⑴ 如何聚沉水中懸浮物的方法
第1節 吸附法
一、 吸附原理
二、 影響吸附的因素
三、 吸附劑
四、 吸附工藝和設備
五、 吸附法在污水處理中的應用
一、吸附原理
固體表面有吸附水中溶解及膠體物質的能力,比表面積很大的活性炭等具有很高的吸附能力,可用作吸附劑。吸附可分為物理吸附和化學吸附。如果吸附劑與被吸附物質之間是通過分子間引力(即范德華力)而產生吸附,稱為物理吸附;如果吸附劑與被吸附物質之間產生化學作用,生成化學鍵引起吸附,稱為化學吸附。離子交換實際上也是一種吸附,將在第二節中討論。
物理吸附和化學吸附並非不相容的,而且隨著條件的變化可以相伴發生,但在一個系統中,可能某一種吸附是主要的。在污水處理中,多數情況下,往往是幾種吸附的綜合結果。
一定的吸附劑所吸附物質的數量與此物質的性質及其濃度和溫度有關。表明被吸附物的量與濃度之間的關系式稱為吸附等溫式。目前常用的公式有二:弗勞德利希(Freundlich)吸附等溫式,朗格繆爾(Langrnuir)吸附等溫式。
二、影響吸附的因素
吸附能力和吸附速度是衡量吸附過程的主要指標。固體吸附劑吸附能力的大小可用吸附量來衡量。吸附速度是指單位重量吸附劑在單位時間內所吸附的物質量。在水處理中,吸附速度決定了污水需要與吸附劑接觸的時間。吸附速度快,則所需的接觸時間就短,吸附設備的容積就小。
多孔性吸附劑的吸附過程基本上可分為三個階段:顆粒外部擴散階段,即吸附質從溶液中擴散到吸附劑表面;孔隙擴散階段,即吸附質在吸附劑孔隙中繼續向吸附點擴散;吸附反應階段,吸附質被吸附在吸附劑孔隙內的吸附點表面。一般,吸附速度主要取決於外部擴散速度和孔隙擴散速度。
顆粒外部擴散速度與溶液濃度成正比,也與吸附劑的比表面積的大小成正比。因此吸附劑顆粒直徑越小,外部擴散速度越快。同時,增加溶液與顆粒間的相對運動速度,也可以提高外部擴散速度。
孔隙擴散速度與吸附劑孔隙的大小和結構,吸附質顆粒的大小和結構等因素有關。一般,吸附劑顆粒越小,孔隙擴散速度越快。
吸附劑的物理化學性質和吸附質的物理化學性質對吸附有很大影響。一般,極性分子(或離子)型的吸附劑容易吸附極性分子(或離子)型的吸附質;非極性分子型的吸附劑容易吸附非極性的吸附質。同時,吸附質的溶解度越低,越容易被吸附。吸附質的濃度增加,吸附量也隨之增加。
污水的pH值對吸附也有影響,活性炭一般在酸性條件下比在鹼性條件下有較高的吸附量。吸附反應通常是放熱反應,因此溫度低對吸附反應有利。
三、吸附劑
吸附劑的種類很多。常用是活性炭和腐植酸類吸附劑。
1.活性炭
在生產中應用的活性炭的種類很多。一般都製成粉末狀或顆粒狀。粉末狀的活性炭吸附能力強,制備容易,價格較低,但再生困難,一般不能重復使用。顆粒狀的活性炭價格較貴,但可再生後重復使用,並且使用時的勞動條件較好,操作管理方便。因此在水處理中較多採用顆粒狀活性炭。
活性炭的比表面積可達800—2000m2/g,有很高的吸附能力。
顆粒狀活性炭在使用一段時間後,吸附了大量吸附質,逐步趨向飽和並喪失工作能力,此時應進行更換或再生。再生是在吸附劑本身的結構基本不發生變化的情況下,用某種方法將吸附質從吸附劑微孔中除去,恢復它的吸附能力。活性炭的再生方法主要有:
(1)加熱再生法 在高溫條件下,提高了吸附質分子的能量,使其易於從活性炭的活性點脫離;而吸附的有機物則在高溫下氧化和分解,成為氣態逸出或斷裂成低分子。活性炭的再生一般用多段式再生爐。爐內供應微量氧氣,使進行氧化反應而又不致使炭燃燒損失。
(2)化學再生法 通過化學反應,使吸附質轉化為易溶於水的物質而解吸下來。例如,吸附了苯酚的活性炭,可用氫氧化鈉溶液浸泡,使形成酚鈉鹽而解吸。
濕式氧化法也是化學再生法,主要用於再生粉末狀活性炭。
在我國,目前活性炭的供應較緊張,再生的設備較少,再生費用較貴,限制了活性炭的廣泛使用。
2.腐植酸類吸附劑
用作吸附劑的腐植酸類物質主要有:天然的富含腐植酸的風化煤、泥煤、褐煤等,它們可以直接使用或經簡單處理後使用;將富含腐植酸的物質用適當的粘合劑制備成的腐植酸系樹脂。
腐植酸類物質能吸附工業廢水中的許多金屬離子,如汞、鉻、鋅、鎘、鉛、銅等。腐植酸類物質在吸附重金屬離子後,可以用H2SO4、HCI、NaCl等進行解吸。目前,這方面的應用還處於試驗、研究階段,還存在吸附(交換)容量不高,適用的pH值范圍較窄,機械強度低等問題,需要進一步研究和解決。
四、吸附工藝和設備
吸附的操作方式分為間歇式和連續式。間歇式是將廢水和吸附劑放在吸附池內進行攪拌30min左右,然後靜置沉澱,排除澄清液。間歇式吸附主要用於小量廢水的處理和實驗研究,在生產上一般要用兩個吸附池、交換工作。在一般情況下,都採用連續的方式。
連續吸附可以採用固定床、移動床和流化床。固定床連續吸附方式是廢水處理中最常用的。吸附劑固定填放在吸附柱(或塔)中,所以叫固定床。移動床連續吸附是指在操作過程中定期地將接近飽和的一部分吸附劑從吸附柱排出,並同時將等量的新鮮吸附劑加入柱中。所謂流化床是指吸附劑在吸附柱內處於膨脹狀態,懸浮於由下而上的水流中。由於移動床和流化床的操作較復雜,在廢水處理中較少使用。
在一般的連續式固定床吸附柱中,吸附劑的總厚度為3~5m,分成幾個柱串聯工作,每個柱的吸附劑厚度為1~2m。廢水從上向下過濾,過濾速度在4~15m/h之間,接觸時間一般不大於30~60min。為防止吸附劑層的堵塞,含懸浮物的廢水一般先應經過砂濾,再進行吸附處理。吸附柱在工作過程中,上部吸附劑層的吸附質濃度逐漸增高,達到飽和而失去繼續吸附的能力。隨著運行時間的推移,上部飽和區高度增加而下部新鮮吸附層的高度則不斷減小,直至全部吸附劑都達到飽和,出水濃度與進水濃度相等,吸附柱全部喪失工作能力。
在實際操作中,吸附柱達到完全飽和及出水濃度與進水濃度相等是不可能的,也是不允許的。通常是根據對出水水質的要求,規定一個出水含污染物質的允許濃度值。當運行中出水達到這一規定值時,即認為吸附層已達到「穿透」,這一吸附柱便停止工作,進行吸附劑的更換。
五、吸附法在污水處理中的應用
由於吸附法對進水的預處理要求高,吸附劑的價格昂貴,因此在廢水處理中,吸附法主要用來去除廢水中的微量污染物,達到深度凈化的目的。如:廢水中少量重金屬離子的去除、少量有害的生物難降解有機物的去除、脫色除臭等。
第2節 離子交換法
離子交換法是水處理中軟化和除鹽的主要方法之一。在廢水處理中,主要用於去除廢水中的金屬離子。離子交換的實質是不溶性離子化合物(離子交換劑)上的可交換離子與溶液中的其它同性離子的交換反應,是一種特殊的吸附過程,通常是可逆性化學吸附。
離子交換劑
水處理中用的離子交換劑有磺化煤和離子交換樹脂。磺化煤利用天然煤為原料,經濃硫酸磺化處理後製成,但交換容量低,機械強度差,化學穩定性較差,已逐漸為離子交換樹脂所取代。
離子交換樹脂是人工合成的高分子聚合物,由樹脂本體(又稱母體或骨架)和活性基團兩個部分組成。生產離子交換劑的樹脂母體最常見的是苯乙烯的聚合物,是線性結構的高分子有機化合物。在原料中,常加上一定數量的二乙烯苯做交聯劑,使線狀聚合物之間相互交聯,成立體網狀結構。樹脂的外形呈球狀顆粒,粒徑為:0.6~1.2mm(大粒徑樹脂),0.3~0.6mm(中粒徑樹脂),或0.02~0.1mm(小粒徑樹脂)。樹脂本身不是離子化合物,並無離子交換能力,需經適當處理加上活性基團後,才具有離子交換能力。活性基團由固定離子和活動離子組成。固定離子固定在樹脂的網狀骨架上,活動離子(或稱交換離子)則依靠靜電引力與固定離子結合在一起,二者電性相反電荷相等。
離子交換樹脂按樹脂的類型和孔結構的不同可分為:凝膠型樹脂、大孔型樹脂、多孔凝膠型樹脂、巨孔型(MR型)樹脂和高巨孔型(超MR型)樹脂等。
第3節 萃取法
在化工上,用適當的溶劑分離混合物的過程叫萃取。當混合物為溶液時叫液—液萃取,當混合物為固體時叫固—液萃取;使用的溶劑叫萃取劑,提出的物質叫萃取物,在廢水處理上,利用廢水中的雜質在水中和有機萃取劑中溶解度的不同,可以採用萃取的方法,將雜質提取出來。例如含酚濃度較高的廢水。由於酚在有機溶劑中的溶解度遠遠高於在水中的溶解度,我們可以利用酚的這種性質以及有機溶劑(如:油)與水不相溶的性質,選用適當的有機溶劑從廢水中把有害物質酚提取出來。
用萃取法處理廢水時,有三個步驟:①把萃取劑加入廢水,並使它們充分接觸,有害物質作為萃取物從廢水中轉移到萃取劑中;②把萃取劑和廢水分離開來,廢水就得到了處理。也可以再進一步接受其他的處理;③把萃取物從萃取劑中分離出來,使有害物質成為有用的副產品,而萃取劑則可回用於萃取過程才算,在技術上已經成立;其次,是經濟上的考慮。技術上可靠,經濟上合理,生產才能採用。
在化工上常使用「相」這個名詞。「相」是一個均勻物質,具有組成相同和性質相同的特徵。如在一個物質體系裡同時存在界面明確的兩部分物質,這兩部分物質就抽象地叫做兩個相。例如,油和水混在一起,即使劇烈攪拌,油滴分散在水中,油水之間仍然存在明確的界面,我們就說這是存在水相和油相。一個物質體系裡的兩個相,常常一個呈連續狀態而另一個呈分散狀態,呈連續狀態的叫連續相,呈分散狀態的叫分散相。一個物質體系的相數並無限制。
第4節 膜析法
一、 滲析法
二、 反滲透法
三、 超過濾法
膜析法是利用薄膜以分離水溶液中某些物質的方法的統稱。目前有擴散滲析法(滲析法)、電滲析法、反滲透法和超過濾法等。
一、滲析法
人們早就發現,一些動物膜,如膀胱膜、羊皮紙(一種把羊皮刮薄做成的紙),有分隔水溶液中某些溶解物質(溶質)的作用。例如,食鹽能透過羊皮紙,而糖、澱粉、樹膠等則不能。如果用羊皮紙或其他半透膜包裹一個穿孔杯,杯中滿盛鹽水,放在一個盛放清水的燒杯中,隔上一段時間,我們會發現燒杯內的清水帶有鹹味,表明鹽的分子已經透過羊皮紙或半透膜進入清水。如果把穿孔杯中的鹽水換成糖水,則會發現燒杯中的清水不會帶甜味。顯然,如果把鹽和糖的混合液放在穿孔杯內,並不斷地更換燒杯里的清水,就能把穿孔杯中混合液內的食鹽基本上都分離出來,使混合液中的糖和鹽得到分離。這種方法叫滲析法。起滲析作用的薄膜,因對溶質的滲透性有選擇作用,故叫半透膜。近年來半透膜有很大的發展,出現很多由高分子化合物製造的人造薄膜,不同的薄膜有不同的選擇滲析性。半透膜的滲析作用有三種類型:①依靠薄膜中「孔道」的大,小分離大小不同的分子或粒子;②依靠薄膜的離子結構分離性質不同的離子,例如用陽離子交換樹脂做成的薄膜可以透過陽離子,叫陽離子交換膜,用陰離子樹脂做成的薄膜可以透過陰離子,叫陰離子交換膜;③依靠薄膜:的有選擇的溶解性分離某些物質,例如醋酸纖維膜有溶解某些液體和氣體的性能,而使這些物質透過薄膜。一種薄膜只要具備上述三種作用之一,就能有選擇地讓某些物質透過而成為半透膜。在廢水處理中最常用的半透膜是離子交換膜。
二、反滲透法
反滲透法是一種藉助壓力促使水分子反向滲透,以濃縮溶液或廢水的方法。
如果將純水和鹽水用半透膜隔開,此半透膜只有水分子能夠透過而其他溶質不能透過,則水分子將透過半透膜進人溶液(鹽水),溶液逐漸從濃變稀,液面則不斷上升,直到某一定值為止。這個現象叫滲透,高出於水面的水柱高度(決定於鹽水的濃度)是由於溶液的滲透壓所致。可以理解,如果我們向溶液的一側施加壓力,並且超過它的滲透壓,則溶液中的水就會透過半透膜,流向純水一側,而溶質被截留在溶液一側,這種方法就是反滲透法(或稱逆滲透法)。
近年來,由於反滲透膜材料和製造技術的發展以及新型裝置的不斷開發和運行經驗的積累,反滲透技術的發展非常迅速,已廣泛用於水的淡化、除鹽和製取純水等,還能用以去除水中的細菌和病毒。但反滲透法所需的壓力較高,工作壓力要比滲透壓力大幾十倍。即使是改進的復合膜,正常工作壓力也需1.5MPa左右。同時,為了保證反滲透裝置的正常運行和延長膜的壽命,在反滲透裝置前必須有充分的預處理裝置。
反滲透裝置一般都由專門的廠家製成成套設備後出售。在生產中,根據需要予以選用。
三、超過濾法
超過濾法與反滲透法相似。但超濾膜的微孔孔徑比反滲透膜大,在0.005—1um之間。超濾的過程並不是單純的機械截留,物理篩分,而是存在著以下三種作用:①溶質在膜表面和微孔孔壁上發生吸附;②溶質的粒徑大小與膜孔徑相仿,溶質嵌在孔中,引起阻塞;③溶質的粒徑大於膜孔徑,溶質在膜表面被機械截留,實現篩分。毫無疑問,我們應力求避免在孔壁上的吸附和膜孔的阻塞,應選用與被分離溶質之間相互作用弱和膜孔結構是外密內疏的不對稱構造的超濾膜。
超濾的過程是動態過濾,即在超濾膜的表面既受到垂直於膜面的壓力,使水分子得以透過膜面並與被截留物質分離,同時又產生一個與膜表面平行的切向力,以將截留在膜表面的物質沖開。所以,超濾運行的周期可以較長。在運行方面,還可短時間地停止透水而增加切面流速,即可達到沖洗膜面的效果,使透水率得到恢復。這樣的運行方式,使超濾(膜)—活性污泥法這種新型的處理工藝得以實施和發展。
在廢水處理中,超過濾法目前主要用於分離有機的溶解物,如澱粉、蛋白質、樹膠、油漆等。超過濾法所需的壓力比反滲透法要低,一般為0.1—0.7MPa。
⑵ 固定床的簡介
在進行多相過程的設備中,若有固相參與,且處於靜止狀態時,則設備內的固體顆粒物料層,稱為固定床。
例如,固定床離子交換柱中的離子交換樹脂層,固定床催化反應器中的催化劑顆粒層,固定床吸附器中的吸附劑顆粒層等,均屬於固定床。
固定床又稱填充床反應器,裝填有固體催化劑或固體反應物用以實現多相反應過程的一種反應器。固體物通常呈顆粒狀,粒徑2~15mm左右,堆積成一定高度(或厚度)的床層。床層靜止不動,流體通過床層進行反應。它與流化床反應器及移動床反應器的區別在於固體顆粒處於靜止狀態。固定床反應器主要用於實現氣固相催化反應,如氨合成塔、二氧化硫接觸氧化器、烴類蒸汽轉化爐等。用於氣固相或液固相非催化反應時,床層則填裝固體反應物。涓流床反應器也可歸屬於固定床反應器,氣、液相並流向下通過床層,呈氣液固相接觸。
⑶ 什麼物化-生化處理法
就是物理化學生物三種方法中的兩種以上聯合使用,像,吹脫,吸附,等
⑷ 求固定床吸附器的資料
固定床吸附器:
⑴ 形式與結構:
工業上應用最多的吸附設備是固定床吸附器,主要有立式和卧式兩種,都是圓柱形容器。卧式圓柱形吸附器,兩端為球形頂蓋,靠近底部焊有橫柵條,其上面放置可拆式鑄鐵柵條,柵條上再放金屬網(也可用多孔板替代柵條),若吸附劑顆粒細,可在金屬網上先堆放粒度較大的礫石再放吸附劑。立式吸附器基本結構與卧式相同。
⑵ 吸附過程的操作方式:
a)、間隙過程:欲處理的流體通過固定床吸附器時,吸附質被吸附劑吸附,流體是由出口流出,操作時吸附和脫附交替進行。
b)、連續過程:通常流程中都裝有兩台以上吸附器,以便切換使用。在吸附時原料氣由下方通人,吸附後的原料氣從頂部出口排出。與此同時,吸附器處於脫附再生階段,再生用氣體由加熱器加熱至要求的溫度,再生氣進入吸附器的流向與原料氣相反,再生氣攜帶從吸附劑上脫附的組分從吸附器底部放出,經冷卻器冷凝分離,再生氣循環使用。如果所帶組分不易冷凝,要採用其它方法使之分離。
⑶ 優缺點:
a)優點:結構簡單、造價低,吸附劑磨損少。
b)缺點:
ⅰ)操作麻煩,因是間歇操作,操作過程中兩個吸附器需不斷地周期性切換;
ⅱ) 單位吸附劑生產能力低,因備用設備雖然裝有吸附劑,但處於非生產狀態;
ⅲ)固定床吸附劑床層尚存在傳熱性能較差,床層傳熱不均勻等缺點。
2 固定床吸附器的操作特性:
1)非定態的傳質過程
當流體通過固定床吸附劑顆粒層時,床層中吸附劑的吸附量隨著操作過程的進行而逐漸增加,同時床層內各處濃度分布也隨時間而變化。
ⅰ)未吸附區
吸附質濃度為 的流體由吸附器上部加入,自上而下流經高度為 的新鮮吸附劑床層。開始時,最上層新鮮吸附劑與含吸附質濃度較高的流體接觸,吸附質迅速地被吸附,濃度降低很快,只要吸附劑床層足夠,流體中吸附質濃度可以降為零。經過一段時間dl後,水平線密度大小表示固定床內吸附劑上吸附質的濃度分布,頂端的吸附劑上吸附質含量高,由上而下吸附劑上吸附質含量逐漸降低,到一定高度 以下的吸附劑上吸附質含量均為零,即仍保持初始狀態,稱該區為未吸附區。此時出口流體中吸附質組成 近於零。
ⅱ) 吸附傳質區、吸附傳質區高度
繼續操作至 時,由於吸附劑不斷吸附,吸附器上端有一段吸附劑上吸附質的含量已經達到飽和,向下形成一段吸附質含量從大到小的 形分布的區域,從 到 的 線所示。這一區域為吸附傳質區,其所佔床層高度稱為吸附傳質區高度,此區以下仍是未吸附區。
ⅲ) 飽和區
在飽和區內,兩相處於平衡狀態,吸附過程停止;從高度 處開始,兩相又處於不平衡狀態,吸附質繼續被吸附劑吸附,隨之吸附質在流體中的濃度逐漸降低,至 處接近於零,此後,過程不再進行。
ⅳ) 吸附波
吸附傳質只在吸附傳質區內進行,再繼續操作,吸附器上端的飽和區將不斷擴大,吸附傳質區尤如「波」一樣向下移動,故稱為吸附波,其移動的速度遠低於流體流經床層的速度。到 時,吸附傳質區的前端已移至吸附器的出口。
ⅴ)穿透點與穿透曲線
從吸附器流出的流體中吸附質濃度突然升高到一定的最高允許值 說明吸附過程達到所謂的「穿透點」。若再繼續通人流體,吸附傳質區將逐漸縮小,而出口流體中吸附質的濃度將迅速上升,直至吸附傳質區幾乎全部消失,吸附劑全部飽和,這時出口流體中吸附質濃度接近起始濃度y。實際上吸附操作只能進行到穿透點為止,從過程開始到穿透點所需時間稱為穿透時間。
vi) 吸附負荷曲線與穿透曲線的關系
吸附負荷曲線與穿透曲線成鏡面相似,即從穿透曲線的形狀可以推知吸附負荷曲線。對吸附速度高而吸附傳質區短的吸附過程,其吸附荷曲線與穿透曲線均陡些。
不僅吸附負荷曲線、穿透曲線、吸附傳質區高度和穿透時間互相密切相關,而且都與吸附平衡性質、吸附速率、流體流速、流體濃度以及床高等因素有關。一般穿透點隨床高的減小,吸附劑顆粒增大,流體流速增大以及流體中吸附質濃度增大而提前出現。所以在一定條件下,吸附劑的床層高度不宜太小。因為床高太小,穿透時間短,吸附操作循環周期短,使吸附劑的吸附容量不能得到充分的利用。
2) 作用:固定床吸附器的操作特性是設計固定床吸附器的基本依據,通常在設計固定床吸附器時,需要用到通過實驗確定的穿透點與穿透曲線,因此實驗條件應盡可能與實際操作情況相同。
3 固定床吸附器的設計計算
⑴ 固定床吸附器設計計算的主要內容
固定床吸附器設計計算的主要內容是根據給定體系,分離要求和操作條件,計算穿透時間為某一定值(吸附器循環操作周期)時所需床層高度,或一定床高所需的穿透時間。
對優惠型等溫線系統,在吸附過程中吸附傳質區的濃度分布(吸附負荷曲線)很快達到一定的形狀與高度,隨著吸附過程不斷進行,吸附傳質區不斷向前平移,但吸附負荷曲線的形狀幾乎不再發生變化。因此應用不同床高的固定床吸附器將得到相同形狀的穿透曲線。當操作到達穿透點時,在從床人口到吸附傳質區的起始點 處的一段床層中吸附劑全部飽和在吸附傳質區(從 到 )中吸附劑上的吸附質含量從幾乎飽和到幾乎不含吸附質,其中吸附質的總吸附量可等於床層高為 的床層的飽和吸附量。所以整個床層高 中相當於床高為 的床層飽和,而有 的床高還沒有吸附,這段高度稱為未用床層高 。對於一定吸附符合曲線, 為一定值。根據小型實驗結果進行放大設計的原則是未用床高 不因總床高不同而不同,所以,只要求出未用床高 ,即可進行固定床吸附器的設計,即 。
⑵ 確定未用床高 有兩種方法:
① 根據完整的穿透曲線求 。當達到穿透點時,相當於吸附傳質區前沿到達床的出口。 時相當於吸附傳質區移出床層,即床層中的吸附劑已全部飽和。圖中陰影面積E對應於到達穿透點時床層中吸附質的總吸附量;陰影面積F對應於穿透點時床層尚能吸附的吸附量,因此到達穿透點時的未用床高為:
(9—16)
② 根據穿透點與吸附劑的飽和吸附量求 。因為到達穿透點時被吸附的吸附質總量為:
(9—17)
式中 ——流體流量, 惰性流體/s;
——穿透時間,s;
——流體中吸附質初始組成, 吸附質/ 惰性流體;
——與初始吸附劑呈平衡的流體相中的平衡組成, 吸附質/ 惰性流體。
吸附W 的吸附質相當於有 ,高的吸附劑層已飽和,故
(9—18)
式中 ——床層截面積,m2;
——吸附劑床層視密度,kg/m3;
——與流體相初始組成y。呈平衡的吸附劑上吸附質含量,kg吸附質/kg吸附劑;
——吸附劑上初始吸附質含量,kg吸附質/kg吸附劑。
所以床中的未用床高為:
(9—19)
③ 動態平衡吸附量和靜態平衡吸附量:
(ⅰ)、所謂動態平衡吸附量是指在一定壓力、溫度條件下,流體通過固定床吸附劑,經過較長時間接觸達到穩定的吸附量。它不僅與體系性質、溫度和壓力有關,還與流動狀態和吸附劑顆粒等影響吸附過程的動態因素有關。其值通常小於靜態平衡吸附量。如:式(9—19)中的平衡吸附量是指動態平衡吸附量。
(ⅱ)、所謂靜態平衡吸附量是指一定溫度和壓力條件下,流體兩相經過長時間充分接觸,吸附質在兩相中達到平衡時的吸附量。
9.4.2 移動床吸附器與移動床吸附過程計算:
1 移動床吸附器:
流體或固體可以連續而均勻地在移動床吸附器中移動,穩定地輸入和輸出。同時使流體與固體兩相接觸良好,不致發生局部不均勻的現象。
移動床吸附器又稱「超吸附器」,特別適用於輕烴類氣體混合物的提純。圖9—12所示,是從甲烷氫混合氣體中提取乙烯的移動床吸附器。從吸附器底部出來的吸附劑由氣力輸送的升降管(9)送往吸附器頂部的料斗(3)中加入器內。吸附劑以一定的速度向下移動,在向下移動過程中,依次經歷冷卻,吸附、精餾和脫附各過程。由吸附器底部排出的吸附劑已經過再生,並供循環使用。待處理的原料氣經分配板(4)分配後導人吸附器中,與吸附劑進行逆流接觸,在吸附段(5)中活性炭將乙烯和其它重組分吸附,未被吸附的甲烷和氫成為輕餾分從塔頂放出。已吸附乙烯等組分的活性炭繼續向下移動,經分配器進入精餾段(b),在此段內較難吸附的組分(乙烯等)被較易吸附的組分(重烴)從活性炭中置換出來。各烴類組分經反復吸附和脫附,重組分沿吸附器高從上至下濃度不斷增大,與精餾塔中的精餾段類似。經過精製的餾分分別以側線中間餾分(主要是乙烯,含少量丙烷)和塔底重餾分(主要是丙烷和脫附引入的直接蒸汽)的形式被采出。最後吸附了重烴組分的活性炭進人解吸段,解吸出來的重組分以迴流形式流人精餾段。
移動床吸附過程可實現逆流連續操作,吸附劑用量少,但吸附劑磨損嚴重。可見能否降低吸附劑的磨損消耗,減少吸附裝置的運轉費用,是移動床吸附器能否大規模用於工業生產的關鍵。由於高級烯烴的聚合使活性炭的性能惡化,則需將其送往活化器中用高溫蒸汽(400~500℃)進行處理,以使其活性恢復後再繼續使用。
2 移動床吸附過程計算
移動床吸附器中,流體與固體均以恆定的速度連續通過吸附器,在吸附器內任一截面上的組成均不隨時間而變化。因此可認為移動床中吸附過程是穩定吸附過程。對單組分吸附過程而言,其計算過程與二元氣體混合物吸收過程類似,應用的基本關系式也是物料衡算(操作線方程)、相平衡關系和傳質速率方程。為簡化討論,現以單組分等溫吸附過程為例,論其計算原理。
連續逆流吸附裝置如圖9—13所示,對裝置上部作吸附質的物料衡算,可得出連續、逆流操作吸附過程的操作線方程
(9—20)
式中 ——不包括吸附質的氣相質量流速, ;
——不包括吸附質的吸附劑質量流速, ;
——吸附質與溶劑的質量比;
——吸附質與吸附劑的質量比。
顯然,吸附操作線方程為一直線方程,如圖9—14所示。
見圖9—13,取吸附裝置的微元段d 作物料衡算,
得:
(9—21)
根據總傳質速率方程式(9—12),d 段內傳質速率
可表示為:
(9—22)
式中 ——以 表示推動力的總傳質系數, ;
——單位體積床層內吸附劑的外表面, 床層;
——與吸附劑組成X呈平衡的氣相組成, 吸附質/ 惰性氣。
若 可取常數,則式(9—22)積分可得吸附劑層的高度為:
(9—23)
式中 由下式確定:
(9—24)
其中 與 為氣相側與固相側的傳質分系數,陰為平衡線的斜率。因為在吸附劑通過吸附器的過程中,吸附質逐步滲入吸附劑內部,應用以平均濃度差推動力為基礎的固相側傳質分系數 不是常數,所以式(9—23)和(9—24)在使用時只有當氣相阻力控制時才可靠。然而,對實際吸附過程來說,常常是固體顆粒內的擴散阻力佔主導地位,有關這方面的內容可參閱Perry手冊。
⑸ 固定床製取半水煤氣,原理、工藝、
工廠生產方法有:
1、電解水制氫.
水電解制氫是目前應用較廣且比較成熟的方法之一。水為原料制氫過程是氫與氧燃燒生成水的逆過程,因此只要提供一定形式一定能量,則可使水分解。提供電能使水分解製得氫氣的效率一般在75-85%,其工藝過程簡單,無污染,但消耗電量大,因此其應用受到一定的限制。利用電網峰谷差電解水制氫,作為一種貯能手段也具有特點。我國水力資源豐富,利用水電發電,電解水制氫有其發展前景。太陽能取之不盡,其中利用光電制氫的方法即稱為太陽能氫能系統,國外已進行實驗性研究。隨著太陽電池轉換能量效率的提高,成本的降低及使用壽命的延長,其用於制氫的前景不可估量。同時,太陽能、風能及海洋能等也可通過電製得氫氣並用氫作為中間載能體來調節,貯存轉化能量,使得對用戶的能量供應更為靈活方便。供電系統在低谷時富餘電能也可用於電解水制氫,達到儲能的目的。我國各種規模的水電解制氫裝置數以百計,但均為小型電解制氫設備,其目的均為制提氫氣作料而非作為能源。隨著氫能應用的逐步擴大,水電解制氫方法必將得到發展。
2、礦物燃料制氫
以煤、石油及天然氣為原料製取氫氣是當今製取氫氣是主要的方法。該方法在我國都具有成熟的工藝,並建有工業生產裝置。
(1)煤為原料製取氫氣
在我國能源結構中,在今後相當長一段時間內,煤炭還將是主要能源。如何提高煤的利用效率及減少對環境的污染是需不斷研究的課題,將煤炭轉化為氫是其途徑之一。
以煤為原料製取含氫氣體的方法主要有兩種:一是煤的焦化(或稱高溫干餾),二是煤的氣化。焦化是指煤在隔絕空氣條件下,在90-1000℃製取焦碳副產品為焦爐煤氣。焦爐煤氣組成中含氫氣55-60%(體積)甲烷23-27%、一氧化碳6-8%等。每噸煤可得煤氣300-350m3,可作為城市煤氣,亦是製取氫氣的原料。煤的氣化是指煤在高溫常壓或加壓下,與氣化劑反應轉化成氣體產物。氣化劑為水蒸汽或氧所(空氣),氣體產物中含有氫有等組份,其含量隨不同氣化方法而異。我國有大批中小型合成氫廠,均以煤為原料,氣化後製得含氫煤氣作為合成氨的原料。這是一種具有我國特點的取得氫源方法。採用OGI固定床式氣化爐,可間歇操作生產製得水煤氣。該裝置投資小,操作容易,其氣體產物組成主要是氫及一氧化碳,其中氫氣可達60%以上,經轉化後可製得純氫。採用煤氣化制氫方法,其設備費占投資主要部分。煤地下氣化方法近數十年已為人們所重視。地下氣化技術具有煤 資源利用率高及減少或避免地表環境破壞等優點。中國礦業大學餘力等開發並完善了"長通道、大斷 面、兩階段地下煤氣化"生產水煤氣的新工藝,煤氣中氫氣含量達50%以上,在唐山劉庄已進行工業性試運轉,可日產水煤氣5萬m3,如再經轉化及變壓吸附法提純可製得廉價氫氣,該法在我國具有一定開發前景.我國對煤制氫技術的掌握已有良好的基礎,特別是大批中小型合成氨廠的制氫裝置遍布各地,為今後提供氫源創造了條件。我國自行開發的地下煤氣化制水煤氣獲得廉價氫氣的工藝已取得 階段成果,具有開發前景,值得重視。
(2)以天然氣或輕質油為原料製取氫氣
該法是在催化劑存在下與水蒸汽反應轉化製得氫氣。主要發生下述反應:
CH4+H2O→CO+H2
CO+H2O→COZ+HZ
CnH2h+2+Nh2O→nCO+(Zh+l)HZ
反應在800-820℃下進行。從上述反應可知,也有部分氫氣來自水蒸汽。用該法製得的氣體組成中,氫氣含量可達74%(體積),其生產成本主要取決於原料價格,我國輕質油價格高,制氣成本貴,採用受到限制。大多數大型合成氨合成甲醇工廠均採用天然氣為原料,催化水蒸汽轉化制氫的工藝。我國在該領域進行了大量有成效的研究工作,並建有大批工業生產裝置。我國曾開發採用間歇式天然氣蒸汽轉化制氫工藝,製取小型合成氨廠的原料,這種方法不必用采高溫合金轉化爐,裝置投資成本低。以石油及天然氣為原料制氫的工藝已十分成熟,但因受原料的限制目前主要用於製取化工原料。
(3)以重油為原料部分氧化法製取氫氣
重油原料包括有常壓、減壓渣油及石油深度加工後的燃料油,重油與水蒸汽及氧氣反應製得含氫
氣體產物。部分重油燃燒提供轉化吸熱反應所需熱量及一定的反應溫度。該法生產的氫氣產物成本
中,原料費約佔三分之一,而重油價格較低,故為人們重視。我國建有大型重油部分氧化法制氫裝置,用於製取合成氫的原料。
⑹ lkd是什麼
lkd是指LKD-3型小型固定床實驗裝置。
LKD-3型小型固定床實驗裝置是一種用於化學領域的科學儀器,於2015年3月20日啟用。能源化工與綠色催化:煤化工、C1化工新催化材料和催化劑評價篩選。
技術指標:
1、催化劑堆密度:0.4~1.0 g/mL。
2、催化劑粒徑分布:0.5~2.5 mm。
3、反應溫度:200~1000 oC。
4、進料空速: 5000~100000 h-1。
5、反應壓力:0.1~5.0 MPa。
6、催化劑裝量:5~15 mL。
7、催化劑床層高徑比:0.8~2.0 (內徑20~25 mm)。
⑺ 關於活性炭的製作工藝,詳細一點,謝啦
由於我國工業生產力度持續加大,產生的廢氣污染問題也更加嚴重。工業有機廢氣的排放除了會對生態環境造成破壞,還會嚴重影響人們的身體健康。比如,含有苯類的有機廢氣會對人的中樞神經造成損害,從而影響神經系統功能的正常運行。而含有戊醇的有機廢氣會引起人的頭痛腹瀉等症狀。所以,對於有機廢氣進行治理刻不容緩。活性炭吸附技術由於造價成本較低和可行性強等優點,在廢氣治理中得到了有效的應用。
1、常見的有機廢氣處理方法概述
1.1冷凝法
該方法主要是按照有機氣體的實際冷凝溫度,通過加壓、降溫等不同的措施來實現廢氣的液化,然後再對液態氣體進行有效的回收。因為液態廢氣能夠被再次利用,所以應用冷凝法除了可以改善環境污染問題,還具有一定的經濟性。但是在應用冷凝法時,對於溫度、濃度等具有一定的要求,為了獲得較佳處理效果,應該保持低溫高濃,否則很難獲得理想的凈化效果。
1.2液體吸收法
該方法主要是通過液態葯劑來實現對有機廢氣的處理,吸收劑的種類較多,包括:水、石油類物質等。液體吸收法可以分為物理和化學兩種方法,通過物理方法進行吸收的應用范圍十分有限,一般僅適用於部分特徵污染物。而運用化學方法進行吸收主要是利用葯劑,使之與吸附氣體產生一系列的化學反應,以此來實現對有機廢氣的處理。但是在利用這兩種方法時均需要及時更換吸收液,如果在檢測後發現吸收液已經處於飽和狀態,則應該立即更換,防止廢氣出現超標排放等問題。
1.3吸附法
除了上述兩種方法外,吸附法也是比較常見的廢處理方法,主要通過吸附劑來完成對有機廢氣的處理。出於對經濟成本的考慮,主要選取價格較低且去除效果較好的吸附劑,如:沸石、活性炭等。活性炭吸附由於適用范圍較廣且效果比較穩定,在業內受到好評。
2、活性炭吸附裝置的工藝流程
2.1吸附
有機廢氣通過過濾器除去固體顆粒,然後進人吸附罐(一般以固定床吸附為主,包括單、雙等不同床制),有機物被活性炭捕集、吸附並濃縮,凈化的空氣從罐體下部經主風機排入大氣。
2.2解吸
在活性炭吸附有機物達到飽和狀態後,就會停止吸人有機廢氣。通過活性炭床向上送人蒸汽進行吹脫,將有機物自活性炭中逐出。
2.3熱風乾燥和冷卻
通過蒸汽解吸後的活性炭中,留有大部分蒸汽凝液,填充了活性炭內孔,降低了碳層活性。因此,通過熱空氣對碳層進行乾燥。然後關閉蒸汽閥門,再通入常溫空氣,活性炭就會恢復如初,可以進行循環使用。
2.4有機溶劑回收
若吹脫的高濃廢氣中的有機物可以進行再次利用,則可通過冷凝方式進行回收處理。利用有機物露點溫度較高的特點,將:蒸汽和有機廢氣的混合物引入冷凝器,使其冷凝,冷凝液經疏水閥進入分離器,利用溶劑比水輕的特點,分離回收。
3、活性炭吸附裝置在不同行業中的應用
活性炭吸附裝置可以應用於諸多行業當中,包括:印刷、塗裝等,除了可以實現有效的凈化,還可以減少經濟成本,易於操作。比如在塗裝噴漆時應用活性炭吸附技術,可以對多種有機廢氣進行有效的處理,對二甲苯等有機廢氣有較好的吸附效果。而且許多吸附裝置應用板材厚實,可以應用較長時間,價格低廉,效果良好。
而對於印刷行業等,應用活性炭吸附裝置同樣可以達到比較理想的凈化效果。同時為確保有機廢氣處理效果,可選用活性炭吸附+催化燃燒的處理裝置。先通過活性炭充分的吸附廢氣,在即將到達飽和狀態時停止吸附,利用熱氣流在活性炭上進行脫附,使得活性炭可以再生;經過脫附的有機物被濃縮,然後再運輸至催化燃燒室,燃燒後的尾氣可達標排放至大氣。
綜上所述,活性炭吸附技術具有很多顯著的優點,如:經濟成本較小、效果良好、易與其他處理工藝相結合等,因此在相關領域得到了大范圍的推廣和應用。但是需要注意的是,廢舊活性炭具有一定的危險性,需要進行專項處理,防止出現意外問題。
⑻ 生物分離工程可分為幾大部分,分別包括哪些單元操作
全書共十章,包括發酵液的預處理、細胞的分離、沉澱、萃取、膜技術、吸附與離子交換、色譜技術、離心、生物產品的濃縮結晶與乾燥等生物產品分離純化過程所涉及的全部技術內容。本書通俗易懂、深入淺出,可讀性較強。
本書可作為高等院校相關專業本科生的教材,也可供從事生物分離工程工作及研究的有關人員參考。
前言
第一章 緒論
第一節 生物分離工程的性質、內容與分類
一、生物分離工程的性質
二、生物分離工程的研究內容
三、生物分離過程的分類
第二節 生物分離工程的一般流程
一、發酵液的預處理
二、產物的提取
三、產物的精製
四、成品的加工處理
五、生物分離純化工藝過程的選擇依據
第三節 生物分離過程的特點
一、生物分離過程的體系特殊
二、生物分離過程的工藝流程特殊
三、生物分離過程的成本特殊
第四節 生物分離工程的發展趨勢
一、生物分離工程的發展趨勢
二、生物分離工程研究應注意的問題
思考題
第二章 發酵液的預處理
第一節 發酵液預處理的方法
一、發酵液的一般特徵
二、發酵液預處理的目的和要求
三、發酵液預處理的方法
第二節 發酵液的過濾,
一、發酵液過濾的目的
二、影響發酵液過濾的因素
三、發酵液過濾的方法
四、提高過濾性能的方法
五、過濾介質的選擇
六、過濾操作條件優化
七、過濾設備
思考題
第三章 細胞分離技術
第一節 細胞分離
一、過濾
二、離心沉降
第二節 細胞破碎
一、細胞壁的結構
二、細胞破碎動力學
三、細胞破碎的方法
第三節 胞內產物的溶解及復性
一、包含體及其形成
二、包含體的分離和溶解
三、蛋白質復性
思考題
第四章 沉澱技術
第一節 概述
第二節 蛋白質表面性質
一、蛋白質表面的親水性和疏水性
二、蛋白質表面的電荷
三、蛋白質膠體的穩定性
第三節 蛋白質沉澱方法
一、鹽析法
二、有機溶劑沉澱法
三、等電點沉澱法
四、非離子多聚物沉澱法
五、變性沉澱
六、生成鹽類復合物的沉澱
七、親和沉澱
八、SIS聚合物與親和沉澱
第四節 沉澱技術應用
一、蛋白質
二、多糖
三、茶皂甙純化工藝研究
四、杜仲水提液中氯原酸的提取
思考題
第五章 萃取技術
第一節 基本概念
一、萃取的概念、特點及分類
二、分配定律
三、分配系數、相比、分離系數
第二節 液液萃取的基本理論與過程
一、液液萃取的基本原理
二、液液萃取類型及工藝計算
第三節 有機溶劑萃取
一、有機溶劑萃取分配平衡
二、影響有機溶劑萃取的因素
三、有機溶劑萃取的設備及工藝過程
第四節 雙水相萃取
一、雙水相體系的形成
二、相圖
三、雙水相中的分配平衡
四、影響雙水相分配系數的主要因素
五、雙水相萃取的設備及工藝過程
第五節 液膜萃取
一、液膜及其分類
二、液膜萃取機理
三、液膜分離操作
四、乳化液膜分離技術的工藝流程
五、液膜分離過程潛在問題
六、液膜分離技術的應用
第六節 反膠團萃取
一、膠團與反膠團
二、反膠團萃取
三、反膠團制備
四、反膠團萃取的應用
第七節 液固萃取
一、液固萃取過程
二、液固萃取類型
三、浸取的影響因素
四、浸取的其他問題
五、浸取的工業應用
第八節 超臨界流體萃取
一、超臨界流體
二、超臨界流體萃取
三、超臨界萃取的實驗裝置與萃取方式
四、超臨界流體萃取條件的選擇
五、超臨界流體萃取的基本過程
六、超臨界流體萃取的應用實例
第九節 萃取技術應用及研究進展
一、雙水相萃取技術應用及研究進展
二、液膜萃取技術應用及研究進展
三、反膠團萃取技術應用及研究進展
四、超臨界流體萃取技術應用及研究進展
思考題
第六章 膜分離過程
第一節 概述
一、膜分離過程的概念和特徵
二、膜過程分類
三、分離膜
第二節 壓力驅動膜過程
一、反滲透和納濾
二、超濾和微濾
第三節 電推動膜過程——電滲析
一、電滲析的基本原理
二、電滲析傳遞過程及影響因素
三、電滲析膜
四、應用
第四節 膜接觸器——膜萃取
一、膜萃取的基本原理
二、膜萃取的傳質過程
三、膜萃取過程影響因素
四、應用
第五節 其他膜分離過程
一、濃差推動膜過程——滲透蒸發
二、溫差推動膜過程——膜蒸餾
第六節 膜分離過程裝置
一、濾筒式膜組件
二、板框式膜組件
三、螺旋卷式膜組件
四、管式膜組件
五、毛細管式膜組件
六、中空纖維式膜組件
思考題
第七章 吸附與離子交換
第一節 概述
一、吸附過程
二、吸附與離子交換的特點
第二節 吸附分離介質
一、吸附劑
二、離子交換劑
第三節 吸附與離子交換的基本理論
一、吸附平衡理論
二、影響吸附的主要因素
三、離子交換平衡理論
第四節 基本設備與操作
一、固定床吸附操作
二、移動床吸附器
三、膨脹床吸附操作
四、流化床吸附操作
五、吸附器凈化效率的計算與選擇
思考題
第八章 色譜分離技術
第一節 色譜分離技術概述
一、色譜技術的基本概念
二、色譜法的分類
三、色譜系統的操作方法
第二節 吸附色譜法
一、吸附色譜基本原理
二、吸附薄層色譜法
三、吸附柱色譜法
第三節 分配色譜法
一、基本原理
二、分配色譜條件
三、分配色譜基本操作
四、分配色譜法的應用
第四節 離子交換色譜法
一、離子交換色譜技術的基本原理
二、離子交換劑的類型與結構
三、離子交換劑的理化性能
四、離子交換色譜基本操作
五、離子交換色譜的應用
第五節 親和色譜
一、親和色譜概述
二、親和色譜原理
三、親和色譜介質
四、親和色譜介質的制備
五、親和色譜的操作過程
六、影響親和色譜的因素
第六節 色譜分離技術的應用
一、親和色譜的應用
二、離子交換色譜的應用
三、吸附色譜的應用
四、分配色譜的應用
五、多種色譜技術的組合應用
思考題
第九章 離心技術
第一節 離心分離原理
一、離心沉降原理
二、離心過濾原理
第二節 離心分離設備
一、離心分離設備概述
二、離心沉降設備
三、離心過濾設備
四、離心分離設備的放大
第三節 超離心技術
一、超速離心技術原理
二、超速離心技術分類
三、超速離心設備
第四節 離心技術在生物分離中的應用
一、離心技術在生物分離應用中的注意事項
二、離心分離的優缺點
三、離心機的選擇
四、離心在生物分離中的應用
思考題
第十章 濃縮、結晶與乾燥
第一節 蒸發濃縮工藝原理與設備
一、蒸發濃縮工藝
二、蒸發濃縮設備
第二節 結晶工藝原理和設備
一、結晶操作工藝原理
二、結晶設備
第三節 乾燥工藝原理與設備
一、乾燥工藝原理
二、乾燥設備
思考題