1. 傳動機構的作用是幹啥的
簡單地講:傳動機構的作用是通過某一機構(或零件),將A零件的運動方式(旋轉或靜止)傳遞給B零件。例如,軸(或軸套)通過螺釘(銷或鍵),使傳動座旋轉,傳動座又通過某一零件使動環旋轉。靜環通過防轉銷和壓蓋保持靜環靜止。這里軸套和傳動座、傳動座與動環、靜環和壓蓋之間均無相對運動發生。據我所知,我從專業的角度上講一下概述機械傳動機構,可以將動力所提供的運動的方式、方向或速度加以改變,被人們有目的地加以利用。我國古代傳動機構類型很多,應用很廣,除了上面介紹的以外,像地動儀、鼓風機等等,都是機械傳動機構的產物。我國古代傳動機構,主要有齒輪傳動、繩帶傳動和鏈傳動。圖中是其中一種常見的傳動機構作用上述也講了傳動機構的主要有齒輪傳動、繩帶傳動和鏈傳動組成。我就分開來講述一下其中的作用齒輪傳動:其出現時間不晚於西漢,西漢時的指南車、記里鼓車,東漢張衡發明的水力天文儀器上,都使用了相當復雜的齒輪傳動系統。這些齒輪只用來傳遞運動,強度要求不高。至於生產上所採用的齒輪,要傳遞較大的動力,受力一般較大,強度要求較高。古代在利用畜力、水力和風力進行提水、糧食加工等工作時,都要應用此類齒輪。例如在翻車上,須應用一級齒輪傳動機構,以改變運動的方位和傳遞,適應翻車的工作要求。 鏈傳動:鏈,在我國古代出現很早,商代的馬具上已有青銅鏈條,其他青銅器和玉器上也有用鏈條作為裝飾的。西安出土的秦代銅車馬上,有十分精美的金屬鏈條。但這都不能算是鏈傳動。作為動力傳動的鏈條,出現在東漢時期。東漢時畢嵐率先發明翻車,用以引水。根據其工作原理和運動關系,可以看作是一種鏈傳動。翻車的上、下鏈輪,一主動,一從動,繞在輪上的翻板就是傳動鏈,這個傳動鏈兼做提水的工作件,因此,翻車是鏈傳動的一種特例。到了宋代,蘇頌製造的水運儀象台上,出現了一種天梯,實際上是一種鐵鏈條,下橫軸通過天梯帶動上橫軸,從而形成了真正的鏈傳動。 繩帶傳動:這是一種利用摩擦力的傳動方式。在西漢時, 四川出產井鹽,在鑿井、提水時,都是用牛帶動大繩輪,收卷繞過滑輪上的繩索,來提升鑿井工具、鹵水等。西漢時出現的手搖紡車,是一種典型的繩帶傳動。在西漢時期的畫像石上,有幾幅手搖紡車圖,可以清楚地看到:大繩輪主動,通過繩索帶動紗錠,用手搖大繩輪旋轉一周,紗錠旋轉幾十周,效率很高。以後出現的三錠、五錠的紡車,效率就更高了。元代的水運大紡車,也是用繩帶傳動的。東漢時,冶金手工業有一項重要發明水排,用於鼓風。這種繩帶傳動的工作原理是:水力推動卧式水輪旋轉,水輪軸上裝有大繩輪,通過繩帶帶動小繩輪,小繩輪軸上端曲柄隨之旋轉,通過連桿推動鼓風器鼓風。這種水排鼓風效力很高,可以抵得上幾百匹馬鼓風。它的出現,標志著東漢時發達的機械已經在我國出現了,因而意義十分重大。 希望此答案對您有幫助。
2. 傳動裝置的分類
汽車傳動系可按能量傳遞方式的不同,劃分為機械傳動、液力傳動、液壓傳動、電傳動等。
汽車傳動系按照結構和傳動介質分,其型式有機械式、液力機械式、靜液式(容積液壓式)、電力式等。
機械式傳動系常見布置型式主要與發動機的位置及汽車的驅動型式有關。可分為:
1.前置後驅—FR:即發動機前置、後輪驅動
這是一種傳統的布置型式。國內外的大多數貨車、部分轎車和部分客車都採用這種型式。
2.後置後驅—RR:即發動機後置、後輪驅動
在大型客車上多採用這種布置型式,少量微型、輕型轎車也採用這種型式。發動機後置,使前軸不易過載,並能更充分地利用車箱面積,還可有效地降低車身地板的高度或充分利用汽車中部地板下的空間安置行李,也有利於減輕發動機的高溫和雜訊對駕駛員的影響。缺點是發動機散熱條件差,行駛中的某些故障不易被駕駛員察覺。遠距離操縱也使操縱機構變得復雜、維修調整不便。但由於優點較為突出,在大型客車上應用越來越多。
3.前置前驅—FF:發動機前置、前輪驅動
這種型式操縱機構簡單、發動機散熱條件好。但上坡時汽車質量後移,使前驅動輪的附著質量減小,驅動輪易打滑;下坡制動時則由於汽車質量前移,前輪負荷過重,高速時易發生翻車現象。大多數轎車採取這種布置型式。
4.越野汽車的傳動系
越野汽車一般為全輪驅動,發動機前置,在變速箱後裝有分動器將動力傳遞到全部車輪上。輕型越野汽車普遍採用4×4驅動型式,中型越野汽車採用4×4或6×6驅動型式;重型越野汽車一般採用6×6或8×8驅動型式。
3. 傳動系由哪些主要部件組成它起什麼作用
傳動系的組成:
對於前置後驅的汽車來說,發動機發出的轉矩依次經過離合器、變速箱、萬向節、傳動軸、主減速器、差速器、半軸傳給後車輪,所以後輪又稱為驅動輪。驅動輪得到轉矩便給地面一個向後的作用力,並因此而使地面對驅動輪產生一個向前的反作用力,這個反作用力就是汽車的驅動力。汽車的前輪與傳動系一般沒有動力上的直接聯系,因此稱為從動輪。
傳動系的組成和布置形式是隨發動機的類型、安裝位置,以及汽車用途的不同而變化的。例如,越野車多採用四輪驅動,則在它的傳動系中就增加了分動器等總成。而對於前置前驅的車輛,它的傳動系中就沒有傳動軸等裝置。
傳動系的布置型式:
機械式傳動系常見布置型式主要與發動機的位置及汽車的驅動型式有關。可分為:
1、前置後驅—FR:即發動機前置、後輪驅動
這是一種傳統的布置型式。國內外的大多數貨車、部分轎車和部分客車都採用這種型式。
2、後置後驅—RR:即發動機後置、後輪驅動
在大型客車上多採用這種布置型式,少量微型、輕型轎車也採用這種型式。發動機後置,使前軸不易過載,並能更充分地利用車箱面積,還可有效地降低車身地板的高度或充分利用汽車中部地板下的空間安置行李,也有利於減輕發動機的高溫和雜訊對駕駛員的影響。缺點是發動機散熱條件差,行駛中的某些故障不易被駕駛員察覺。遠距離操縱也使操縱機構變得復雜、維修調整不便。但由於優點較為突出,在大型客車上應用越來越多。
3、前置前驅—FF:發動機前置、前輪驅動
這種型式操縱機構簡單、發動機散熱條件好。但上坡時汽車質量後移,使前驅動輪的附著質量減小,驅動輪易打滑;下坡制動時則由於汽車質量前移,前輪負荷過重,高速時易發生翻車現象。現在大多數轎車採取這種布置型式。
4、越野汽車的傳動系
越野汽車一般為全輪驅動,發動機前置,在變速箱後裝有分動器將動力傳遞到全部車輪上。輕型越野汽車普遍採用4×4驅動型式,中型越野汽車採用4×4或6×6驅動型式;重型越野汽車一般採用6×6或8×8驅動型式。
傳動系的主要作用:
1、實現汽車倒駛
汽車在某些情況下,需要倒向行駛。然而,內燃機是不能反向旋轉的,故與內燃機共同工作的傳動系必須保證在發動機選擇方向不變的情況下,能夠使驅動輪反向旋轉。一般結構措施是在變速器內加設倒檔(具有中間齒輪的減速齒輪副)。
2、減速和變速
我們知道,只有當作用在驅動輪上的牽引力足以克服外界對汽車的阻力時,汽車才能起步和正常行駛。由實驗得知,即使汽車在平直得瀝青路面上以低速勻速行駛,也需要克服數值約相當於1.5%汽車總重力得滾動阻力。以東風EQ1090E型汽車為例,該車滿載總質量為9290kg(總重力為91135N),其最小滾動阻力約為1367N。若要求滿載汽車能在坡度為30%的道路上勻速上坡行駛,則所要克服的上坡阻力即達2734N。東風EQ1090E型汽車的6100Q-1發動機所能產生的最大扭距為353Nm(1200-1400rpm)。假設將這以扭距直接如數傳給驅動輪,則驅動輪可能得到的牽引力僅為784N。顯然,在此情況下,汽車不僅不能爬坡,即使在平直的良好路面上也不可能勻速行駛。
另一方面,6100Q-1發動機在發出最大功率99.3kW時的曲軸轉速為3000rpm。假如將發動機與驅動輪直接連接,則對應這一曲軸轉速的汽車速度將達510km/h。這樣高的車速既不實用,也不可能實現(因為相應的牽引力太小,汽車根本無法啟動)。
為解決這些矛盾,必須使傳動系具有減速增距作用(簡稱減速作用),亦即使驅動輪的轉速降低為發動機轉速的若干分之一,相應地驅動輪所得到的扭距則增大到發動機扭距的若干倍。
汽車的使用條件,諸如汽車的實際裝載量、道路坡度、路面狀況,以及道路寬度和曲率、交通情況所允許的車速等等,都在很大范圍內不斷變化。這就要求汽車牽引力和速度也有相當大的變化范圍。對活塞式內燃機來說,在其整個轉速范圍內,扭距的變化范圍不大,而功率及燃油消耗率的變化卻很大,因而保證發動機功率較大而燃油消耗率較低的曲軸轉速范圍,即有利轉速范圍很窄。為了使發動機能保持在有利轉速范圍內工作,而汽車牽引力和速度有能在足夠大的范圍內變化,應當使傳動系傳動比(所謂傳動比就是驅動輪扭距與發動機扭距之比以及發動機轉速與驅動輪轉速之比)能在最大值與最小值之間變化,即傳動系應起變速作用。
3、必要時中斷傳動
內燃機只能在無負荷情況下起動,而且啟動後的轉速必須保持在最低穩定轉速上,否則即可能熄火,所以在汽車起步之前,必須將發動機與驅動輪之間的傳動路線切斷,以便起動發動機。發動機進入正常怠速運轉後,再逐漸地恢復傳動系的傳動能力,即從零開始逐漸對發動機曲軸載入,同時加大節氣門開度,以保證發動機不致熄滅,且汽車能平穩起步。剛學駕駛車的朋友應該有比較深的認識,起動時忘踩離合或者離合放得太快就會「死火」。此外,在變換傳動系傳動比檔位(換檔)以及對汽車進行制動之前,都有必要暫時中斷動力傳遞。為此,在發動機與變速器之間,可裝設一個依靠摩擦來傳動,且其主動和從動部分可在駕駛員操縱下徹底分離,隨後再柔和接合的機構——離合器。
同時,在汽車長時間停駐時,以及在發動機不停止運轉情況下,使汽車暫時停駐,傳動系應能較長時間中斷傳動狀態。為此,變速器應設有空擋,即所有各檔齒輪都能自動保持在脫離傳動位置的檔位。
4、差速作用
當汽車轉彎行駛時,左右車輪在同一時間內滾過的距離不同,如果兩側驅動輪僅用一根剛性軸驅動,則二者角速度必然相同,因而在汽車轉彎時必然產生車輪相對於地面滑動的現象。這將使轉向困難,汽車的動力消耗增加,傳動系內某些零件和輪胎加速磨損。所以,我們需要在驅動橋內裝置具有差速作用的部件——差速器,使左右兩驅動輪可以以不同的角速度旋轉。
4. 翻車、筒車、水排有什麼區別
翻車
漢代,出現了一種新式的提水工具——翻車。據《後漢書》記載,東漢時畢嵐發明了翻車,「翻車設機車以引水」。翻車的工作原理是:其上、下鏈輪,一主動,一從動,繞在輪上的翻板就是傳動鏈,這個翻板兼做提水的工作件,一面帶動翻車轉動,一面把水提上來。長期以來,翻車成為族搜我國農村中應用最廣、最為重要的一種提水機械。馬鈞對翻車進行了改進,製造了新式翻車,結構精巧,能連續不斷地提水,效率大大提高。這種新式翻車也較省力,兒童都能轉動。以後,這戚凱種翻車發展為龍骨水車,對我國農業生產的發展起了重要作用。
http://image..com/i?ct=503316480&z=1129415952&tn=imagedetail&word=翻車&in=2
筒車
亦稱「水轉筒車」,是唐代出現的一種提水工具。一種以水流作動力,取水灌田的工具。其原理為:在水流很急的岸旁打下兩個硬樁,制一大輪,將大輪的軸擱在樁叉上。大輪上半部高出堤岸,下半部浸在水裡,可自由轉動。大輪輪輻外受水板上斜系有一個個竹筒,岸旁湊近輪上水筒的位置,設有水槽。當大輪受水板受急流沖激,輪子轉動,水筒中灌滿水,轉過輪頂時,筒口向下傾斜,水恰好倒入水槽,並沿水槽流向田間。此種筒車日夜不停車水澆地,不用人畜之力,功效高,約產生於隋唐時代。唐詩人劉禹錫有《機汲記》加以描述。直至今日,兆仔歷雲、桂、川、甘、陝、粵等地仍使用之。此外,尚有「畜力筒車」,依靠齒輪傳動帶動筒車;「高轉筒車」,通過兩大輪,將低處之水帶向高處,結構均巧妙合理,為我國古代人民傑出發明。唐陳廷章《水輪賦》:「水能利物,輪乃曲成。升降滿農夫之用,低徊隨匠氏之程。始崩騰以電散,俄宛轉以風生。雖破浪於川湄,善行無跡;既斡流於波面,終夜有聲。」宋梅堯臣《水輪詠》:「孤輪運寒水,無乃農自營。隨流轉自速,居高還復傾。」《宋史.太祖紀三》:「六月庚子,步至晉王邸,命作機輪,挽金水河注邸中為池。」宋李處權《土貴要予賦水輪》詩:「江南水輪不假人,智者創物真大巧。一輪十筒挹且注,循環下上無時了。」明王臨亨《粵劍編》卷三:「水車,每輻用水筒一枚,前仰後俯,轉輪而上,恰注水槽中,以田之高下為輪之大小,即三四丈以上田,亦能灌之,了不用人力。」
http://image..com/i?ct=503316480&z=802764503&tn=imagedetail&word=筒車&in=5
水排
水排是我國古代一種冶鐵用的水利鼓風裝置。人類早期的鼓風器大都是皮囊。一座爐子用好幾個囊,放在一起,排成一排,就叫「排囊」用水力推動這些排囊,就叫「水排」。水排發明於東漢早期,是南陽太守杜詩(?-38)在總結勞動人民實踐經驗基礎上發明的。因為它「用力少,見功多」所以大家樂於使用。三國時期的韓暨把它推廣到了魏國官營冶煉作坊中,用水排代替過去的馬排、人排,四季不歇。水排不但節省了人力、畜力,而且鼓風能力比較強,因此促進了冶鐵業的發展。水排在我國沿用了很長一個時期,直到本世紀七十年代,一些地方還在使用。
漢代的水排由同一時期的水碓和翻車結構推測,也是一種輪軸拉桿傳動裝置、我國古代水排構造的詳細技術最早見於元代的《王禎農書》,依水輪放置方式的差別,分為立輪式和卧輪式兩種。都是通過輪軸、拉桿及繩索把圓周運動變成直線往復運動的,以此達到起閉風扇和鼓風的目的。因為水輪轉動一次,風扇可以起閉多次,所以鼓風效能大大提高。
http://images.google.com/imgres?imgurl=http://www.cws.net.cn/cwsadmin/UploadFiles/yemao20041123103618458.jpg&imgrefurl=http://www.cws.net.cn/kjcg/CWSArticle_View.asp%3FCWSNewsID%3D17232&h=330&w=371&sz=22&hl=zh-CN&start=25&tbnid=Wi5peo_Ly691MM:&tbnh=109&tbnw=122&prev=/images%3Fq%3D%25E6%25B0%25B4%25E6%258E%2592%26start%3D20%26ndsp%3D20%26svnum%3D10%26hl%3Dzh-CN%26lr%3D%26newwindow%3D1%26sa%3DN
5. 馬均發明了什麼天下之名巧
馬鈞發明的天下之名巧是還原指南車;改進當時操作笨重的織綾機;發明一種由低處向高地引水的龍骨水車;製作出一種輪轉式發石機;改制了諸葛連弩等。
馬鈞最突出的表現有還原指南車;改進當時操作笨重的織綾機;發明一種由低處向高地引水的龍骨水車;製作出一種輪轉式發石機,能連續發射石塊,遠至數百步;把木製原動輪裝於木偶下面,叫做「水轉百戲圖」。此後,馬鈞還改制了諸葛連弩,對科學發展和技術進步做出了貢獻。
馬鈞人物介紹
馬鈞出身貧寒。他是中國古代的機械大師。他的不少發明創造對當時生產力的發展起了相當大的作用。因為他在傳動機械方面有很深的造詣,所以當時人們對他的評價很高,稱他為「天下之名巧」。
馬鈞從小口吃,不善言談。但是他很喜歡思索,善搭派於動腦,同時注重實踐,勤於動手,尤其喜歡鑽研機械方面的問題。馬鈞早年生活比較貧困,長時間住在鄉間,比較關心生產工具的改革,並且作出了突出貢獻。
馬鈞少年游樂,未認識到自己的才華。當博士時,生活貧困,於是改進綾機,並因此而出名。後來,在魏朝擔任給事中,同時研製機械。他雖然一生不大得志,但刻苦鑽研,設計製造出多種機械。
魏明帝時,見當時織機五十條經線者有配枝嘩五十躡(腳踏操縱板),六十條經線者六十躡,便將織機一律改為十二躡,大大提高了功效。在洛陽時,又發明了排灌水車,名叫「翻車」,它利用人力可以將水由低處提到高處。
他還研究製造出指南車,改進了諸葛亮的連弩,改進了攻城用培行的發石車。他製造的「水轉百戲」以水為動力,以機械木輪為傳動裝置,使木偶可以自動表演,構思十分巧妙。
6. 轉子軸沖筋有什麼作用轉子軸車工藝頭有什麼作用
轉子軸上的沖筋是保證電機轉子的鐵芯在軸固定,起防轉作用。
7. 曹魏時,馬鈞改進的翻車是一種啥
(9)關於馬鈞改進翻車
關於馬鈞製造翻車的事跡,歷史上遺留下來的記載很少,只是在《三國志·魏志》卷二九《杜夔傳》的後面,裴松之注雲:「(魏明帝)時有扶風馬鈞,巧思絕世。」並附有三國魏末至晉初時期的著名思想家傅玄的一篇《馬(鈞)先生傳》(後又被清嚴可均編入《全上古三代秦漢三國六朝文》中)。因此,我們對馬鈞的生平才略知大概。
據《馬先生傳》記載,「居京都,城內有地,可以為園,患無水以溉。先生乃作翻車,令童女兒轉之,而溉水自復,更入更出其巧百倍於常。」這大概也就是課本所依據的主要史料。「其巧百倍於常」(它的功效比平常的翻車超出許多倍)說明在此以前即有舊式翻車,並非「創造」。所以這次教材修訂為「製做如造」不用「創造」字樣。那麼,翻車究竟是誰「創造」的呢?
據《後漢書》卷七八《宦者列傳·張讓》載,漢靈帝時,「讓、忠(趙忠)及……畢嵐……宋典十二人皆為中常侍」,「明年,遂使銘盾令朱典繕修南宮王堂。又使掖庭令畢嵐鑄銅人四列於倉龍、玄武闕。又鑄四鍾,皆受二千斛,縣(懸)於玉堂及台殿前。又鑄天祿蝦蟇,吐水於平門外橋東,轉水入宮。又作翻車、渴烏,施於橋西,用灑南北郊路,以省百姓灑道之費。」這是我國「翻車」一詞見於史籍之始。在此以前的任何書籍中均未見記載。畢嵐的「作翻車」才是「始作」(「創造」)。據唐李賢(章懷太子)注雲:「翻車,設機車以引水。渴烏,為曲彎胡沖簡,以氣引水水上也。」所謂「設機車」是說他所創造的翻車上已有輪槽板、齒輪等機械傳動裝置。
畢嵐創造的「翻車」,據考證就是我國鄉村中一直至現代還使用的龍骨水車的前身(見王楨《農書》),基本原理與結構並無多大變化。
從上述記載中可以看出,畢嵐不僅負責鑄造了「銅人」、巨「鍾」,會「吐水」的「天祿」(神話傳說中的獸名)、「蝦墓」(即蛤蟆),還負責製作了「設機車以引水」的「翻車」和「以氣引水」的「渴烏」。況且,東漢早有宦官監工製作器械的先例。所以,畢嵐創制翻車是完全可能的。
誠然,身為宦官的畢嵐是不可能親自去製造翻車的。然而他負責製造的翻車,且能大量引水,開我國水車歷史之先河,這在距今一千八百年前的確是一個了不起的的偉大發明。畢嵐所創造的翻車,雖未直接運用於農業生產,但「用灑南北郊路,以省百姓灑道之費」,故對於國計民生也是有一定貢獻的。
我們知道,漢靈帝是我國歷史上有名的昏君,在位時宦官繼續專權,貪污腐化成風,公開實官鬻爵,天下田畝增稅十錢,大建宮室等等。階級矛盾激化,終於爆發了黃巾起義。因而畢嵐的發明創造就只能用於宮廷游樂,根本不可能用於發展生產力。到了曹操統一北方後,魏國的生產得到恢復和發展,在這樣的歷史條件下,要求當時的科學技術也能夠適應生產的需要而有所發展,這時「發明家馬鈞」便應運而生了。
馬鈞在前人創造用來吸水灑路的翻車的基礎上,設法加以改進,製造了既輕巧又便於操作的翻車。這種翻車,連小孩都能轉動,且能連續提水,可見有很大改進,所以很快流傳民間,促進了農業生產的發展。這是當時世界上最先進的生產工具之一,「後來逐漸推廣使用,提高了抗旱能力」,在今天也還有一定的作用。
馬鈞雖「巧思絕世」,但出身貧苦,加之封建統治者對科學技術創造發明的極端不重視,他的革新與創造,往往遭到只會說空話的達官貴人的譏笑和非難,故多不見經傳;畢嵐雖見諸史冊,但卻是宦者,加埋殲之東漢的宦官多數橫行不法,故也被世人所不齒。
畢嵐是我國歷史上「翻車」的「創造」者,而三國時的馬鈞,應是翻車技術的「改進」者。
8. 翻車是哪個朝代的
翻車又名龍骨水車,舊時中國民間灌溉農田用的龍骨水車。為世界上出現最早、流傳最久遠的農用水車。是一種刮板式連續提水機械,是中國古代勞動人民發明的最著名的農業灌溉機械之一。翻車是哪個朝代的?跟著我一起去看看吧。
曹魏時,經過改制的翻車用於灌溉。《後漢書》記有畢嵐作翻車,三國馬鈞加以完善。翻車可用手搖、腳踏、牛轉、水轉或風轉驅動。龍骨葉板用作鏈條,卧於矩形長槽中,車身斜置河邊或池塘邊。下鏈輪和車身一部分沒入水中。驅動鏈輪,葉板就沿槽刮水上升,到長槽上端將水送出。如此連續循環,把水輸送到需要之處,可連續取水,功效大大提高,操作搬運方便,還可及時轉移取水點,即可灌溉悉飢,亦可排澇。中國古代鏈傳動的最早應用就是在翻車上,是農業灌溉機械的一項重大改進。
蘭州水車
又名天車、翻車、老虎車。為明嘉靖年間進士段續所造。據《皋蘭縣志》載,蘭州人段續,博學多才,進士及第,曾宦遊南方數省,多有惠政。致仕歸里後,參考南方所見「創翻車,倒挽黃河水以灌田,致有巧思。沿河農民皆仿效焉。」蘭州水車,與南方的'龍骨水車不同,外形酷似巨大的古式車輪,輪輻直徑大的有20米左右,小的也有10米,可提水達15—18米高處。輪輻中心是合抱粗的輪軸,圓輪四周斜裝有40—50 個長1米,寬、高30—40厘米的木斗,以及比木斗多一倍的橫板。急流沖擊圓輪上的橫板,車輪便緩緩沿逆時針方向轉動。這時沒入水中的木斗猛鍵便盛滿了水,待它上升至圓輪頂端時,河水就會傾入事先置好的槽內,流入農田,然後空斗又隨圓輪返回水中,進行下一個循環。
北京土話
即翻臉的意思。
關於馬鈞製造翻車的事跡,歷史上遺留下來的記載很少,只是在《三國志·魏志》卷二九《杜夔傳》的後面,裴松之注雲:「(魏明帝)時有扶風馬鈞,巧思絕世。」並附有三國魏末至晉初時期的著名思想家傅玄的一篇《馬(鈞)先生傳》(後又被清嚴可均編入《全上古三代秦漢三國六朝文》中)。因此,我們對馬鈞枝陸巧的生平才略知大概。[1]
相關典故
據《馬先生傳》記載,「居京都,城內有地,可以為園,患無水以溉。先生乃作翻車,令童女兒轉之,而溉水自復,更入更出其巧百倍於常。」這大概也就是課本所依據的主要史料。「其巧百倍於常」(它的功效比平常的翻車超出許多倍)說明在此以前即有舊式翻車,並非「創造」。所以這次教材修訂為「改進」不用「創造」字樣。那麼,翻車究竟是誰「創造」的呢?
據《後漢書》卷七八《宦者列傳·張讓》載,漢靈帝時,「讓、忠(趙忠)及……畢嵐……宋典十二人皆為中常侍」,「明年,遂使銘盾令朱典繕修南宮王堂。又使掖庭令畢嵐鑄銅人四列於倉龍、玄武闕。又鑄四鍾,皆受二千斛,縣(懸)於玉堂及台殿前。又鑄天祿蝦蟇,吐水於平門外橋東,轉水入宮。又作翻車、渴烏,施於橋西,用灑南北郊路,以省百姓灑道之費。」這是我國「翻車」一詞見於史籍之始。在此以前的任何書籍中均未見記載。畢嵐的「作翻車」才是「始作」(「創造」)。據唐李賢(章懷太子)注雲:「翻車,設機車以引水。渴烏,為曲簡,以氣引水水上也。」所謂「設機車」是說他所創造的翻車上已有輪槽板、齒輪等機械傳動裝置。
9. 傳動系統的組成
機械傳動系統包括離合器、變速器、萬向傳動裝置、驅動橋以及分動器。機械傳動系統:是機床組成的重要部分,主要是由滾珠絲杠進行傳動的,滾珠絲杠在傳動過程中絲杠和運動軸是一體的,在日本MAZAK也有機床是用電機作為傳動的。機械傳動的作用:機械傳動的作用是傳遞運動和力,常用機械傳動系統的的類型有齒輪傳動、蝸輪蝸桿傳動、帶傳動、鏈傳動、輪系等。齒輪傳動:齒輪傳動是依靠主動齒輪依次撥動從動齒輪來實現的,其基本要求之一是其瞬時角速度之比必須保持不變。齒輪傳動的分類:齒輪傳動的類型較多,按照兩齒輪傳動時的相對運動為平面運動或空間運動,可將其分為平面齒輪傳動和空間齒輪傳動兩大類。直齒圓柱齒輪輪齒的初始接觸處是跨過整個齒面而伸展開來的線。斜齒輪輪齒的初始接觸是一點,當齒進入更多的嚙合時,它就變成線。在直齒圓柱齒輪中,接觸是平行於回轉軸線的。在斜齒輪中,該線是跨過齒面的對角線
10. 急求帶式輸送機傳動裝置中的二級圓柱齒輪減速器畢業設計
前 言
機械設計綜合課程設計在機械工程學科中佔有重要地位,它是理論應用於實際的重要實踐環節。本課程設計培養了我們機械設計中的總體設計能力,將機械設計系列課程設計中所學的有關機構原理方案設計、運動和動力學分析、機械零部件設計理論、方法、結構及工藝設計等內容有機地結合進行綜合設計實踐訓練,使課程設計與機械設計實際的聯系更為緊密。此外,它還培養了我們機械繫統創新設計的能力,增強了機械構思設計和創新設計。
本課程設計的設計任務是展開式二級圓柱齒輪減速器的設計。減速器是一種將由電動機輸出的高轉速降至要求的轉速比較典型的機械裝置,可以廣泛地應用於礦山、冶金、石油、化工、起重運輸、紡織印染、制葯、造船、機械、環保及食品輕工等領域。
本次設計綜合運用機械設計及其他先修課的知識,進行機械設計訓練,使已學知識得以鞏固、加深和擴展;學習和掌握通用機械零件、部件、機械傳動及一般機械的基本設計方法和步驟,培養學生工程設計能力和分析問題,解決問題的能力;提高我們在計算、制圖、運用設計資料(手冊、 圖冊)進行經驗估算及考慮技術決策等機械設計方面的基本技能,同時給了我們練習電腦繪圖的機會。
最後藉此機會,對本次課程設計的各位指導老師以及參與校對、幫助的同學表示衷心的感謝。
由於缺乏經驗、水平有限,設計中難免有不妥之處,懇請各位老師及同學提出寶貴意見。
帶式輸送機概論
帶式輸送機是一種摩擦驅動以連續方式運輸燃料的機械。應用它可以將物料在一定的輸送線上,從最初的供料點到最終的卸料點間形成一種物料的輸送流程。它既可以進行碎散物料的輸送,也可以進行成件物品的輸送。除進行純粹的物料輸送外,還可以與各工業企業生產流程中的工藝過程的要求相配合,形成有節奏的流水作業運輸線。所以帶式輸送機廣泛應用於現代化的各種工業企業中。在礦山的井下巷道、礦井地面運輸系統、露天采礦場及選礦廠中,廣泛應用帶式輸送機。它用於水平運輸或傾斜運輸。使用非常方便。
輸送機發展歷史
中國古代的高轉筒車和提水的翻車,是現代斗式提升機和刮板輸送機的雛形;17世紀中,開始應用架
空索道輸送散狀物料;19世紀中葉,各種現代結構的輸送機相繼出現。
1868年,在英國出現了帶式輸送機;1887年,在美國出現了螺旋輸送機;1905年,在瑞士出現了鋼帶式輸送機;1906年,在英國和德國出現了慣性輸送機。此後,輸送機受到機械製造、電機、化工和冶金工業技術進步的影響,不斷完善,逐步由完成車間內部的輸送,發展到完成在企業內部、企業之間甚至城市之間的物料搬運,成為材料搬運系統機械化和自動化不可缺少的組成部分。
輸送機的特點
帶式輸送機是煤礦最理想的高效連續運輸設備,與其他運輸設備(如機車類)相比具有輸送距離長、運量大、連續輸送等優點,而且運行可靠,易於實現自動化和集中化控制,尤其對高產高效礦井,帶式輸送機已成為煤炭開采機電一體化技術與裝備的關鍵設備。
帶式輸送機主要特點是機身可以很方便的伸縮,設有儲帶倉,機尾可隨採煤工作面的推進伸長或縮短,結構緊湊,可不設基礎,直接在巷道底板上鋪設,機架輕巧,拆裝十分方便。當輸送能力和運距較大時,可配中間驅動裝置來滿足要求。根據輸送工藝的要求,可以單機輸送,也可多機組合成水平或傾斜的運輸系統來輸送物料。
帶式輸送機廣泛地應用在冶金、煤炭、交通、水電、化工等部門,是因為它具有輸送量大、結構簡單、維修方便、成本低、通用性強等優點。
帶式輸送機還應用於建材、電力、輕工、糧食、港口、船舶等部門。
一、 設計任務書
設計一用於帶式運輸機上同軸式二級圓柱齒輪減速器
1. 總體布置簡圖
2. 工作情況
工作平穩、單向運轉
3. 原始數據
運輸機捲筒扭矩(N•m) 運輸帶速度(m/s) 捲筒直徑(mm) 使用年限(年) 工作制度(班/日)
350 0.85 380 10 1
4. 設計內容
(1) 電動機的選擇與參數計算
(2) 斜齒輪傳動設計計算
(3) 軸的設計
(4) 滾動軸承的選擇
(5) 鍵和聯軸器的選擇與校核
(6) 裝配圖、零件圖的繪制
(7) 設計計算說明書的編寫
5. 設計任務
(1) 減速器總裝配圖1張(0號或1號圖紙)
(2) 齒輪、軸、軸承零件圖各1張(2號或3號圖紙)
(3) 設計計算說明書一份
二、 傳動方案的擬定及說明
為了估計傳動裝置的總傳動比范圍,以便選擇合適的傳動機構和擬定傳動:方案,可由已知條件計算其驅動捲筒的轉速nw:
三. 電動機的選擇
1. 電動機類型選:Y行三相非同步電動機
2. 電動機容量
(1) 捲筒軸的輸出功率
(2) 電動機的輸出功率
傳動裝置的總效率
式中, 為從電動機至捲筒軸之間的各傳動機構和軸承的效率。由《機械設計課程設計》(以下未作說明皆為此書中查得)表2-4查得:V帶傳動 ;滾動軸承 ;圓柱齒輪傳動 ;彈性聯軸器 ;捲筒軸滑動軸承 ,則
故
(3) 電動機額定功率
由第二十章表20-1選取電動機額定功率
由表2-1查得V帶傳動常用傳動比范圍 ,由表2-2查得兩級展開式圓柱齒輪減速器傳動比范圍 ,則電動機轉速可選范圍為
可選符合這一范圍的同步轉速的電動3000 。
根據電動機所需容量和轉速,由有關手冊查出只有一種使用的電動機型號,此種傳動比方案如下表:
電動機型號 額定功率
電動機轉速
傳動裝置傳動比
Y100L-2 3 同步 滿載 總傳動比 V帶 減速器
3000 2880 62.06 2
三、 計算傳動裝置總傳動比和分配各級傳動比
1. 傳動裝置總傳動比
2. 分配各級傳動比
取V帶傳動的傳動比 ,則兩級圓柱齒輪減速器的傳動比為
按展開式布置考慮潤滑條件,為使兩級大齒輪直徑相近由圖12展開式曲線的
則i
所得 符合一般圓柱齒輪傳動和兩級圓柱齒輪減速器傳動比的常用范圍。
四、計算傳動裝置的運動和動力參數:
按電動機軸至工作機運動傳遞路線推算,得到各軸的運動和動力參數
1.各軸轉速:
2.各軸輸入功率:
Ⅰ~Ⅲ軸的輸出功率分別為輸入功率乘軸承效率0.99,捲筒軸輸出功率則為輸入功率乘捲筒的傳動效率0.96,計算結果見下表。
3. 各軸輸入轉矩:
Ⅰ~Ⅲ軸的輸出轉矩分別為輸入轉矩乘軸承效率0.99,捲筒軸輸出轉矩則為輸入轉矩乘捲筒的傳動效率0.96,計算結果見下表。
綜上,傳動裝置的運動和動力參數計算結果整理於下表:
軸名 功率
轉矩
轉速
傳動比
效率
輸入 輸出 輸入 輸出
電機軸 2.3 7.63 2880 2
0.96
I軸 2.21 14.65 1440
7.13
0.95
II軸 2.1 99.29 201. 96
4.35 0.95
III軸
2.0 410.58 46.43
1.00 0.98
捲筒軸 1.94 398.34
第三章 主要零部件的設計計算
§3.1 展開式二級圓柱齒輪減速器齒輪傳動設計
§3.1.1 高速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,大齒輪為正火處理,小齒輪熱處理均為調質處理且大、小齒輪的齒面硬度分別為260HBS,215HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 。
2. 按齒面接觸強度設計
由設計公式進行試算,即
(1) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩:
3) 查6-12(機械設計基礎)表選取齒寬系數 ,查圖6-37(機械設計基礎)按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1
4)計算應力循環次數
5) 按接觸疲勞壽命系數
(2) 計算:
1) 帶入 中較小的值,求得小齒輪分度圓直徑 的最小值為
3) 計算齒寬: 取 ,
4) 計算分度圓直徑與模數、中心距:
模數: 取第一系列標准值m=1.5
分度圓直徑:
中心距:
5) 校核彎曲疲勞強度:
符合齒形因數 由圖6-40得 =4.35, =3.98
彎曲疲勞需用應力:
1) 查圖6-41得彎曲疲勞強度極限 : ;
2) 查圖6-42取彎曲疲勞壽命系數
3) 計算彎曲疲勞許用應力.
取彎曲疲勞安全系數S=1,得
4) 校核計算:
<
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級
§3.1.2 低速級齒輪傳動設計
1. 選定齒輪類型、精度等級、材料及齒數
1)按以上的傳動方案,選用直齒圓柱齒輪傳動。
2)運輸機為一般工作,速度不高,故選用8級精度(GB 10095-88)。
3) 材料選擇。考慮到製造的方便及小齒輪容易磨損並兼顧到經濟性,兩級圓柱齒輪的大、小齒輪材料均用45鋼,熱處理均為正火調質處理且大、小齒輪的齒面硬度分別為200HBS,250HBS,二者材料硬度差為40HBS。
4)選小齒輪的齒數 ,大齒輪的齒數為 ,取 。
2. 按齒面接觸強度設計
由設計公式進行試算,即
2) 確定公式內的各計算數值
1) 試選載荷系數
2) 由以上計算得小齒輪的轉矩
3) 查表及其圖選取齒寬系數 ,由圖6-37按齒面硬度的小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 。
4) 計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1
5) 查圖6-42取彎曲疲勞壽命系數
按接觸疲勞壽命系數
模數: 由表6-2取第一系列標准模數
分度圓直徑:
中心距:
齒寬:
校核彎曲疲勞強度:
復合齒形因數 由圖6-40得
6)計算接觸疲勞許用應力,取失效概率為1%,安全系數S=1
得
校核計算: <
<
故彎曲疲勞強度足夠
確定齒輪傳動精度:
圓周速度:
對照表6-9(機械設計基礎)根據一般通用機械精度等級范圍為6~8級可知,齒輪精度等級應選8級
對各個軸齒輪相關計算尺寸
表6-3高速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z
模數
壓力角
齒高系數
頂隙系數
齒距 P
齒槽寬 e
齒厚 s
齒頂高
齒根高
齒高 h
分度圓直徑 d
基圓直徑
齒頂圓直徑
齒根圓直徑
中心距
表6-3低速軸齒輪各個參數計算列表
名稱 代號 計算公式
齒數 Z
模數
壓力角
齒高系數
頂隙系數
齒距 P
齒槽寬 e
齒厚 s
齒頂高
齒根高
齒高 h
分度圓直徑 d
基圓直徑
齒頂圓直徑
齒根圓直徑
中心距
V帶的設計
1)計算功率
2)選擇帶型
據 和 =2880由圖10-12<械設計基礎>選取z型帶
3)確定帶輪基準直徑
由表10-9確定 <械設計基礎>
1) 驗算帶速
因為 故符合要求
2) 驗算帶長
初定中心距
由表10-6選取相近
3) 確定中心距
4) 驗算小帶輪包角
故符合要求
5) 單根V帶傳遞額定功率
據 和 查圖10-9得
8) 時單根V帶的額定功率增量:據帶型及 查表10-2<械設計基礎>得
10)確定帶根數
查表10-3 查表10-4 <械設計基礎>
11) 單根V帶的初拉力
查表10-5
12)用的軸上的力
13帶輪的結構和尺寸
以小帶輪為例確定其結構和尺寸,由圖10-11<械設計基礎>帶輪寬
§3.3 軸系結構設計
§3.3.1 高速軸的軸系結構設計
一、軸的結構尺寸設計
根據結構及使用要求,把該軸設計成階梯軸且為齒輪軸,共分七段,其中第5段為齒輪,如圖2所示:
圖2
由於結構及工作需要將該軸定為齒輪軸,因此其材料須與齒輪材料相同,均為合金鋼,熱處理為調制處理, 材料系數C為118。
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表6 高速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)
13.6
16
60
第2段
(由唇形密封圈尺寸確定)
20(18.88)
50
第3段 由軸承尺寸確定
(軸承預選6004 B1=12)
20
23
第4段
24(23.6)
145
第5段 齒頂圓直徑
齒寬
33
38
第6段
24
10
第7段
20
23
二、軸的受力分析及計算
軸的受力模型簡化(見圖3)及受力計算
L1=92.5 L2=192.5 L3=40
三、軸承的壽命校核
鑒於調整間隙的方便,軸承均採用正裝.預設軸承壽命為3年即12480h.
校核步驟及計算結果見下表:
表7 軸承壽命校核步驟及計算結果
計算步驟及內容 計算結果
6007軸承
A端 B端
由手冊查出Cr、C0r及e、Y值 Cr=12.5kN
C0r=8.60kN
e=0.68
計算Fs=eFr(7類)、Fr/2Y(3類) FsA=1809.55 FsB=1584.66
計算比值Fa/Fr FaA /FrA>e FaB /FrB< e
確定X、Y值 XA= 1,YA = 0, XB =1 YB=0
查載荷系數fP 1.2
計算當量載荷
P=Fp(XFr+YFa) PA=981.039 PB=981.039
計算軸承壽命
9425.45h
小於
12480h
由計算結果可見軸承6007合格.
表8 中間軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
由軸承尺寸確定
(軸承預選6008 )
33.6
40
25
第2段
(考慮鍵槽影響)
45(44.68)
77.5
第3段
50
12.5
第4段
99
109
第5段
46
39
考慮到低速軸的載荷較大,材料選用45,熱處理調質處理,取材料系數
所以,有該軸的最小軸徑為:
考慮到該段開鍵槽的影響,軸徑增大6%,於是有:
標准化取
其他各段軸徑、長度的設計計算依據和過程見下表:
表10 低速軸結構尺寸設計
階梯軸段 設計計算依據和過程 計算結果
第1段
(考慮鍵槽影響)
(由聯軸器寬度尺寸確定)
52.49
60(55.64)
142
第2段
(由唇形密封圈尺寸確定)
64(63.84)
50
第3段
66
16
第4段 由軸承尺寸確定
(軸承預選6014C )
70
24
第5段
78
75
第6段
20
88
20
第7段
齒寬+10
80(79.8)
119
§3.3.4 各軸鍵、鍵槽的選擇及其校核
因減速器中的鍵聯結均為靜聯結,因此只需進行擠壓應力的校核.
一、 高速級鍵的選擇及校核:
帶輪處鍵:按照帶輪處的軸徑及軸長選 鍵B8X7,鍵長50,GB/T1096
聯結處的材料分別為: 45鋼(鍵) 、40Cr(軸)
二、中間級鍵的選擇及校核:
(1) 高速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B14X9GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、20Cr(軸)
此時, 鍵聯結合格.
三、低速級級鍵的選擇及校核
(1)低速級大齒輪處鍵: 按照輪轂處的軸徑及軸長選 鍵B22X14,鍵長 GB/T1096
聯結處的材料分別為: 20Cr (輪轂) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其
該鍵聯結合格
(2)聯軸器處鍵: 按照聯軸器處的軸徑及軸長選 鍵16X10,鍵長100,GB/T1096
聯結處的材料分別為: 45鋼 (聯軸器) 、45鋼(鍵) 、45(軸)
其中鍵的強度最低,因此按其許用應力進行校核,查手冊其
該鍵聯結合格.
第四章 減速器箱體及其附件的設計
§4.1箱體結構設計
根據箱體的支撐強度和鑄造、加工工藝要求及其內部傳動零件、外部附件的空間位置確定二級齒輪減速器箱體的相關尺寸如下:(表中a=322.5)
表12 箱體結構尺寸
名稱 符號 設計依據 設計結果
箱座壁厚 δ 0.025a+3=11 11
考慮鑄造工藝,所有壁厚都不應小於8
箱蓋壁厚 δ1 0.02a+3≥8 9.45
箱座凸緣厚度 b 1.5δ 16.5
箱蓋凸緣厚度 b1 1.5δ1 14.18
箱座底凸緣厚度 b2 2.5δ 27.5
地腳螺栓直徑 df 0.036a+12 24(23.61)
地腳螺栓數目 n 時,n=6
6
軸承旁聯結螺栓直徑 d1 0.75df 18
箱蓋與箱座聯接螺栓直徑 d 2 (0.5~0.6)df 12
軸承端蓋螺釘直徑和數目 d3,n (0.4~0.5)df,n 10,6
窺視孔蓋螺釘直徑 d4 (0.3~0.4)df 8
定位銷直徑 d (0.7~0.8) d 2 9
軸承旁凸台半徑 R1 c2 16
凸台高度 h 根據位置及軸承座外徑確定,以便於扳手操作為准 34
外箱壁至軸承座端面距離 l1 c1+c2+ (5~10) 42
大齒輪頂圓距內壁距離 ∆1 >1.2δ 11
齒輪端面與內壁距離 ∆2 >δ 10
箱蓋、箱座肋厚 m1 、 m m1≈0.85δ1 =8.03 m≈0.85δ=9.35 7
軸承端蓋凸緣厚度 t (1~1.2) d3 10
軸承端蓋外徑 D2 D+(5~5.5) d3 120
軸承旁邊連接
螺栓距離
S
120
第五章 運輸、安裝和使用維護要求
1、減速器的安裝
(1)減速器輸入軸直接與原動機連接時,推薦採用彈性聯軸器;減速器輸出軸與工作機聯接時,推薦採用齒式聯軸器或其他非剛性聯軸器。聯軸器不得用錘擊裝到軸上。
(2)減速器應牢固地安裝在穩定的水平基礎上,排油槽的油應能排除,且冷卻空氣循環流暢。
(3)減速器、原動機和工作機之間必須仔細對中,其誤差不得大於所用聯軸器的許用補償量。
(4)減速器安裝好後用手轉動必須靈活,無卡死現象。
(5)安裝好的減速器在正式使用前,應進行空載,部分額定載荷間歇運轉1~3h後方可正式運轉,運轉應平穩、無沖擊、無異常振動和雜訊及滲漏油等現象,最高油溫不得超過100℃;並按標准規定檢查輪齒面接觸區位置、面積,如發現故障,應及時排除。
2、使用維護
本類型系列減速器結構簡單牢固,使用維護方便,承載能力范圍大,公稱輸入功率0.85—6660kw,公稱輸出轉矩100—410000N.m,不怕工況條件惡劣,是適用性很好,應用量大面廣的產品。可通用於礦山、冶金、運輸、建材、化工、紡織、輕工、能源等行業的機械傳動。但有以下限制條件:
1.減速器高速軸轉速不高於1000r/min;
2.減速器齒輪圓周速度不高於20m/s;
3.減速器工作環境溫度為—40~45℃,低於0℃時,啟動前潤滑油應預熱到8℃以上,高於45℃時應採取隔熱措施。
3、減速器潤滑油的更換:
(1)減速器第一次使用時,當運轉150~300h後須更換潤滑油,在以後的使用中應定期檢查油的質量。對於混入雜質或變質的油須及時更換。一般情況下,對於長期工作的減速器,每500~1000h必須換油一次。對於每天工作時間不超過8h的減速器,每1200~3000h換油一次。
(2)減速器應加入與原來牌號相同的油,不得與不同牌號的油相混用。牌號相同而粘度不同的油允許混合用。
(3)換油過程中,蝸輪應使用與運轉時相同牌號的油清洗。
(4)工作中,當發現油溫溫升超過80℃或油池溫度超過100℃及產生不正常的雜訊等現象時,應停止使用,檢查原因。如因齒面膠合等原因所致,必須排除故障,更換潤滑油後,方可繼續運轉。
減速器應定期檢修。如發現擦傷、膠合及顯著磨損,必須採用有效措施制止或予以排除。備件必須按標准製造,更新的備件必須經過跑合和負荷試驗後才能正式使用。 用戶應有合理的使用維護規章制度,對減速器的運轉情況和檢驗中發現的問題應做認真的記錄 。
小 結
轉眼兩周的時間過去了,感覺時間過得真快,忙忙碌碌終於把機械設計做出來了。我通過這次設計學到了很多東西。使我對機械設計的內容有了進一步的了解.
因為剛結束課程就搞設計,還沒有來得及復習,所以剛開始遇到好多的問題,都感覺很棘手.因為機械設計是把我們這學期所學知識全部綜合起來了,還用到了許多先前開的課程,例如金屬工藝學,材料力學,機械原理等.
首先,我們要運用知識想好用什麼結構,然後進行軸大小長短的設計,要校核,選軸承。最後還要校核低速軸,看能否用。鍵也是一件重要的零件,校核也不可避免。所有這些都用到了力學和機械設計得內容,可是我當時力學沒有學好,機械設計又沒完全掌握,做這次設計真是不容易啊!.
但通過這次機械設計學到了許多,不僅是在知識方面,重要是在觀念方面。以往我們不管做什麼都有現成的東西,而我們只要算別人現有的東西就可以了,其實那就是抄。但現在很多是自己設計,沒有約束了反而不知所措了。其次,我在這次設計中出現了許多問題,經過常老師得指點,我學到了許多課本上沒有的東西他並且給我們講了一些實際用到的經驗.收獲真是破多啊!最後就是我們大學的課程開了這么多,我們一定要把基礎打牢,為以後的綜合運用打下基礎啊.這次機械設計課程就體現了,我們現在很缺乏把自己學的東西聯系起來的能力.
最後我總結一下通過這次機械設計我學到的。實踐出真知,不假。通過設計我現在可以了解真正的設計是一個怎樣的程序啊.而且其中出現了許多錯誤,為以後工作增加經驗。雖然機設很累,但我很充實,我學到了許多知識,我增加了社會競爭力,我又多了解了機械,又進步了。總之,這次機械設計雖然很累,但是我學到了好多自己從前不知道和沒有經歷的經驗。
參 考 文 獻
1 <<機械設計>>第八版 濮良貴主編 高等教育出版社 ,2006
2 <<機械設計課程設計>>第1版 . 王昆,何小柏主編 .機械工業出版社 ,2004
3 <<機械原理>> 申永勝主編 清華大學出版社 ,1999
4 <<材料力學 >> 劉鴻文主編 高等教育出版社 ,2004
5 <<幾何公差與測量>>第五版 甘永力主編 上海科學技術出版社 ,2003
6 <<機械制圖>>