字化溫度感測器DS1820是世界上第一片支持 「一線匯流排」介面的溫度感測器,在其內部使用了在板(ON-B0ARD)專利技術。全部感測元件及轉換電路集成在形如一隻三極體的集成電路內。「一線匯流排」獨特而且經濟的特點,使用戶可輕松地組建感測器網路,為測量系統的構建引入全新概念。現在,新一代的DS18B20體積更小、更經濟、更靈活。使你可以充分發揮「一線匯流排」的優點。 同DS1820一樣,DS18B20也支持「一線匯流排」介面,測量溫度范圍為-55°C~+125°C,在-10~+85°C范圍內,精度為±0.5°C。現場溫度直接以「一線匯流排」的數字方式傳輸,大大提高了系統的抗干擾性。適合於惡劣環境的現場溫度測量,如:環境控制、設備或過程式控制制、測溫類消費電子產品等。與前一代產品不同,新的產品支持3V~5.5V的電壓范圍,使系統設計更靈活、方便。而且新一代產品更便宜,體積更小[8]。
1. DS18B20的特性 [9]
(1)適應電壓范圍更寬,電壓范圍:3.0~5.5V,寄生電源方式下可由數據線供。
(2)獨特的單線介面方式,DS18B20在與微處理器連接時僅需要一條口線即可實現微處理器與DS18B20的雙向通訊。
(3)DS18B20支持多點組網功能,多個DS18B20可以並聯在唯一的三線上,實現組網多點測溫。
(4)DS18B20在使用中不需要任何外圍元件,全部感測元件及轉換電路集成在形如一隻三極體的集成電路內。
(5)溫范圍-55℃~+125℃,在-10~+85℃時精度為±0.5℃。
(6)可編程的解析度為9~12位,對應的可分辨溫度分別為0.5℃、0.25℃、0.125℃和0.0625℃,可實現高精度測溫。
(7)在9位解析度時最多在93.75ms內把溫度轉換為數字,12位解析度時最多在750ms內把溫度值轉換為數字,速度更快。
(8)測量結果直接輸出數字溫度信號,以「一線匯流排」串列傳送給CPU,同時可傳送CRC校驗碼,具有極強的抗干擾糾錯能力。
(9)負壓特性:電源極性接反時,晶元不會因發熱而燒毀,但不能正常工作。
2.DS18B20內部結構及DS18B20的管腳排列
64位光刻ROM是出廠前被光刻好的,它可以看作是該DS18B20的地址序列號。不同的器件地址序列號不同。DS18B20內部結構主要由四部分組成:64位光刻ROM,溫度感測器,非揮發的溫度報警觸發器TH和TL,高速暫存器。
DS18B20的引腳定義:
(1)DQ為數字信號輸入/輸出端
(2)GND為電源地
(3)VDD為外接供電電源輸入端(在寄生電源接線方式時接地)
另外,站長團上有產品團購,便宜有保證

3. 模電課程設計——溫度測量電路

我幫你設計原理圖吧設計方案選擇你自己列吧原理很簡單的

4. 模電課程設計 水溫測量儀

第二章 水溫測量儀的設計

2.1總體結構框圖設計
製作水溫測量儀,首先利用溫度感測器獲取被測量對象的溫度,將溫度轉換為電壓表示。然而上述表示的為絕對溫度與電壓的轉換關系,因此還需將絕對溫度與電壓的關系轉換為攝氏度與電壓的關系,這樣就完成電壓與攝氏度之間的直接轉換關系。之後將電壓放大,即可直接用電壓表讀出被測對象的溫度值。此外將放大後的電壓接至一電壓比較器,比較器輸出端接報警設備,如指示燈。在設置比較電壓(即比較溫度)後,由比較器輸出端的電壓決定指示燈的狀態,進而起到報警的作用。基本原理如圖 2.1.1所示:

圖 2.1.1基本原理圖

2.2溫度檢測電路設計
圖2.2.1 集成溫度感測器AD590

2.2.1 AD590簡介:
AD590是AD公司利用PN結正向電流與溫度的關系製成的電流輸出型兩端溫度感測器,如圖 2.2.1所示。這種器件在被測溫度一定時,相當於一個恆流源。該器件具有良好的線性和互換性,測量精度高,並具有消除電源波動的 特性。即使電源在5~15V之間變化,其電流只是在1μA以下作微小變化。其主要參數如表2.2.1所示:
工作電壓 4~30V 反向電壓 -20V
工作溫度 -55~+150℃ 焊接溫度(10秒) 300℃
保存溫度 -65~+175℃ 靈敏度 1μA/K
正向電壓 +44V

表 2.2.1 AD590參數表

2.2.2 AD590的應用
AD590輸出阻抗達10MΩ,轉換當量為1μA/K。溫度—電壓轉換電路如圖 2.2.2所示:

圖 2.2.2 溫度—電壓轉換電路

溫度—電壓轉換分析:如圖 2.2.2所示,當將AD590置於水中時,根據水溫多少將提供恆流,方向如圖所示。由於在Uo輸出端接一電壓跟隨器從而增大輸入阻抗,電流幾乎全部流經電阻R。
由AD590轉換當量可知:
U01= UR=1μA/K×R=R×10-6/K (2 .2. 1)
在實際應用中可取R=10KΩ,則:
U01=10mV/K (2.2.2)
這樣可以實現溫度—電壓的轉換,取的所需電壓。

2.3 K—℃變換
2.3.1 K—℃變換減法電路
實現溫度—電壓轉換後,不能直接測量,仍需將絕對溫度轉換為攝氏度,即實現K—℃變換。絕對溫度(T)與攝氏度(t)之間的關系為:
T=t+273k (2.3.1)
由式 (2.2.2)與式 2.3.1可知要實現K—℃變換,必有:
Uo2=10mV/℃―2.73V (2.3.2)
該變換可用一個求和式加法器實現,如圖1.3.1所示:

圖 2.3.1 求和式加法器
求和式加法器分析:在理想運放的情況下,利用虛短與虛斷。有如下關系:

-UR/R2+U01/R1=U02/Rf1 (2.3.2)

設R2=R1=Rf1(2.3.3)

解式(2.3.2與式(2.3.3 )得:
(1.3.5)
U02= (U01-UR) (2.3.4)

2.3.2 電壓的放大

放大器
設計一個反相比例放大器,使其輸出u03滿足100mV/℃。用數字電壓表可實現溫度顯示。

圖2.3.2

放大器的關系式:

U03/R4=U02/R3 ;
由R4/R3=10得

U03=10U02

2.4 比較器
2.4.1 電壓比較器原理:
由電壓比較器組成,如圖3所示。UREF為報警時溫度設定電壓,Rf2用於改善比較器的遲滯特性,決定了系統的精度。

由上式可知溫度與電壓之間的關系:
U=0.1V/ ℃
將放大後的電壓接直流電壓表,即可直接讀的溫度值,如:將AD590放入20℃的水中,可讀得電壓表的值為2V。
圖2.4.1(a)所示為一最簡單的電壓比較器,UR為參考電壓,加在運放的同相的輸入端,輸入電壓ui加在反相的輸入端。

(a) (b)
圖 2.4.1 電壓比較器原理原理圖
圖2.4.1 (b)所示為其傳輸特性。當Ui<UR時,運放輸出高電平,穩壓管Dz反向穩壓工作。輸出端電位被其箝位在穩壓管的穩定電壓UZ,即Uo=UZ。當ui>UR時,運放輸出低電平,DZ正向導通,輸出電壓等於穩壓管的正向壓降UD,即 Uo=-UD。因此,以UR為界,當輸入電壓ui變化時,輸出端反映出兩種狀態,高電位和低電位。
2.4.2 運算放大器比較器
以上介紹的是最簡單的電壓比較器原理。比較器是由運算放大器發展而來的,比較器電路可以看作是運算放大器的一種應用電路。圖2.4.2 由運算放大器組成的差分放大器電路,輸入電壓Va經分壓器R2、R3分壓後接在同相端,Vb通過輸入電阻R1接在反相端,RF為反饋電阻,若不考慮輸入失調電壓,則其輸出電壓Vout與Va、Vb及4個電阻的關系式為:
Vout=(1+RFR1 )( R3R2+R3 )Va- RFR1 Vb (2.4.1)
若R1=R2,R3=RF,則:
Vout= RFR1 (Va-Vb), (2.4.2)
RF/R1為放大器的增益。當R1=R2=0(相當於R1、R2短 路),R3=RF=∞(相當於R3、RF開路)時,Vout=∞。增益成為無窮大,其電路圖就形成圖 2.4.3 的樣子,差分放大器處於開環狀態,它就是比較器電路。實際上,運放處於開環狀態時,其增益並非無窮大,而Vout輸出是飽和電壓,它小於正負電源電壓,也不可能是無窮大。
因此為了實現報警功能,可在輸出電壓端接一個電壓比較器,利用電壓的大小關系起到報警作用。

2.4.3圖

2.4.3 比較器實例

在本實例中採用圖2.4.4比較器。其中電阻參數取:R3=R4=10KΩ,Rf2=1000KΩ,在圖 2.4.4所示VCC3為報警時的溫度設定電壓。R3,R4用於穩定輸入電壓,決定了系統的精度。而 Rf2用於報警設備的輸入電阻,用於控制輸入電流的大小。

圖2.4.4 水溫測試儀電壓比較器電路

2.5報警設備
LED發光二極體:
報警設備可用一個發光二極體來充當,發光二極體LED,它是英文light emitting diode(發光二極體)的縮寫。發光二極體發熱量小,耗電少。
發光二極體有很多優勢:
1. 電壓:LED使用低壓電源,供電電壓在6-24V之間,根據產品不同而異,所以它是一個比使用高壓電源更安全的電源,特別適用於公共場所。
2. 效能:消耗能量較同光效的白熾燈減少80%
3. 適用性:很小,每個單元LED小片是3-5mm的正方形,所以可以制備成各種形狀的器件,並且適合於易變的環境
4. 穩定性:10萬小時,光衰為初始的50%
5. 響應時間:其白熾燈的響應時間為毫秒級,LED燈的響應時間為納秒級
6. 對環境污染:無有害金屬汞
報警分析:
當加與U2端的電壓大於設定溫度Uref時,U3有了正向輸出,二極體LED導通,發光,報警完成。

水溫測量儀運作過程總析
將上述器件加以組合得到圖2.6.1所示:
水溫測量過程及報警分析:將AD590放入水中,將會產生相應大小的電流,電流經過Ro,在Ro兩端產生電壓,進而由一個運放組成的電壓跟隨器輸出。然而經過絕對溫度與電壓的轉換後還需要變換為攝氏度與電壓的關系。於是在電壓跟隨器後接一個求和加法器以達目的,即加上一個-2.73V的電壓。可以利用穩壓管和運放電路來提供所需要的-2.73V電壓。
之後可將電壓跟隨器的輸出電壓與上式所求得的電壓接至求和加法器的兩端。在加法器(放大器)作用之後,我們獲得電壓與溫度的直接關系。在U03端接一電壓表,即可讀的溫度值。比如水的溫度為12℃,則電壓表的示數為1.2V。
完成了電壓的讀取,還需進行電壓比較以達到報警的目的。在1.5節中已經討論了比較器的原理。設計所要求的報警溫度為50℃,即比較電壓為5V。所以應該在比較器比較端VCC3接5V的恆壓源。
當輸出電壓U03<5V時,U04<0。此時二極體截止。當輸出電壓>5V時,U04>0。此時二極體導通, LED發光。報警過程完成。在實際應用中,我們取VCC1=12V。

第三章 水溫測量儀的模擬與製作

3.1 模擬軟體簡介
EWB是一種電子電路計算機模擬軟體,它被稱為電子設計工作平台或虛擬電子實驗室,英文全稱為Electronics Workbench。EWB是加拿大Interactive Image Technologies公司於1988年開發的,自發布以來,已經有35個國家、10種語言的人在使用。EWB以SPICE3F5為軟體核心,增強了其在數字及模擬混合信號方面的模擬功能。SPICE3F5是SPICE的最新版本,SPICE自1972年使用以來,已經成為模擬集成電路設計的標准軟體。EWB建立在SPICE基礎上,它具有以下突出的特點:
(1)採用直觀的圖形界面創建電路:在計算機屏幕上模模擬實實驗室的工作台,繪制電路圖需要的元器件、電路模擬需要的測試儀器均可直接從屏幕上選取;
(2)軟體儀器的控制面板外形和操作方式都與實物相似,可以實時顯示測量結果。
(3)EWB軟體帶有豐富的電路元件庫,提供多種電路分析方法。
(4)作為設計工具,它可以同其它流行的電路分析、設計和制板軟體交換數據。
(5)EWB還是一個優秀的電子技術訓練工具,利用它提供的虛擬儀器可以用比實驗室中更靈活的方式進行電路實驗,模擬電路的實際運行情況,熟悉常用電子儀器測量方法。

3.2 模擬電路的建立
我們用EWB建立電路模型,由於沒有AD590,我們可以利用一個恆流源代替AD590提供電流,比擬溫度的采樣。被減電壓2.73V我用了一個2.73V的電池來代替。電路模型如圖3.1.1,圖3.1.2所示:

3.3模擬效果分析
設置好電路以後,我們開始模擬。由於我們用了一個恆流源代替了AD590,即用電流源比作電壓的獲得。
1,取電流源電流值為200uA,即絕對溫度200K,轉換為攝氏度為-73℃。電壓表讀值為-7.3。可見與理論值相同,此時溫度比50度小。比較器輸出為負值。二極體不導通。圖中二極體未發光(雙箭頭所示)。
2,取電流源電流值為333uA,即絕對溫度333K,轉換為攝氏度為60℃.電壓表為6V。與理論相同,由於溫度比50度大,電壓U2>VCC3.比較器輸出正值,由於理想運放的緣故。圖中電壓表讀出值為19.8V是一個不確定正值。二極體在U3的作用下導通,發光(雙箭頭).
由此可見理論值與實際值符合得很好。溫度能夠測得。

5. 求《單片機溫度測量系統設計》的相關資料!

要:本文介紹了一種基於MSP430 單片機的溫度測控裝置。該裝置可實現對溫度的測量,並能根據設定值對環境溫度進行調節,實現控溫的目的。控制演算法基於數字PID演算法。

0 引言
溫度是工業控制中主要的被控參數之一,特別是在冶金、化工、建材、食品、機械、石油等工業中,具有舉足重輕的作用。隨著電子技術和微型計算機的迅速發展,微機測量和控制技術得到了迅速的發展和廣泛的應用[1]。單片機具有處理能強、運行速度快、功耗低等優點,應用在溫度測量與控制方面,控制簡單方便,測量范圍廣,精度較高。
本文設計了一種基於MSP430單片機的溫度測量和控制裝置,能對環境溫度進行測量,並能根據溫度給定值給出調節量,控制執行機構,實現調節環境溫度的目的。

1 整體方案設計
單片機溫度控制系統是以MSP430單片機為控制核心。整個系統硬體部分包括溫度檢測系統、信號放大系統、A/D轉換、單片機、I/O設備、控制執行系統等。
單片機溫度控制系統控猜神制框圖如下所示:

溫度感測器將溫度信息變換為模擬電壓信號後,將電壓信號放大到單片機可以處理的范圍內,經過低通濾波,濾掉干擾信號送入單片機。在單片機中對信號進行采樣,為進一步提高測量精度,采樣後對信號再進行數字濾波。單片機將檢測到的溫度信息與設定值進行比較,如果不相符,數字調節程序根據給定值與測得值的差值按PID控制演算法設計控制量,觸發程序根據控制量控制執行單元。如果檢測值高於設定值,則啟動製冷系統,降低環境溫度;如果檢測值低於設定值,則啟動加熱系統,提高環境溫度,達到控制溫度的目的。

2 溫度信號檢測
本系統中對檢測精度要求不是很高,室溫下即可,所以選用高精度熱敏電阻作為溫度感測器。熱敏電阻具有靈敏度較高、穩定性強、互換精度高的特點。可使放大器電路極為簡單, 又免去了互換補償的麻煩。
熱敏電阻具有負的電阻溫度特性,當溫度升高時,電阻值減小,它的阻值—溫度特性曲線是一條指數曲線,非線性度較大。而對於本設計,因為溫度要求不高,是在室溫環境下,熱敏電阻的阻值與環境溫度基本呈線性關系[2],這樣可以通過電阻分壓簡單地將溫度值轉化為電壓值。
給熱敏電阻通以恆定的電流,可得到電阻兩端的電壓,根據與熱敏電阻特性有關的溫度參數T0 以及特性系數k,可得下式
T=T0-kV(t) (1)
式中T為被測溫度。
根據上式,可以把電阻值隨溫度的變化關系轉化為電壓值隨溫度變化的關系,由於熱敏電阻的電信號一般都是毫伏級,必須經過放祥緩大,將熱敏電阻測量到的電信號轉化為0~3.6之間,才能在單片機中使用。
下圖為放大電路原理圖。穩壓管的穩壓值為1.5V。

由於感測器輸出微弱的模擬信號,當信號中存在環境干擾時,干擾信號也被同時放大,影響檢測的精度,需用濾波電路對先對模擬信號進行處理,以提高信號的抗干擾能力。本系統採用巴特沃斯二階有源低通濾波電路。選取該巴特沃斯二階有源低通濾波電路的截止頻率
fH=10 kHz 。

3 控制系統設計
3.0 軟體設計
單片機溫度控制器控制溫度范圍100℃到400℃,採用通斷控制,通過改變給定控制周期內加熱和製冷設備的導通和關斷時間,來提高和降低溫度,以達到調節溫度的目的。
軟體設計中選取控制周期TC 為200(T1×C) ,導通時間取Pn ×T1×C ,其中Pn 為輸出的控制量,Pn值介於0~200之間, T1 為定時器定時的時間,C為常數。由上兩式可看出,通過改變T1 定時時間或常數C,就可改變控制周期TC 的大小。溫度控制器控制的最高溫度為400℃,當給定溫度超過400℃時以400℃計算。
圖3為采樣中斷流程圖。

數模轉換部分使用單片機自帶的12位A/D轉換器,能同時實現數模轉換和控制,免去使用專用的轉換晶元,使系統處理速度更快,精度更高,使電路簡化。采樣周期為500 μs ,當採集完16個點的數據以後,設置標志「nADCFlag =1」,通知主程序採集完16個點的數據,主程序從全局緩沖區里讀出數據。
為進一步減小隨機信號對系統精度的影響,A/D轉換後,用平均值法對采樣值進行數字濾波。每16個采樣點取一次平均值。然後將計算到的平均值作為測量數據進行顯示。同時,按照PID演算法,對溫度采樣值和給定值之間的偏差進行控制謹兆模,得到控制量。采樣全過程完成後就可屏蔽采樣中斷,同時啟動T1定時[3],進入控制過程。
溫度值和熱敏電阻的測量值在整個溫度采樣區間內基本呈線性變化,因此在程序中不需要對測量數據進行線性校正。MSP430的T1定時器中斷作為控制中斷,溫度采樣過程和控制輸出過程採用了互鎖結構,即在進行溫度采樣,溫度值處理和運算等過程時T1不定時,待采樣全過程進行完時再啟動T1定時並同時屏蔽采樣中斷。T1定時開始就進入控制過程,在整個控制過程中都不採樣,直到200(T1×C) 定時時間到,要開始新一輪的控制周期。在啟動采樣的同時屏蔽T1中斷。
圖4為T1定時中斷流程圖。

圖中,M代表定時器控制周期計數值,N則表示由調節器計算出的控制量。首先判斷控制周期TC是否己經結束。若控制周期TC已結束(即M=0),則屏蔽T1定時器中斷,進行新一輪溫度采樣;若控制周期TC還未結束〔即M≠0 〕,則開始判斷導通時間是否結束。若導通時間己結束(即N=0),則置輸出控制信號為低,並重新賦常數C值,啟動定時器定時,同時退出中斷服務程序;若導通時間還未結束(即N ≠0 ),則置輸出控制信號為高,控制執行其間繼續導通,重新賦常數C值,啟動定時器定時,同時退出中斷服務程序。

3.1 數字PID
本文控制演算法採用數字PID 控制,數字PID 演算法表達式如下所示:

其中,KP 為比例系數;KI=KPT/TI 為積分系數;T 為采樣周期,TI 為積分時間系數;KD=KPTD/T 為微分系數,TD 為微分時間系數。u(k) 為調節器第k次輸出, e(k) 為第k 次給定與反饋偏差。
對於PID 調節器,當偏差值輸出較大時,輸出值會很大,可能導致系統不穩定,所以在實際中,需要對調節器的輸出限幅[4],即當|u|>umax 時,令u=umax 或u=-umax ,或根據具體情況確定。

3.2 溫度調節
PI 控制器根據溫度給定值和測量值之間的偏差調節,給出調節量,再通過單片機輸出PWM 波,調節可控硅的觸發相位的相位角,以此來控制執行部件的關斷和開啟時間,達到使溫度升高或降低的目的。隨後整個系統再通過檢測前一階段控制後的溫度,進行近一步的控制修正,最終實現預期的溫度監控目的。

4 結論
本設計利用單片機低功耗、處理能力強的特點,使用單片機作為主控制器,對室內環境溫度進行監控。其結構簡單、可靠性較高,具有一定的實用價值和發展前景。

參考文獻
[1] 趙麗娟,邵欣.基於單片機的溫度監控系統的設計與實現.機械製造,2006,44(1)
[2] 張開生,郭國法.MCS-51 單片機溫度控制系統的設計.微計算機信息,2005,(7)
[3] 沈建華,楊艷琴,翟驍曙..MSP430 系列16 位超低功耗單片機原理與應用.清華大學出版社,2004,148-155
[4] 賴壽宏.微型計算機控制技術.北京:機械工業出版社,1994:90-95

6. 設計一個溫度測量及超限報警電路

我給你提供方法吧 你自己去實現

一個溫度感測器 一個比較器 當你設定的值超過 比較器設定的80度時的值,就輸出驅動蜂鳴器工作 就這么簡單

7. 如何利用Pt100測量溫度,設計可行的方案

★硬體設計:
完善的硬體設計是系統正常工作的基礎,基於PT100的溫度監控系統,硬體主要由以下四個模塊構成,單片機STC89C52、測溫模塊、顯示模塊、無線遙控模塊和超溫報警模塊。
★測溫模塊:
該測溫模塊主要是採集溫度信息,送給單片機進行處理。測溫模塊的結構如圖2所示,主要包括恆流源、PT100的四線式接法,放大電路和A/D轉換。
(1)鉑電阻。
鉑電阻PT100測溫時, 一般採用的方法是二線制或三線制接法。二線制吵清旁和三線制是用電橋法測量,最後給出的是溫度值與模擬量輸出值的關系。由於連接導線的電阻和接觸電阻會對PT100測溫的精度產生較大影響,故本系統採用PT100的四線式接法,沒有電橋,完全只是用恆流源發送,電壓計測量,最後給出電阻值,提高了測量精度。
(2)恆流源。
恆流源電路選取晶元運算放大器OP07,它和5個電阻搭建組成恆流源電路,輸出恆定的工作電流。
(3)放大電路。
正喊Pt100鉑電阻一端輸出升橡的電壓很小,如果直接和A/D相連,則轉換數據的偏差較大,所以本設計將鉑電阻一端輸出的電壓與放大電路相連,將電壓放大之後再和A/D相連,這樣就能得到較好的轉換效果,該放大電路是基於晶元LM348設計的。
(4)A/D轉換。
我們所測的信號是連續變化的物理量,通過A/D轉換將連續變化的模擬量轉換為計算機能接受的數字量,此處考慮到精度要求,採用了12位AD轉換晶元TLC2543晶元。
★超溫報警:
超溫報警,採用電磁式蜂鳴器,它由振盪器、電磁線圈、磁鐵、振動膜片及外殼等組成。接通電源後,振盪器產生的音頻信號電流通過電磁線圈,使電磁線圈產生磁場。振動膜片在電磁線圈和磁鐵的相互作用下,周期性地振動發聲。如果測量溫度超過規定的溫度,蜂鳴器發出報警聲,同時LED閃爍並且液晶顯示超溫提醒。
★無線接收發射電路:
遙控器的遙控功能實現,是以電磁波或紅外線為數據傳輸介質,實現指令的傳送功能。遙控器發送的數據經過加密編碼,調制,載波輸出信號。接受模塊,則進行相反的操作,提取出遙控器發射過來的命令,再由單片機執行相應的命令,調節超溫報警的上限。發射和接收集成電路由晶元PT2262-IR/PT2272-M4組成。編碼晶元PT2262發出的編碼信號由:地址碼、數據碼、同步碼組成一個完整的碼字,解碼晶元PT2272接收到信號後,其地址碼經過兩次比較核對後,VT腳才輸出高電平,與此同時相應的數據腳也輸出高電平,如果發送端一直按住按鍵,編碼晶元也會連續發射。當發射機沒有按鍵按下時,PT2262不接通電源,發射電路不工作,當有按鍵按下時,PT2262得電工作。
★軟體設計:
本系統軟體設計主要分為兩部分:鉑電阻分度表的線性化處理軟體設計和顯示模塊軟體設計。前者採用Matlab軟體計算,後兩者採用C語言編寫。
★鉑電阻分度表的線性化處理軟體設計:
利用Matablede的計算能力進行鉑電阻分度表的線性化處理,將測量范圍-40℃—120℃分三段線性回歸處理,用的方法是最小二乘法,通過計算可得:
(1)當84.27歐<電阻<100歐,溫度=2.55547*轉換得到的電阻-255.4075;
(2)當100歐<電阻<119.40歐,溫度=2.5772*轉換得到的電阻-257.7708;
(3)當119.40歐<電阻<146.07歐,溫度=2.61039*轉換得到的電阻-261.72914。
★顯示模塊軟體設計:
顯示模塊主要是顯示測得溫度,判斷是否超溫,當超溫的時候,蜂鳴器發出報警,LED閃爍且液晶顯示超溫提醒;當需要修改報警上限的時候,通過無線接收模塊的按鍵進行加減。
★系統調試:
完成了系統的硬體和軟體設計,然後對其進行聯合調試,系統正常運行,但仍需進一步完善,其中有兩個需要注意的問題:(1)PT100的工作電流問題。本系統選用的PT100的最大工作電流為0.3mA,如果流過鉑電阻的電流超過這個數值,鉑電阻本身會發熱,影響測量溫度的准確性,誤差可能越來越大;(2)負載電阻如果用電阻串並聯或者尋找近似電阻得到的,先逆向算出對應的溫度,再用萬用表調試,否則將影響測量結果,產生不必要的誤差。
(摘 http://www.xzbu.com/1/view-3654640.htm,有刪改)

8. 溫度感測器課程設計

集成溫度感測器AD590及其應用
摘 要:AD590是AD公司利用PN結構正向電流與溫度的關系製成的電流輸出型兩端溫度感測器,文中介紹了AD590的功能和特性,分析了AD590的工作原理,給出了採用AD590設計的...
www.bjx.com.cn/files/wx/gwdzyqj/2002-7/8.htm

2 電子技術文章-技術資料
集成溫度感測器AD590及其應用
集成溫度感測器AD590及其應用
瀏覽次數 1978
添加日期 2004-06-26 相關評論
主題: 有沒有數字電流表製作圖 ( 發布人:發布時間:2005-8-22 21:21:37 )
評論內容: 有沒有數字電流表製作圖 請問...
www.guangdongdz.com/special_column/techar ...

3 技術論壇 C++,VC...
集成溫度感測器AD590及其應用[
標題:集成溫度感測器AD590及其應用 htkj
等級:超級版主 文章:199 積分:2698 門派:無門無派
注冊:2005年...集成溫度感測器AD590及其應用集成溫度感測器AD590及其應用點擊瀏覽該文件

溫度感測器,使用范圍廣,數量多,居各種感測器之首。溫度感測器的發展大致經歷了以下3個階段:
1.傳統的分立式溫度感測器(含敏感元件),主要是能夠進行非電量和電量之間轉換。2.模擬集成溫度感測器/控制器。
3.智能溫度感測器。目前,國際上新型溫度感測器正從模擬式想數字式、集成化向智能化及網路化的方向發展。
溫度感測器的分類
溫度感測器按感測器與被測介質的接觸方式可分為兩大類:一類是接觸式溫度感測器,一類是非接觸式溫度感測器。
接觸式溫度感測器的測溫元件與被測對象要有良好的熱接觸,通過熱傳導及對流原理達到熱平衡,這是的示值即為被測對象的溫度。這種測溫方法精度比較高,並可測量物體內部的溫度分布。但對於運動的、熱容量比較小的及對感溫元件有腐蝕作用的對象,這種方法將會產生很大的誤差。
非接觸測溫的測溫元件與被測對象互不接觸。常用的是輻射熱交換原理。此種測穩方法的主要特點是可測量運動狀態的小目標及熱容量小或變化迅速的對象,也可測量溫度場的溫度分布,但受環境的影響比較大。
溫度感測器的發展
1.傳統的分立式溫度感測器——熱電偶感測器
熱電偶感測器是工業測量中應用最廣泛的一種溫度感測器,它與被測對象直接接觸,不受中間介質的影響,具有較高的精度;測量范圍廣,可從-50~1600℃進行連續測量,特殊的熱電偶如金鐵——鎳鉻,最低可測到-269℃,鎢——錸最高可達2800℃。

2.模擬集成溫度感測器
集成感測器是採用硅半導體集成工藝製成的,因此亦稱硅感測器或單片集成溫度感測器。模擬集成溫度感測器是在20世紀80年代問世的,它將溫度感測器集成在一個晶元上、可完成溫度測量及模擬信號輸出等功能。
模擬集成溫度感測器的主要特點是功能單一(僅測量溫度)、測溫誤差小、價格低、響應速度快、傳輸距離遠、體積小、微功耗等,適合遠距離測溫,不需要進行非線性校準,外圍電路簡單。

2.1光纖感測器

光纖式測溫原理
光纖測溫技術可分為兩類:一是利用輻射式測量原理,光纖作為傳輸光通量的導體,配合光敏元件構成結構型感測器;二是光纖本身就是感溫部件同時又是傳輸光通量的功能型感測器。光纖撓性好、透光譜段寬、傳輸損耗低,無論是就地使用或遠傳均十分方便而且光纖直徑小,可以單根、成束、Y型或陣列方式使用,結構布置簡單且體積小。因此,作為溫度計,適用的檢測對象幾乎無所不包,可用於其他溫度計難以應用的特殊場合,如密封、高電壓、強磁場、核輻射、嚴格防爆、防水、防腐、特小空間或特小工件等等。目前,光纖測溫技術主要有全輻射測溫法、單輻射測溫法、雙波長測溫法及多波長測溫等
2.1.1 全輻射測溫法
全輻射測溫法是測量全波段的輻射能量,由普朗克定律:

測量中由於周圍背景的輻射、測試距離、介質的吸收、發射及透過率等的變化都會嚴重影響准確度。同時輻射率也很難預知。但因該高溫計的結構簡單,使用操作方便,而且自動測量,測溫范圍寬,故在工業中一般作為固定目標的監控溫度裝置。該類光纖溫度計測量范圍一般在600~3000℃,最大誤差為16℃。
2.1.2 單輻射測溫法
由黑體輻射定律可知,物體在某溫度下的單色輻射度是溫度的單值函數,而且單色輻射度的增長速度較溫度升高快得多,可以通過對於單輻射亮度的測量獲得溫度信息。在常用溫度與波長范圍內,單色輻射亮度用維恩公式表示:

2.1.3 雙波長測溫法
雙波長測溫法是利用不同工作波長的兩路信號比值與溫度的單值關系確定物體溫度。兩路信號的比值由下式給出:

際應用時,測得R(T)後,通過查表獲知溫度T。同時,恰當地選擇λ1和λ2,使被測物體在這兩特定波段內,ε(λ1,T)與ε(λ2,T)近似相等,就可得到與輻射率無關的目標真實溫度。這種方法響應快,不受電磁感應影響,抗干擾能力強。特別在有灰塵,煙霧等惡劣環境下,對目標不充滿視場的運動或振動物體測溫,優越性顯著。但是,由於它假設兩波段的發射率相等,這只有灰體才滿足,因此在實際應用中受到了限制。該類儀器測溫范圍一般在600~3000℃,准確度可達2℃。

2.1.4 多波長輻射測溫法
多波長輻射測溫法是利用目標的多光譜輻射測量信息,經過數據處理得到真溫和材料光譜發射率。考慮到多波長高溫計有n個通道,其中第i個通道的輸出信號Si可表示為:

將式(9)~(13)中的任何一式與式(8)聯合,便可通過擬合或解方程的方法求得溫度T和光譜發射率。Coates[8,9]在1988年討論了式(9)、(10)假設下多波長高溫計數據擬合方法和精度問題。1991年Mansoor[10]等總結了多波長高溫計數據擬合方法和精度問題。 該方法有很高的精度,目前歐共體及美國聯合課題組的Hiernaut等人已研究出亞毫米級的6波長高溫計(圖4),用於2000~5000K真溫的測量[11]。哈爾濱工業大學研製成了棱鏡分光的35波長高溫計,並用於燒蝕材料的真溫測量。多波長高溫計在輻射真溫測量中已顯出很大潛力,在高溫,甚高溫,特別是瞬變高溫對象的真溫測量方面,多波長高溫計量是很有前途的儀器。該類儀器測溫范圍廣,可用於600~5000℃溫度區真溫的測量,准確度可達±1%。

2.1.5 結 論
光纖技術的發展,為非接觸式測溫在生產中的應用提供了非常有利的條件。光纖測溫技術解決了許多熱電偶和常規紅外測溫儀無法解決的問題。而在高溫領域,光纖測溫技術越來越顯示出強大的生命力。全輻射測溫法是測量全波段的輻射能量而得到溫度,周圍背景的輻射、介質吸收率的變化和輻射率εT的預測都會給測量帶來困難,因此難於實現較高的精度。單輻射測溫法所選波段越窄越好,可是帶寬過窄會使探測器接收的能量變得太小,從而影響其測量准確度。多波長輻射測溫法是一種很精確的方法,但工藝比較復雜,且造價高,推廣應用有一定困難。雙波長測溫法採用波長窄帶比較技術,克服了上述方法的諸多不足,在非常惡劣的條件下,如有煙霧、灰塵、蒸汽和顆粒的環境中,目標表面發射率變化的條件下,仍可獲得較高的精度
2.2半導體吸收式光纖溫度感測器是一種傳光型光纖溫度感測器。所謂傳光型光纖溫度感測器是指在光纖感測系統中,光纖僅作為光波的傳輸通路,而利用其它如光學式或機械式的敏感元件來感受被測溫度的變化。這種類型主要使用數值孔徑和芯徑大的階躍型多模光纖。由於它利用光纖來傳輸信號,因此它也具有光纖感測器的電絕緣、抗電磁干擾和安全防爆等優點,適用於傳統感測器所不能勝任的測量場所。在這類感測器中,半導體吸收式光纖溫度感測器是研究得比較深入的一種。
半導體吸收式光纖溫度感測器由一個半導體吸收器、光纖、光發射器和包括光探測器的信號處理系統等組成。它體積小,靈敏度高,工作可靠,容易製作,而且沒有雜散光損耗。因此應用於象高壓電力裝置中的溫度測量等一些特別場合中,是十分有價值的。
B 半導體吸收式光纖溫度感測器的測溫原理
半導體吸收式光纖溫度感測器是利用了半導體材料的吸收光譜隨溫度變化的特性實現的。根據 的研究,在 20~972K 溫度范圍內,半導體的禁帶寬度能量Eg 與
溫度T 的關系為
"

3.智能溫度感測器
智能溫度感測器(亦稱數字溫度感測器)是在20世紀90年代中期問世的。它是微電子技術、計算機技術和自動測試技術(ATE_)的結晶。目前,國際上已開發出多種智能溫度感測器系列產品。智能溫度感測器內部包含溫度感測器、A/D感測器、信號處理器、存儲器(或寄存器)和介面電路。有的產品還帶多路選擇器、中央控制器(CPU)、隨機存取存儲器(RAM)和只讀存儲器(ROM)。
智能溫度感測器能輸出溫度數據及相關的溫度控制量,適配各種微控制器(MCU),並且可通過軟體來實現測試功能,即智能化取決於軟體的開發水平。

3.1數字溫度感測器。
隨著科學技術的不斷進步與發展,溫度感測器的種類日益繁多,數字溫度感測器更因適用於各種微處理器介面組成的自動溫度控制系統具有可以克服模擬感測器與微處理器介面時需要信號調理電路和A/D轉換器的弊端等優點,被廣泛應用於工業控制、電子測溫計、醫療儀器等各種溫度控制系統中。其中,比較有代表性的數字溫度感測器有DS1820、MAX6575、DS1722、MAX6635等。
一、DS1722的工作原理
1 、DS1722的主要特點
DS1722是一種低價位、低功耗的三匯流排式數字溫度感測器,其主要特點如表1所示。
2、DS1722的內部結構
數字溫度感測器DS1722有8管腳m-SOP封裝和8管腳SOIC封裝兩種,其引腳排列如圖1所示。它由四個主要部分組成:精密溫度感測器、模數轉換器、SPI/三線介面電子器件和數據寄存器,其內部結構如圖2所示。

開始供電時,DS1722處於能量關閉狀態,供電之後用戶通過改變寄存器解析度使其處於連續轉換溫度模式或者單一轉換模式。在連續轉換模式下,DS1722連續轉換溫度並將結果存於溫度寄存器中,讀溫度寄存器中的內容不影響其溫度轉換;在單一轉換模式,DS1722執行一次溫度轉換,結果存於溫度寄存器中,然後回到關閉模式,這種轉換模式適用於對溫度敏感的應用場合。在應用中,用戶可以通過程序設置解析度寄存器來實現不同的溫度解析度,其解析度有8位、9位、10位、11位或12位五種,對應溫度解析度分別為1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,溫度轉換結果的默認解析度為9位。DS1722有摩托羅拉串列介面和標准三線介面兩種通信介面,用戶可以通過SERMODE管腳選擇通信標准。
3、DS1722溫度操作方法
感測器DS1722將溫度轉換成數字量後以二進制的補碼格式存儲於溫度寄存器中,通過SPI或者三線介面,溫度寄存器中地址01H和02H中的數據可以被讀出。輸出數據的地址如表2所示,輸出數據的二進制形式與十六進制形式的精確關系如表3所示。在表3中,假定DS1722 配置為12位解析度。數據通過數字介面連續傳送,MSB(最高有效位)首先通過SPI傳輸,LSB(最低有效位)首先通過三線傳輸。
4、DS1722的工作程序
DS1722的所有的工作程序由SPI介面或者三匯流排通信介面通過選擇狀態寄存器位置適合的地址來完成。表4為寄存器的地址表格,說明了DS1722兩個寄存器(狀態和溫度)的地址。
1SHOT是單步溫度轉換位,SD是關閉斷路位。如果SD位為「1」,則不進行連續溫度轉換,1SHOT位寫入「1」時,DS1722執行一次溫度轉換並且把結果存在溫度寄存器的地址位01h(LSB)和02h(MSB)中,完成溫度轉換後1SHOT自動清「0」。如果SD位是「0」,則進入連續轉換模式,DS1722將連續執行溫度轉換並且將全部的結果存入溫度寄存器中。雖然寫到1SHOT位的數據被忽略,但是用戶還是對這一位有讀/寫訪問許可權。如果把SD改為「1」,進行中的轉換將繼續進行直至完成並且存儲結果,然後裝置將進入低功率關閉模式。
感測器上電時默認1SHOT位為「0」。R0,R1,R2為溫度解析度位,如表5所示(x=任意值)。用戶可以讀寫訪問R2,R1和R0位,上電默認狀態時R2=「0」,R1=「0」,R0=「1」(9位轉換)。此時,通信口保持有效,用戶對SD位有讀/寫訪問許可權,並且其默認值是「1」(關閉模式)。
二、智能溫度感測器DS18B20的原理與應用
DS18B20是美國DALLAS半導體公司繼DS1820之後最新推出的一種改進型智能溫度感測器。與傳統的熱敏電阻相比,他能夠直接讀出被測溫度並且可根據實際要求通過簡單的編程實現9~12位的數字值讀數方式。可以分別在93.75 ms和750 ms內完成9位和12位的數字量,並且從DS18B20讀出的信息或寫入DS18B20的信息僅需要一根口線(單線介面)讀寫,溫度變換功率來源於數據匯流排,匯流排本身也可以向所掛接的DS18B20供電,而無需額外電源。因而使用DS18B20可使系統結構更趨簡單,可靠性更高。他在測溫精度、轉換時間、傳輸距離、解析度等方面較DS1820有了很大的改進,給用戶帶來了更方便的使用和更令人滿意的效果。
2DS18B20的內部結構
DS18B20採用3腳PR35封裝或8腳SOIC封裝,其內部結構框圖如圖1所示。

(1) 64 b閃速ROM的結構如下:

9. 非接觸式溫度檢測儀的設計 畢業設計

摘 要
系統由TPS334紅外溫度感測器、高精度放大器、雙通道16位串列A/D轉換器、AT89C51單片機、解碼顯示模塊與報警電路等部分構成,實現非接觸式紅外快速測溫,它能夠在較短的時間內准確測量出人體的溫度,而在測得溫度超出某一范圍時即啟用報警電路進行超標報警。文中提出了具體設計方案,討論了紅外非接觸式體溫計的基本原理,進行了可行性論證。給出了電路圖和程序流程圖並附有源程序。由於利用了單片機及數字控制系統的優點,系統的各方面性能得到了顯著的提高。

關鍵詞:紅外溫度感測器;快速檢測;非接觸測量;A/D轉換器;單片機;解碼顯示;超標報警

目 錄
前言…………………………………………………………………………1
第1章 設計思路與原理方框圖…………………………………………2
1.1 設計思路……………………………………………………………2
1.2 方案比較……………………………………………………………2
1.3系統方框圖及測量原理………………………………………………3
第2章 單元電路設計……………………………………………………5
2.1 感測器的選用………………………………………………………5
2.2 測量電路設計………………………………………………………9
2.3 信號處理電路設計…………………………………………………11
2.4 解碼顯示電路設計…………………………………………………21
2.5 報警電路……………………………………………………………22
2.6 電源電路設計………………………………………………………22
第3章 系統組成與工作原理……………………………………………23
3.1 系統組成……………………………………………………………23
3.2 系統工作原理………………………………………………………23
第4章 軟體設計………………………………………………………25
4.1 演算法設計……………………………………………………………25
4.2 程序設計……………………………………………………………27
第5章 產品製作與調試………………………………………………29
5.1 PCB板的設計…………………………………………………………29
5.2 PCB板的製作過程………………………………………………30
5.3 元器件的檢測與元器件的項目表…………………………………32
5.4 產品的安裝…………………………………………………………33
5.5 產品的調試…………………………………………………………34
總結……………………………………………………………………35
參考文獻………………………………………………………………36
致謝…………………………………………………………………………37
附錄1:主電路電氣原理圖
附錄2:元件布局圖
附錄3:PCB板圖
附錄4:元件裝配圖
附錄5:主要元器件清單

看看可以不,,需要的話與用戶名QQ聯系

閱讀全文

與溫度測量裝置設計方案相關的資料

熱點內容
實驗室制cl2的發生裝置 瀏覽:453
排氣閥門車內無法打開 瀏覽:557
動力傳動裝置一般用於什麼系統 瀏覽:639
看軸承型號如何知道外徑的 瀏覽:872
軸承故障診斷分析是做什麼的 瀏覽:846
法蘭克軸承怎麼加工 瀏覽:238
福建軸承型號市場前景如何 瀏覽:381
螺旋輸送傳動裝置 瀏覽:295
燃氣管道長於2米要加閥門嗎 瀏覽:812
gsx250r油耗儀表怎麼看 瀏覽:379
小米的添加信任設備怎麼弄 瀏覽:178
電工儀表兩根筆怎麼使用 瀏覽:934
東莞紅陽機械電話是多少錢 瀏覽:786
二手重型設備在哪裡買 瀏覽:139
工業管道閥門驗收標准 瀏覽:490
全封工具箱 瀏覽:795
蕪湖宏達機械有限公司怎麼樣 瀏覽:662
威馳汽車儀表盤時間怎麼調圖片 瀏覽:349
安徽瑞旭機械科技有限公司電話是多少 瀏覽:408
鄭州中壓閥門廠 瀏覽:767