㈠ 液壓站液壓系統的電液調壓裝置
電液調壓裝置結構圖
1一固定螺釘;2—十字彈賛;3—可動線圈;
4一永久磁鐵;5—控制桿;6—噴頭;
7—中孔螺母;8—導閥;9一調壓螺栓;
10—定壓彈簧;11一輔助彈簧;
12—滑閥;13—節流閥;14一濾芯
D腔內壓力受電液閥的控制。電液閥是一個電氣機械轉換器,它將輸人的電訊號轉變成機械位移。從圖中可以看到,控制桿5懸掛在十字彈簧2上,在控制桿上還固定一個可動線圈3,當司機操縱控制手柄向動線圈送人直流訊號後,動線圈便在永久磁鐵4作用下產生位移,此位移的大小決定於輸人信號的數值。在輸人信號達最大值時,控制桿的擋板與噴嘴間的距離最小,此時G腔內壓力達最大值;若電流減小,控制桿就相應離開噴嘴一定距離,G腔內油位也相應下降。由於G腔與D腔連通,所以G腔的壓力亦隨D腔的壓力變化。
綜上所述,調壓過程可歸納為:
制動手柄角位移!自整角機電壓變化!動線圈電流變化!擋板位移!G腔及D腔壓力變化!溢流滑閥位移!K管壓力變化一制動油缸壓力變化。
本系統在安全制動時,可以實現二級制動。二級制動的好處是既能快速、平穩地閘住提升機,又不致使提升機減速度過大。盤閘制動器分成兩組,分別與液壓站的「A」管,·1244·
「B」管相連。安全制動時,二級制動安全閥斷電,與「A」管相連的制動器通過安全閥直接回油,很快抱閘,所產生的力矩為最大力矩之半,提升速度下降。同時與「B」管相聯的制動器則通過安全閥的節流閥以較緩慢的速度回油,產生第二級制動力矩。二級制動力矩特性可以通過調節安全閥的節流桿來改變。
在雙捲筒提升機液壓站中,還設置了五通閥、四通閥。五通閥的作用是使活捲筒的制動器與調繩裝置閉鎖。在進行調繩工作時,五通閥有電,活捲筒制動缸通過五通閥回油,活捲筒處於制動裝態。四通閥的作用是控制調繩離合器。當四通閥斷電(五通閥通電財,離合器「打開」;四通閥通電時,離合器「合上」。
㈡ 液壓傳動知識
(一)液壓傳動概述
液壓傳動是以液體為工作介質來傳遞動力和運動的一種傳動方式。液壓泵將外界所輸入的機械能轉變為工作液體的壓力能,經過管道及各種液壓控制元件輸送到執行機構→油缸或油馬達,再將其轉變為機械能輸出,使執行機構能完成各種需要的運動。
(二)液壓傳動的工作原理及特點
1.液壓傳動基本原理
如圖2-62所示為一簡化的液壓傳動系統,其工作原理如下:
液壓泵由電動機驅動旋轉,從油箱經過過濾器吸油。當控制閥的閥心處於圖示位置時,壓力油經溢流閥、控制閥和管道(圖2-62之9)進入液壓缸的左腔,推動活塞向右運動。液壓缸右腔的油液經管道(圖2-62之6)、控制閥和管道(圖2-62之10)流回油箱。改變控制閥的閥心的位置,使之處於左端時,液壓缸活塞將反向運動。
改變流量控制閥的開口,可以改變進入液壓缸的流量,從而控制液壓缸活塞的運動速度。液壓泵排出的多餘油液經限壓閥和管道(圖2-62之12)流回油箱。液壓缸的工作壓力取決於負載。液壓泵的最大工作壓力由溢流閥調定,其調定值應為液壓缸的最大工作壓力及系統中油液經閥和管道的壓力損失之總和。因此,系統的工作壓力不會超過溢流閥的調定值,溢流閥對系統還起著過載保護作用。
在圖2-62所示液壓系統中,各元件以結構符號表示。所構成的系統原理圖直觀性強,容易理解;但圖形復雜,繪制困難。
工程實際中,均採用元件的標准職能符號繪制液壓系統原理圖。職能符號僅表示元件的功能,而不表示元件的具體結構及參數。
圖2-63所示即為採用標准職能符號繪制的液壓系統工作原理圖,簡稱液壓系統圖。
圖2-62 液壓傳動系統結構原理圖
1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥
圖2-63 液壓傳動系統工作原理圖
1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥
2.液壓傳動的特點
(1)液壓傳動的主要優點
1)能夠方便地實現無級調速,調速范圍大。
2)與機械傳動和電氣傳動相比,在相同功率情況下,液壓傳動系統的體積較小,質量較輕。
3)工作平穩,換向沖擊小,便於實現頻繁換向。
4)便於實現過載保護,而且工作油液能使傳動零件實現自潤滑,因此使用壽命較長。
5)操縱簡單,便於實現自動化,特別是與電氣控制聯合使用時,易於實現復雜的自動工作循環。
6)液壓元件實現了系列化、標准化和通用化,易於設計、製造和推廣應用。
(2)液壓傳動的主要缺點
1)液壓傳動中不可避免地會出現泄漏,液體也不可能絕對不可壓縮,故無法保證嚴格的傳動比。
2)液壓傳動有較多的能量損失(泄漏損失、摩擦損失等),故傳動效率不高,不宜作遠距離傳動。
3)液壓傳動對油溫的變化比較敏感,不宜在很高和很低的溫度下工作。
4)液壓傳動出現故障時不易找出原因。
(三)液壓傳動系統的組成及圖形符號
1.液壓傳動系統的組成
由上述例子可以看出,液壓傳動系統除了工作介質外,主要由四大部分組成:
1)動力元件——液壓泵。它將機械能轉換成壓力能,給系統提供壓力油。
2)執行元件——液壓缸或液壓馬達。它將壓力能轉換成機械能,推動負載做功。
3)控制元件——液壓閥(流量、壓力、方向控制閥等)。它們對系統中油液的壓力、流量和流動方向進行控制和調節。
4)輔助元件——系統中除上述三部分以外的其他元件,如油箱、管路、過濾器、蓄能器、管接頭、壓力表開關等。由這些元件把系統連接起來,以支持系統的正常工作。
液壓系統各組成部分及作用如表2-6所示。
表2-6 液壓系統組成部分的作用
2.液壓元件的圖形符號
圖2-64是液壓千斤頂的結構原理示意圖。它直觀性強,易於理解,但難於繪制。特別是當液壓系統中元件較多時更是如此。
圖2-64 液壓千斤頂的結構原理圖
1—杠桿;2—泵體;3,11—活塞;4,10—油腔;5,7—單向閥;6—油箱;8—放油閥;9—油管;12—缸體
為了簡化原理圖的繪制,液壓系統中的元件可採用符號來表示,並代表元件的職能。使用這些圖形符號可使系統圖即簡單明了又便於繪制,如果有些液壓元件職能無法用這些符號表達時,仍可採用它的結構示意圖形式。如表27為液壓泵的圖形符號;表2-8為常用控制方式的圖形符號。欲了解更多液壓元件的圖形符號,可參閱相關書籍。
表2-7 液壓泵的圖形符號
表2-8 常用控制方式圖形符號
(四)液壓傳動的主要元件
1.液壓泵
是一種能量轉換裝置。它將機械能轉換為液壓能,為液壓系統提供一定流量的壓力油液,是系統的動力元件。
液壓泵的結構類型有齒輪式、葉片式和柱塞式等。目前鑽探設備的液壓系統中主要採用前兩種形式。
(1)齒輪泵
齒輪泵分為外嚙合和內嚙合兩種形式。外嚙合式齒輪泵由於結構簡單,價格低廉,體積小質量輕,自吸性能好,工作可靠且對油液污染不敏感,所以應用比較廣泛。
1)齒輪泵的工作原理。齒輪泵由泵殼體,兩側端蓋及由各齒間形成密封的工作空間組成。齒輪的嚙合線把容腔分隔為兩個互不相通的吸油腔和排油腔。當齒輪按圖示方向旋轉時吸油一側的輪齒逐漸分離,工作空間的容腔逐步增大,形成局部真空。此時油箱中的油液在外界大氣壓的作用下進入吸油容腔,隨著齒輪的旋轉,齒間的油液帶到排油一側。由於此側的輪齒是逐步嚙合,工作空間的容腔縮小,油液受擠壓獲得能量排出油口並輸入液壓系統。
2)齒輪泵的結構。YBC-45/80齒輪泵是鑽探設備常用的一種液壓泵,額定流量45L/min,額定泵壓8MPa(圖2-65)。該泵主要由泵體、泵蓋、主動齒輪、被動齒輪及幾個軸套等組成。齒輪與軸呈一體,以4隻鋁合金軸套支撐於泵體內,泵蓋與泵體用螺栓緊固,端面及泵軸處均以密封圈密封,兩個軸套(圖2-65之7與19)在壓力油的作用下有一定的軸向游動量,油泵運轉時與齒輪端面貼緊,減少軸向間隙同時在軸套和泵蓋之間有封嚴板等,將吸排油腔嚴格分開,防止竄通以提高泵的容積效率。在軸套靠近齒輪嚙合處開有卸荷槽。泵主軸伸出端以半圓鍵與傳動裝置連接,接受動力。
圖2-65 YBC—45/80齒輪泵
1—卡圈;2—油封;3—螺栓;4—泵蓋;5,13,20—O型密封圈;6—封嚴板;7,10,17,19—軸套;8—潤滑油槽;9—主動齒輪;11—進油口;12—泵體;14—油槽;15—排油口;16—定位鋼絲;18—被動齒輪;21—油孔;22—壓力油腔
3)齒輪泵的流量。齒輪泵的流量可看作是兩個齒輪的齒槽容積之和。若齒輪齒數為z,模數為m,節圓直徑為D(D=z·m),有效齒高h=2m,齒寬為b時,泵的流量Q為
Q=πDhb=2πzm2b
考慮齒間槽比輪齒的體積稍大一些,通常取π為3.33加以修正,還應考慮泵的容積效率ηv,則齒輪泵每分鍾的流量為
地勘鑽探工:基礎知識
(2)葉片泵
葉片泵與齒輪泵相比較具有結構緊湊,外形尺寸小,流量均勻,工作平穩噪音小,輸出壓力較高等優點,但結構較復雜,自吸性能差,對油液污染較敏感。在液壓鑽機中也有採用。
葉片泵分為單作用和雙作用兩種。前者可作為變數泵,後者只能作定量泵。
2.液壓馬達
液壓馬達是將液壓能轉換為機械能的裝置,是液壓系統的執行元件。其結構與液壓泵基本相同,但由於功能和工作條件不同,一般液壓泵和液壓馬達不具有可逆性。
液壓馬達按結構特點分為齒輪式、葉片式和柱塞式三類。鑽探設備中常用柱塞式液壓馬達。
如圖2-66所示,當壓力油經配油盤進入缸體的柱塞時,柱塞受油的作用向外伸出,並緊緊抵在斜盤上,這時斜盤對柱塞產生一法向反作用力F。由於斜盤中心線與缸體軸線傾斜角為δM,所以F可分解為兩個分力,其中水平分力Fx與柱塞推力相平衡,而垂直分力Fg則對缸體產生轉矩,驅動缸體及馬達軸旋轉。若從配油盤的另一側輸入壓力油,則液壓馬達朝反方向旋轉。
圖2-66 軸向柱塞式液壓馬達工作原理
1—斜盤;2—缸體;3—柱塞;4—配油盤;5—主盤
若液壓馬達的排量為Q,輸入液壓馬達的液壓力為P,機械效率為ηm,則液壓馬達的輸出轉矩M為:M=PQηm/2π。
3.液壓缸
液壓缸是液壓系統的執行元件。它的作用是將液壓能轉變為機械能,使運動部件實現往復直線運動或擺動。液壓缸結構簡單,使用方便,運動平穩,工作可靠,在鑽探設備中應用十分廣泛。液壓缸的種類很多,按結構類型可分為活塞式、柱塞式和擺動式三種。其中活塞式液壓缸最常用。活塞或液壓缸可分為單出桿式和雙出桿式兩種。其固定方式可以是缸體固定或活塞桿固定。
(1)單出桿活塞式液壓缸
如圖2-67所示為液壓式鑽機給進油缸的結構。它由活塞、活塞桿、缸筒、上蓋、下蓋、密封圈和壓緊螺母等組成。活塞桿與活塞以螺紋連接成一體。活塞環槽中配裝的活塞環及上蓋處的密封圈等用以保證缸內具有良好的密封性。在液缸的上下蓋上設有輸油口,壓力油經輸油口進入液缸的上、下腔,即推動活塞移動,並通過活塞桿頂端的連接螺母帶動立軸上行或下行。由圖示結構可知,單出桿液壓缸活塞兩側容腔的有效工作面積是不相等的,因此當向兩腔分別輸入壓力和流量相等的油液時,活塞在兩個方向的推力和運行速度是不相等的。
圖2-67 鑽機給進油缸的結構
(2)雙活塞桿式液壓缸
雙活塞桿式液壓缸結構,組成件與單活塞桿液壓缸基本相同,所不同的是活塞左右兩端都有活塞桿伸出,可以連接工作部件,實現往復運動。由圖示結構可知,
兩側活塞桿直徑相同,當兩腔的供油壓力和流量都相等時,兩個方向的推力和運行速度也相等。
4.液壓控制閥
液壓控制閥是液壓系統中的控制元件,用於控制系統的油液流動方向及壓力和流量的大小,以保證各執行機構工作的可靠、協調和安全性。
液壓控制閥按其用途和工作特點不同,通常可分為方向控制閥(如單向閥和換向閥等)、壓力控制閥(如溢流閥、減壓閥和順序閥等)和流量控制閥(如節流閥和調速閥等)。這3種閥可根據需要互相組合成為集成式控制閥,如液壓式鑽機或其他工程機械就是將一個或多個換向閥、調壓溢流閥和流量閥等組裝在一起成為集中手柄控制的液壓操縱閥。
(五)液壓傳動系統的基本迴路簡介
1.壓力控制迴路
主要是利用壓力控制閥來控制系統壓力,實現增壓、減壓、卸荷、順序動作等,以滿足工作機構對力或力矩的要求。如圖2-68所示為一減壓迴路,由於油缸G往返時所需的壓力比主系統低,所以在支路上設置減壓閥,實現分支油路減壓。
圖2-68 減壓迴路
2.速度控制迴路
主要有定量泵的節流調速、變數泵和節流閥的調速、容積調速等迴路,可以實現執行機構不同運動速度(或轉速)的要求。在定量泵的節流調速迴路中,採用節流閥,調速閥或溢流調速閥來調節進入液壓缸(或液壓馬達)的流量。根據閥在迴路中的安裝位置,分為進口節流、出口節流和旁路節流3種。
3.換向控制迴路
換向控制迴路是利用各種換向閥或單向閥組成的控制執行元件的啟動、停止或換向的迴路。常見的有換向迴路、閉鎖迴路、時間制動的換向迴路和行程制動的換向迴路等。
如圖2-69所示是簡化的工作台作往復直線運動的液壓系統圖。為了控制工作台的往復運動,在這個系統中設置了一個手動換向閥,用來改變液流進入液壓缸的方向。當手動換向閥的閥心在最右端時(圖2-69a),壓力油由P—A,進入液壓缸左腔。此時,右腔中的油液由B—O流回油箱,因而推動了活塞連同工作台一起向右運動。
若把手動換向閥的閥心扳到中間位置(圖2-69b),壓力油的進油口P與回油口O都被閥心封閉,工作台停止運動。
如果把閥心扳到最左端,壓力油從P—B進入液壓缸右腔(圖2-69c),左腔中的油液由A—O回油箱,從而推動活塞連同工作台向左運動,完成換向動作。
圖2-69 換向工作原理圖
4.同步迴路
當液壓設備上有兩個或兩個以上的液壓油缸,在運動時要求能保持相同的位移和速度,或要求以一定的速度比運動時,可採用同步迴路。
5.順序動作迴路
當用一個液壓泵驅動幾個要求按照一定順序依次動作的工作機構時,可採用順序動作迴路。實現順序動作可以採用壓力控制、行程式控制制和時間控制等方法。
㈢ 鑽機液壓傳動系統
(一)功用
1)用以完成主軸的上升、下降、停止,鑽機移動,松開卡盤,擰卸鑽桿等工作。
圖4-63 XY-4型鑽機機架
1—擋鐵;2—右機腿;3—前機架;4—機座;5—左機腿;6—防護罩;7—移動油缸;8,9,13—壓板;10—後機架;11,12—調整墊;14—調整墊
2)可實現鑽進過程中的加壓、減壓鑽進和強力起拔等工藝要求。
3)可以控制立軸下降速度。系統中的油壓由壓力表反映,鑽進壓力、加減壓力值及鑽具質量由鑽壓表反映,如圖4-64所示。
(二)液壓系統的組成
XY-4型鑽機的液壓系統由以下四部分組成:
1)動力機構。由齒輪式油泵構成,它是液壓系統的「心臟」液壓能的動力源。
2)控制機構。控制和調整系統內油液的壓力,流量和方向,將液壓能分配給各執行機構。由液壓操縱閥,可調節流閥等組成。
3)執行機構。將液壓能轉換為機械能(往復和旋轉運動),由油缸,液壓馬達等組成。
4)輔助裝置。由油箱、過濾器、油表、油管、接頭等組成。
(三)液壓傳動系統工作原理
1.鑽機前後移動
如圖4-65所示,由手動控制彈簧復位三位六通換向閥與鑽機前後移動油缸等構成了鑽機移動迴路。其工作原理是:油液由油箱經過濾器通過油泵獲得液壓能,壓力表反映系統壓力,用溢流閥控制系統壓力並實現過載保護。換向閥各位置工作狀況如下:
圖4-64 XY-4型鑽機液壓傳動系統組成圖
1—油箱;2—閥門;3—接頭螺釘;4—接頭體;5—單聯齒輪泵;6,7,8—接頭螺釘;9—接頭體;10—ZFS四聯多路換向閥;11—螺帽;12,13—接頭螺釘;14—回油接頭體;15—給進油缸下油管;16—接頭體;17—給進油缸上油管;18—給進控制閥;19—鑽壓表;20—接頭螺釘;21—接頭體;22—直通接頭;23—液控單向閥;24—D型膠管接頭;25—C型膠管接頭;26—壓力表
圖4-65 XY-4型鑽機液壓系統
1—壓力表;2—單向閥;3—油泵;4—過濾器;5—油箱;6—溢流閥;7—鑽機前後移動操縱閥(三位六通);8—備用操縱閥(三位六通);9—卡盤松緊操縱閥(三位六通);10—立軸升降操縱閥(四位六通);11—給進控制閥(節流閥);12—三通換向閥(梭閥);13—鑽壓表;14—立軸油缸;15—液壓卡盤;16—單向閥;17—鑽機前後移動油缸(單出桿油缸)
1)處於第二位置(零位)時,壓力油經常態回油道直接流回油箱,此時鑽機處於停止狀態。
2)處於第一位置時,常態回油道封閉,壓力油進入移動油缸左腔,油缸體左移並帶動鑽機左移(後退);油缸右腔油液經回油道流回油箱。
3)處於第三位置時,常態回油道封閉,壓力油進入移動油缸右腔,油缸體右移並帶動鑽機右移(前進),油缸左腔油液經回油道流回油箱。
2.松開液壓卡盤
由卡盤松緊操縱閥與液壓卡盤內油缸等構成液壓卡盤松緊迴路。由於該鑽機液壓卡盤採用碟形彈簧卡緊,液壓力松開的方式,所以只需一條工作油路,而另一條油路接在液壓擰管機的供油路上。換向閥各位置工作狀況如下:
1)處於第二位置時,壓力油經常態回油道直接流回油箱,此時處於停止狀態。
2)處於第一位置時,常態回油道封閉,壓力油進入卡盤環形油缸,推動活塞下移,壓縮碟形彈簧,卡盤松開。
3)處於第三位置時,壓力油進入擰管機供油路,此時擰管機即可工作,同時卡盤油缸內油液卸荷,碟形彈簧復位,卡盤卡緊。
3.立軸的下降、停止、上升與稱重
由立軸升降操縱閥、立軸升降油缸(給進油缸)及給進控制閥等構成立軸給進迴路。換向閥各位置工作狀況如下:
1)處於第二位置時,壓力油經常態回油道直接流回油箱,立軸處於停止狀態。
2)處於第一位置時,常態回油道封閉,壓力油進入給進油缸上腔,推動活塞下移,立軸下降;給進油缸下腔油液與回油道接通,流回油箱。下腔油路上串聯著給進控制閥,可以調節油缸下腔回油量,從而控制立軸下降速度,實現加、減壓鑽進。
3)處於第三位置時,常態回油道封閉,壓力油通過給進控制閥之單向閥進入給進油缸下腔,推動活塞上行,立軸上升;油缸上腔油液與回油道接通卸荷。
4)處於第四位置時,常態回油道的油道封閉,油缸上腔開始卸荷,由於油缸下腔處於封閉狀態,下腔油壓力與鑽具質量相平衡,從鑽壓表上可讀出鑽具在孔內的質量值,油泵輸出的壓力油克服溢流閥彈簧壓力頂開閥心流回油箱。
(四)主要液壓元件的構造
1.油箱
油箱的用途主要是儲油、散熱、分離油中的空氣和沉澱雜物等。
XY-4型鑽機油箱為開式,容量為40L。裝於鑽機前機架的右側。其構造如圖4-66所示。
油箱由鋼板焊接製成,中間用帶孔的隔板分成回油沉澱和吸油兩個工作室,可消除泡沫,沉澱雜物,冷卻油液。油箱上端有加油口及過濾網,透氣孔等,油箱側面有圓形油標,用於觀察油麵高度。
2.油泵
該系統採用外嚙式齒輪油泵,型號為CB33/80。其主要技術參數如下:
圖4-66 XY-4型鑽機油箱
1—接頭組件;2—接頭;3—蓋板;4—膠墊;5—加油口蓋;6—加油口;7—過濾板;8—後提手;9—回油管接頭;10—箱體;11—觀察口;12—鏡片;13—膠墊;14—墊圈;15—油標板;16—前提手;17—隔板;18—接頭;19—過濾器
工作壓力8MPa;最高壓力12MPa;轉速1500r/min;排量33L/min;容積效率70.95;進油管絲扣尺寸G7/8in;排油管絲扣尺寸G3/4in。
油泵傳動裝置如圖4-67所示。主要由三角皮帶輪、軸承、油泵座、傳動軸及橡膠油封等組成。傳動軸一端以平鍵連接三角皮帶輪,另一端則以兩副207軸承裝於油泵座內孔。齒輪泵軸的外花鍵插於傳動軸的內花鍵中,從而避免三角帶傳動過程中的拉力直接作用在油泵軸上。
圖4-67 油泵傳動裝置
1—B型三角皮帶;2,10—彈簧墊圈;3,9—六角頭螺栓;4—紙墊;5,6—襯套;7—傳動軸;8—207軸承;11—油泵座;12—壓注油嘴;13—橡膠油封;14—密封螺塞;15—襯套;16—三角皮帶輪;17—平鍵;18—止退墊圈;19—圓螺母
3.液壓操縱閥
液壓操縱閥是鑽機液壓傳動系統的控制中樞,屬集成式一組多路換向閥。如圖4-68所示,主要由調壓溢流閥、鑽機移動控制閥、卡盤及擰管機控制閥、立軸給進控制閥和回油側蓋五部分組合而成。下面分別介紹各閥的構造及工作原理。
圖4-68 XY-4型鑽機液壓操縱閥
1—微調手輪;2—圓錐銷;3—撥環;4—手輪套;5—密封圈;6—調壓螺桿;7—防轉銷;8調壓螺母;9—限位套;10—調壓套筒;11—限位螺母;12—密封圈;13—調壓溢流閥殼體;14—調壓彈簧;15—調壓閥體;16—閥座;17—螺母;18—彈簧座;19—彈簧;20—彈簧罩;21—彈簧壓板;22—密封蓋;23—內六角螺釘;24—定位器體;25—內六角螺釘;26—定位套筒;27—定位鋼球;28—鎖緊彈簧;29—回油後蓋;30—連接螺桿;31—連接板;32—墊圈;33—銷;34—操縱桿座;35—快速增壓手柄;36—撥叉;37—操縱桿;38—立軸給進控制閥桿;39—卡盤及擰管機控制閥桿;40—鑽機移動控制閥桿
(1)調壓溢流閥
該閥由微調手輪、快速增壓手柄、調壓螺桿、調壓螺母調壓彈簧、調壓閥體及閥座等組成(圖4-68)。閥體與閥的圓錐結合面經相互研磨有良好的密封性能,在調壓彈簧張力的作用下,將壓力油道P和回油道O隔開。一旦系統壓力升高至限定值,即可克服彈簧張力頂開閥體,壓力油便經閥座孔油道O2流回油箱。
調壓溢流閥壓力值是由調整彈簧張力的大小而實現的,既可微調,也可速調。微調手輪及套用圓錐銷與調壓螺桿連接為一體,螺桿前端左旋螺紋與調壓螺母相配合,螺母上固定有防轉銷,調整彈簧裝在閥體與調壓螺母之間,正時針旋轉微調手輪,調壓螺母向前移動壓縮彈簧,增強對閥體的壓力,則調壓閥壓力增高;反之壓力減小。為使系統壓力不超過最大值,在調壓筒內裝有限位套並用限位螺母限位。這就限制了調壓螺母的移動距離,同時也限制了彈簧對閥體的最大壓力,從而實現控制系統壓力的目的。在鑽機操作中,有時需要液壓系統快速增壓,為此特裝有快速增壓手柄,並以銷軸支撐在調壓套面上,其前端撥叉卡在撥環上,撥環又套在手輪上,所以扳動手柄時,通過手輪套、圓錐銷、使調壓螺桿迅速前移而壓縮彈簧,達到快速增壓目的。松開手柄後,彈簧復位,恢復到原調壓值。
(2)鑽機移動控制閥
該閥主要由鑽機移動控制閥桿、閥殼和復位彈簧等構成(見圖4-68)。閥殼通孔中配裝有帶四段柱塞的閥桿,閥桿頭部裝有彈簧,彈簧壓板等零件,並用密封蓋罩住。閥桿底部的螺旋孔旋入閥桿接頭,以鎖母鎖緊,閥桿接頭的銷軸連接操縱桿座,此座用連接板鉸鏈連接於密封蓋支架上,座孔中插入操縱桿,扳動操縱桿時,閥桿即在閥體中滑動,同時壓縮彈簧,扳動力消失後靠彈簧張力使閥桿復位。
液壓操縱閥總成內共有5條油道,中間是由壓力油道P和回油道O直通連接的常態回油道;P1P2為壓力油道;O1O2為卸荷油道;在移動控制閥片中有兩個接執行油缸的工作油孔A1B1,其中A1接移動油缸後腔;B1接前腔,滑閥桿移動時,當其中一個工作油孔接通壓力油道,另一工作油孔即接通卸荷油道,從而形成鑽機前後移動迴路。
(3)液壓卡盤及擰管機控制閥
該閥構造除定位裝置與鑽機移動控制閥不同外,其他部分完全相同(圖4-68)。定位裝置由定位套筒,定位鋼球和鎖緊彈簧等組成。定位套筒用內六角螺釘擰在閥桿頭部,其上有三道環形凹槽。在定位器體上也開有環形凹槽,槽內均布8個小孔,孔中裝有定位鋼球、其外用鎖緊彈簧壓住,當定位套筒的凹槽與定位鋼球相對時,即被鋼球卡住而實現定位。閥內油道A0與液壓卡盤的環形油缸接通,B0與液壓擰管機的供油路接通。
(4)立軸給進控制閥
該閥的定位裝置與液壓卡盤及擰管機控制閥相似,只是多了一個閥位(圖4-68)。閥中油道A0通給進油缸上腔;油道B0通下腔(油路流通狀況見本節液壓系統工作原理敘述)。鑽具稱質量時將滑閥桿下移到極限位置,使柱塞將油道B0封閉,柱塞將常態回油道封閉,A0—O0相通,此時處於油缸上腔卸荷,下腔封閉狀態。
4.給進控制閥
給進控制閥為一單向可調節流閥。主要由球閥(單向閥)、針閥(節流閥)、閥體及手輪等組成,其構造如圖4-69所示。
圖4-69 給進控制閥
1—管接頭;2—球閥;3—針閥;4—閥體;5—手輪;6—錐銷;7—彈簧;8—螺塞
當給進油缸活塞下移時,油缸下腔油液迫使球閥關閉,油液只能從針閥的環形間隙中流出,回油量的大小可通過轉動手輪使針閥軸向移動,從而控制立軸的下降速度。加壓鑽進時,可使針閥全部開啟以降低回油阻力。減壓鑽進時應根據工藝要求控制針閥開啟大小,以保持立軸下降速度均勻。
立軸上升時,油液從右側油孔進入而頂開單向閥從下油口流出,直接進入給進油缸下腔,活塞快速向上移動,完成倒桿作業。
5.限壓切斷閥
該閥串聯在三通換向閥與鑽壓表之間(圖4-70)。主要由接頭、閥體、閥芯、彈簧、調節螺絲等組成。接頭接高壓油道,上螺孔接鑽壓表,當液壓油超過限定值時,閥芯大端承受的壓力超過彈簧張力,於是閥芯壓縮彈簧而右移,其錐面將油道封閉,油壓不能傳遞到表內從而保護鑽壓表不受損害。
圖4-70 限壓切斷閥
1—接頭;2—墊片;3—閥體;4—閥芯;5—彈簧座;6—彈簧套;7—彈簧;8—調節座;9—調節螺絲
6.三通換向閥
該閥在液壓傳動系統中的位置見圖4-65,其作用是接通給進油缸上腔或下腔與鑽壓表之間的高壓油道,同時封閉低壓道與鑽壓表的通路。其構造如圖4-71所示,主要由閥體、管接頭、閥等組成。當給進油缸上腔為壓力油,下腔卸荷時,閥右移,b和c接通,a孔封閉,鑽壓表反映加壓鑽進讀數,反之a和c接通,b孔封閉,鑽壓表反映減壓鑽進讀數。
圖4-71 三通換向閥
1—閥體;2—管接頭;3—密封圈;4—管接頭;5—閥;6—螺釘;7—管接頭;a—給進油缸下腔介面;b—給進油缸上腔介面;c—限壓切斷閥介面
7.壓力表和鑽壓表
(1)壓力表
壓力表為1.5級的標准簧管式表,最大壓力為16MPa。該表裝於油泵與液壓操縱閥之間(在液壓系統中的位置見圖4-65之1),用以觀察整個液壓系統工作壓力,亦可判斷各元件在工作過程中的故障,以便及時排除隱患。其構造如圖4-72所示。
其工作原理是:當壓力油從進油孔進入彈簧管後,在壓力油作用下簧管由於變形而使自由端產生位移,此位移通過扇形齒輪及齒桿帶動指針旋轉,當油壓產生的作用力和簧管變形而產生的彈性力相平衡時,指針便停留在某一固定位置。利用靜盤及動盤上的刻度,就可以反映出鑽進時的加壓值、平衡鑽具質量值或鑽具稱重值。此種壓力指示器因簧管容易產生永久變形,且抗沖擊、震動性能差,故使用壽命較短。
(2)鑽壓表
鑽壓表又稱孔底壓力指示器,在液壓系統中的位置見圖4-65之13。此表是用外經為100mm最大壓力為9.8MPa的1.5級普通簧管式表改制而成的。表的接頭處裝有緩沖裝量。該表並聯在給進油缸油路上,反映出給進油缸壓力腔的壓力,從而測出鑽具質量及加壓和減壓鑽進值。
目前國內常用的孔底壓力指示器主要有兩種類型:簧管式和柱塞式。XY-4型鑽機採用的是簧管式孔底壓力指示器。鑽壓表構造如圖4-72所示,表盤有靜盤、動盤,靜盤上有順時針方向從0~10t(即100kN)的總刻度值。每噸刻度分為5小格,即每小格0.2t(2000N)。靜盤上各刻度值是以壓力表相應壓力乘以兩個給進油缸圓面積得出的,動盤有旋鈕突出表面,可以旋轉記數。動盤上有加壓和減壓兩種刻度,加壓刻度為紅色,從0~4t(40kN)按順時針方向增加,其刻度值是以壓力表相應壓力乘以兩個油缸上腔活塞面積減去活塞桿斷面後的面積得出的。減壓刻度是黑字,從0~7t(70kN)按逆時針方向增加,其刻度原理與靜盤相同。
圖4-72 鑽壓表構造
1—進油孔;2—簧管;3—靜盤;4—動盤;5—有機玻璃罩;6—指針
鑽壓表使用方法如下:
稱重。將鑽具提離孔底,將立軸給進控制閥手柄扳至「稱重」位置,指針在靜盤上指示的刻度值即是鑽具質量。
加壓鑽進。當鑽具質量小於鑽進工藝所需要的鑽壓時,應給鑽具附加一定的壓力。操作時應首先將鑽具質量稱出,假設稱出的質量為1t(10kN)而鑽具壓力需要2t(20kN)則需將動盤紅圈上1t的刻度值對准靜盤的零位,然後將操縱閥手柄扳到「下降」位置,順時針調節溢流閥微調手輪,增加給進油缸上腔壓力,使指針對准動盤紅色刻度2t值時,即是鑽壓值。此時表盤各刻度數據的含義是,動盤加壓(紅色)刻度1t是鑽具質量,2t是鑽壓,其差值1t是加壓數。加壓鑽進表盤狀態見圖4-73a。
減壓鑽進。當鑽具質量大於鑽進工藝所需的鑽壓時,就應由給進油缸下腔形成一個向上的作用力以抵消一部分鑽具質量。使其差值為鑽壓值。操作時應先稱出鑽具質量,若稱出鑽具質量為3.5t(35kN),而鑽壓只需要2t,應減去1.5t。此時應將鑽壓表上動盤黑圈3.5t的刻度值對准靜盤上的「零位」並扳動操縱閥手柄至「上升」位置,順時針凋節溢流閥調壓手輪進行「減壓」,增加給進油缸下腔油壓。直至表針對准動盤黑圈(減壓)上2t刻度。此時表盤各數據的含義是:動盤減壓鑽進刻度值3.5t是鑽具質量,刻度2t值是鑽進壓力,靜盤1.5t刻度值是減壓差值。減壓鑽進表盤狀態見圖4-73b。
圖4-73 鑽壓表加壓、減壓狀態示意圖
(五)液壓傳動系統操作使用注意事項
1)在鑽進和提升過程中,不得板動鑽機移動操縱閥手柄。
2)液壓操縱閥各手柄不能同時板到工作位置,當一個手柄處於工作位置時,其他手柄應置於「停止」位置。
3)板動操縱閥手柄應迅速准確到位。不能用力過猛,避免出現壓力沖擊、蹩泵、拉壞定位裝置和沖壞儀表。
4)松開液壓卡盤時,應先將操縱閥扳到「松開」位量,後扳動溢流閥快速調壓手柄至極限位置,卡盤卡緊時須放鬆快速調壓手柄。
5)液壓操縱閥各閥片之間出廠前已調整密封好並用螺栓緊固成一整體。在機台不準隨意拆卸,以免影響正常工作和漏油。
6)各軟、硬油管不得擠壓、碰傷和發生扭轉現象,油管曲率半徑應不小於外經尺寸的7倍。
7)應使用規定牌號的液壓油,注意保持油液清潔,防止油液中混入雜質污物。野外搬遷鑽機,應將擰開的油管接頭用干凈軟布堵死,防止雜質進入系統造成故障。
8)應定期檢查油箱中油位高度,使其符合油標刻線。油液工作溫度應保持在35~60℃。
㈣ 液壓系統工作原理圖
如圖所示:抄
一、二級柱塞為單向襲作用結構,在液壓油作用下,柱塞動力伸出,柱塞回程時要靠自重回縮;三級活塞為雙向作用結構,在液壓油作用下,三級活塞動力伸出和縮回。
起升油缸設有三個油口,P1、P2和P3。油口P1設在缸頭處,接通柱塞工作腔及三級活塞無桿腔,油道內設置有單向節流閥;油口P2設在三級活塞桿處,接通三級活塞有桿腔,油道內設置有節流孔。
油口P3設在三級活塞桿處,接通柱塞工作腔及三級活塞無桿腔,與P1油路相通,油道內設置有節流孔。在油缸三級活塞缸蓋處設置有放氣孔口,其上安裝放氣塞。
(4)液壓機械裝置設計圖擴展閱讀
液壓系統包括主液壓系統和轉向液壓系統,兩個系統共用一液壓油箱。
1、主液壓系統
主液壓系統為鑽機車在設備調整和鑽修作業時提供液壓動力,配置有各種閥件,控制操作各液壓機具正確安全運行。
2、轉向液壓系統
轉向液壓系統為車輛前部車橋的液壓助力轉向提供液壓動力,配置有各種閥件,控制液壓系統壓力、流向和穩定最高流量,確保車輛轉向輕便靈活,安全可靠。
㈤ 挖掘機的液壓結構及工作原理是什麼
挖掘機的液壓結構
一個完整的液壓系統由五個部分組成,即動力元件、執行元件、控制元件、無件和液壓油。
動力元件的作用是將原動機的機械能轉換成液體的壓力能,指液壓系統中的油泵,它向整個液壓系統提供動力。液壓泵的結構形式一般有齒輪泵、葉片泵和柱塞泵。
執行元件(如液壓缸和液壓馬達)的作用是將液體的壓力能轉換為機械能,驅動負載作直線往復運動或回轉運動。
控制元件(即各種液壓閥)在液壓系統中控制和調節液體的壓力、流量和方向。根據控制功能的不同,液壓閥可分為村力控制閥、流量控制閥和方向控制閥。壓力控制閥又分為益流閥(安全閥)、減壓閥、順序閥、壓力繼電器等;流量控制閥包括節流閥、調整閥、分流集流閥等;方向控制閥包括單向閥、液控單向閥、梭閥、換向閥等。根據控制方式不同,液壓閥可分為開關式控制閥、定值控制閥和比例控制閥。
輔助元件包括油箱、濾油器、油管及管接頭、密封圈、壓力表、油位油溫計等。
液壓油是液壓系統中傳遞能量的工作介質,有各種礦物油、乳化液和合成型液壓油等幾大類。
工作原理
帕斯卡原理
帕斯卡原理是一個靜力學原理,
對於「理想液體」有:
1、處於密閉容器內的「理想液體」對施加於它表面的壓力向各個方向等值傳遞;
2、速度的傳遞按「容積變化相等」的原則;
3、液體的壓力由外載荷建立。
4、能量守恆。
㈥ 半自動叉車的工作原理和液壓系統原理圖
某型號叉車工作裝置的液壓系統原理圖如圖3-3所示,該液壓系統有起升液壓缸8、傾斜液壓缸6和屬具液壓缸7三個執行元件,由定量泵10供油,多路換向閥(屬具滑閥1、起升液壓缸滑閥3、傾斜液壓缸滑閥4)控制各執行元件的動作,單向節流閥5調節起升和屬具動作速度,從而驅動工作裝置完成相應的工作任務。
向左轉|向右轉
由於叉車原動機(內燃機和電動機)的轉速高,扭矩小,而叉車的行駛速度較低,驅動輪的扭矩較大,因此在原動機和驅動輪之間必須有起減速增矩作用的傳動裝置。當叉車在不同載荷和不同作業條件下工作時,傳動裝置必須要保證叉車具有良好的牽引性能。對於內燃叉車,由於內燃機不能反轉,叉車要想倒退行駛,必須依靠傳動裝置來實現。叉車的傳動裝置有機械式、液力式、液壓式和電動機械式幾種。機械式傳動只能具有有限數目的傳動比,因此只能實現有級變速。液力式傳動效率較機械式低,液壓傳動能夠使傳動系統大大簡化,取消機械式和液力式傳動中的傳動軸和差速器。
某型號叉車行走驅動液壓系統的原理圖如圖3-4所示,該液壓系統由變數主液壓泵1供油,執行元件為液壓馬達5,主液壓泵的吸油和供油路與液壓馬達的排油路和進油路相連,形成閉式迴路。雙向安全閥3保證液壓迴路雙向工作的安全,梭閥4和換油溢流閥6使低壓的熱油排回油箱,輔助液壓泵7把油箱中經過冷卻的液壓油補充到系統中,起到補充系統泄漏和換油的作用,溢流閥8
叉車作業時轉向頻繁,轉彎半徑小,有時需要原地轉向。叉車空載時,轉向橋負荷約占車重的60%。為了減輕駕駛員的勞動強度,現在起重量2t以上的叉車多採用助力轉向——液壓助力轉向或全液壓轉向。液壓助力轉向操作輕便,動作迅速,有利於提高叉車的作業效率,油液還可以緩沖地面對轉向系統的沖擊。
某叉車液壓助力轉向系統原理圖如圖3-5所示,該轉向液壓系統和叉車工作裝置液壓系統屬各自獨立的液壓系統,分別由單獨的液壓泵供油。系統中流量調節閥2可保證轉向助力器穩定供油,並使系統流量限制在發動機怠速運轉時液壓泵流量的1.5倍。隨動閥3與普通的三位四通換向閥基本相同,只不過該閥的閥體與轉向液壓缸缸筒連接為一體,隨液壓缸缸筒的動作而動作。叉車直線行駛時,方向盤處於中間位置,隨動閥3的閥芯也處於中間位置,轉向液壓缸4不動作,叉車直線行駛。當叉車轉彎時,駕駛員轉動方向盤,聯動機構帶動隨動閥3的閥芯動作,使轉向液壓缸的兩腔分別與液壓泵或油箱連通,液壓缸動作,驅動轉向輪旋轉,叉車轉向,直到液壓缸缸筒的移動距離與閥芯的移動距離相同時,閥芯復位,轉向停止。
㈦ 液壓系統設計有哪些步驟
液壓傳動系統設計計算459
第一節 概述
第二節 明確設計要求,進行工況分析
一、明確設計要求
二、進行液壓系統的工況分析
第三節 確定液壓系統的主要參數
一、初選系統的工作壓力
二、計算液壓缸的工作面積和流量
三、計算液壓馬達的排量和流量
四、繪制執行元件工況圖
第四節 擬定液壓系統原理圖
一、選擇液壓系統的類型
二、選擇執行元件
三、選擇液壓泵的類型
四、選擇調速方式
五、選擇調壓方式
六、選擇換向迴路
七、擬定工藝循環順序動作圖表
第五節 計算執行元件主要參數
第六節 選擇液壓泵
一、計算液壓泵的最大工作壓力
二、計算液壓泵的最大流量
三、選擇液壓泵規格
第七節 選擇液壓控制閥
第八節 計算液壓泵的驅動功率,選擇電動機
第九節 選擇、計算液壓輔助件
第十節 驗算液壓系統性能
一、驗算系統壓力損失
二、驗算系統發熱溫升
三、驗算液壓沖擊
第十一節 液壓裝置的結構設計
一、液壓裝置的結構形式
二、液壓泵站的類型及其組件的選擇
第十二節 繪制工作圖、編寫技術文件
一、繪制工作圖
二、編寫技術文件
還有液壓系統設計計算舉例 ,需要請追問
㈧ 液壓系統能實現:快進→工進1→工進2→快退,順序動作工作循環,試列出上述循環時的電磁鐵動態表,
YL-381A型plc控制的液壓裝置液壓系統的設計,安裝調試與運行。內容:設計一能實現「快進-工進-停留-快退-原位停止」液壓系統。
要求:系統壓力調整為3MPa,快進時採用差動連接,工進時液壓缸的運動速度控制在0.01/ms左右,原位停止是泵卸荷、執行原件浮動。
組合機床是由通用部件和某些專用部件所組成的高效率和自動化程度較高的專用機床。它能完成鑽、鏜、銑、刮端面、倒角、攻螺紋等加工和工件的轉位、定位、夾緊、輸送等動作。 動力滑台是組合機床的一種通用部件。
系統工作原理
可對所有迴路依次進行編號。如果第一個執行元件編號為0,則與其相關的控制元件標識符則為1。如果與執行元件伸出相對應的元件標識符為偶數,則與執行元件回縮相對應的元件標識符則為奇數。 不僅應對液壓迴路進行編號,也應對實際設備進行編號,以便發現系統故障。
以上內容參考:網路-液壓系統
㈨ 確定系統方案,擬定液壓系統圖
1.確定系統方案
(1)初選系統壓力:液壓系統壓力的大小,它直接影響液壓裝置的尺寸、質量、效率和經濟性等一系列參數。在一定范圍內提高系統壓力,可減少液壓裝置的尺寸和質量。但壓力過高會影響經濟性和工作壽命。固定式、功率不大和尺寸不受限制的機械,壓力可適當取低。移動式、功率較大、尺寸和質量受限制的機械,壓力可取高一些。一般中、小型液壓鑽機系統壓力可取為16~20MPa;大型液壓鑽機系統壓力可取為25~30MPa;同一鑽機的不同液壓系統可選擇不同壓力,如1000m液壓鑽機的回轉和卷揚機升降液壓系統壓力為25~30MPa,給進和輔助動作液壓系統壓力為16~20MPa。
(2)選擇執行元件型式:高速回轉動力頭選用高速液壓馬達,岩心鑽機回轉動力頭選用軸向柱塞變數馬達。低速回轉動力頭選用低速液壓馬達。泥漿泵常用徑向柱塞式馬達和擺線齒輪馬達。
鑽機給進機構一般選用液壓缸或液壓缸—鏈條形式。液壓缸給進機構可兼作快速升降用。鑽機卡盤、夾持器和滑架起落機構等均選用液壓缸。
(3)回轉調速方式:鑽機回轉調速方式有兩種,即有級調速和無級調速。國內中小型液壓鑽機,常採用有級調速。液壓泵為齒輪泵,藉助泵的分流與合流,以及雙液壓馬達串聯與並聯(或一個液壓馬達單獨工作與兩個液壓馬達同時工作),可使動力頭獲得6種轉速。岩心鑽機採用軸向柱塞變數泵和軸向柱塞變數馬達組成容積調速迴路,為擴大調速范圍和提高傳動效率,再加上4~5擋齒輪變速。設變數泵處在最佳狀態下工作,調節齒輪變速和液壓馬達變數,動力頭可獲得高效恆功率輸出。適合鑽進工藝要求。
(4)液壓泵數量:液壓動力頭岩心鑽機選用一個液壓泵的情況很少。一般選用3個液壓泵,組成3個獨立的液壓系統,即回轉、升降系統;給進及輔助動作系統;以及泥漿泵系統。這樣,鑽機復合動作時不會產生相互干擾,有利於整機功率利用和生產率提高。
(5)開式系統和閉式系統:液壓泵從油箱吸油,排出壓力油供執行元件做功,這種油液循環方式,稱為開式系統。液壓泵吸、排油直接與液壓馬達油口相連,油液不經過油箱,則稱為閉式系統。鑽機的執行元件大多數為液壓缸,由於無桿腔與有桿腔面積不同,只能選用開式系統。開式系統有利於液壓系統散熱,但需防止塵埃和空氣等侵入液壓系統。
2.擬定液壓系統圖
液壓系統方案確定後,就可選擇有關液壓基本迴路,並配置輔助迴路(或輔助元件)組成液壓系統圖。實現同樣工作任務,可以擬定出多種不同的液壓系統圖,然後進行分析、比較,選擇一種最優的液壓系統。在組成液壓系統時,應注意以下問題:
(1)防止迴路間相互干擾:一個液壓泵驅動多個執行元件要求同時工作時,由於負載壓力不同會使執行元件先後動作,即出現速度干擾。解決速度干擾的一般方法是在執行元件的進油路上串接減壓閥和流量控制閥。在液壓系統中,設某一執行元件處於保壓工況,由於其他執行元件的負載變化或一個執行元件的卸荷,使油路壓力下降,出現壓力干擾。解決辦法是藉助設置儲能器和單向閥,使其與其他油路隔開。
(2)防止液壓沖擊:液壓系統中,由於工作機構運動速度變換,工作負載的突然消失,以及沖擊負荷等原因,會在油路中產生液壓沖擊而影響液壓系統的正常工作。為此,需採取防止措施。例如,由於換向閥關閉產生的液壓沖擊,可採用在滑閥控制邊上開槽或加工成節流錐面(半錐角為2°~5°);由於負載突然消失產生液壓沖擊,可在迴路上加設背壓閥;由於液壓馬達慣性大,換向閥關閉產生的液壓沖擊,或由於沖擊負載產生的液壓沖擊,可在換向閥或液壓馬達迴路上設置過載閥。
(3)防止系統過熱,提高系統效率:液壓泵和液壓馬達的能量損失產生熱量。油液流過溢流閥回油箱時產生熱量最大,節流閥、減壓閥等也都產生熱量。合理選用油管內徑、減少油管長度和彎曲處等,也是減少過熱的有效措施。最根本的解決過熱辦法是在設計中採用高效率的液壓迴路,如恆壓泵給進液壓迴路,回轉機構負載敏感泵液壓迴路等。
(4)採用標准化液壓元件:設計時盡量選用標准元件,減少自行設計的專用元件,以縮短設計、製造周期,保證液壓系統的質量和經濟性。
3.繪制液壓系統圖的步驟
(1)先畫執行元件;
(2)然後畫出各執行元件的基本迴路;
(3)畫出液壓泵;
(4)按選定的系統方案,用並聯、串聯(鑽機上多為並聯)方式將各基本迴路與液壓泵連接起來;
(5)畫出控制迴路和輔助迴路;
(6)畫出液壓輔件,如壓力表、濾油器、冷卻器和油箱等。
繪制液壓系統圖,要採用國家規定的標准圖形符號。
㈩ 關於液壓系統的選件,裝配圖的畫法。
1.液壓元件的尺寸需要參考各液壓元件參加的外觀圖,連接尺寸基本是國標。
螺栓悄鏈轎為標准喚橘件,在CAD圖庫離可以選擇
2.液壓泵是泵,液壓站是泵站,全稱是液壓啟肆泵站,根據系統流量選擇泵,根據泵選擇電機。在液壓裝
配圖中元件可以用外觀尺寸畫就行了,
3.這個需要根據你系統選擇了,看是否需要背壓閥,不是每個系統都需要背壓閥。