Ⅰ mNGS檢測呼吸道病原體
文獻信息:
文獻:Metagenomic Sequencing Detects Respiratory Pathogens in Hematopoietic Cellular Transplant Patients
中文:宏基因組測序檢測造血細胞移植患者的呼吸衡巧道病原體
雜志:American Journal of Respiratory and Critical Care Medicine. IF:13.204
時間:2017年7月
單位:加利福尼亞大學
摘要:
下呼吸道感染是造血細胞移植(HCT)接受者住院和死亡的主要原因。盡管如此,由於傳統診斷法在預防性抗菌劑的設置中產量降低,抗體滴度降低,以及來自罕見機會微生物的感染,病因往往無法確定。mNGS可能提供更強的診斷,通過進行無需培養臨床樣本的微生物組成的綜合檢測。通過捕捉微生物和人類RNA, mNGS還允許同時通過轉錄組分析宿主免疫反應, 可以提供快速(< 48 h)和可行的微生物咐指鍵學的數據精確傳染病診斷。
1 樣本、常規臨檢:
由於HCT受者明顯需要加強LRTI診斷,我們根據密歇根大學HUM00043287協議,先後納入了22名因急性呼吸系統疾病住院的成人HCT受者,他們在2012年1月25日至2013年5月20日期間接受了支氣管鏡檢查和BAL檢查。對所有患者進行標准護理 BAL微生物學檢測 ,包括 細菌、分枝桿菌、真菌和巨細胞病毒的半定量培養;麴黴半乳甘露聚糖檢測;jirovecii肺孢子蟲銀染色;流感A/B、呼吸道合胞病毒和人偏肺病毒;和人皰疹病毒-6聚合酶鏈反應 ,具體方法見在線補充(4)。對血液和鼻咽部樣本的補充診斷由治療醫師自行決定,具體見表1和在線補充(4)。
2 建庫、測序、分析:
用250 μl BAL構建RNA和DNA測序文庫,並根據已建立的方法進行雙端Illumina測序。病原體檢測利用定製的生物信息學管道來區分臨床樣本中逗鄭的病原體和背景微生物污染物(參考2,3)。使用由每百萬讀序列(rpM)排列的核苷酸reads乘以每個屬相對於無模板對照的nt和nr Z-scores之和所組成的排序分數[score = rpMnt×(Znt + Znr)]。
參考2: Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med 2014
參考3: Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens. Genome Med 2016
方法:sequence-based ultra-rapid pathogen identification (SURPI)
3 評估標准
微生物鑒定被歸類為病原體確認,如果:1)臨床試驗和mNGS發現了微生物, 2) 存在致病性在肺部的文獻證據, 和3) 得分至少兩倍比其他相同類型的微生物(病毒、細菌或真菌)中確定病人。如果mNGS單獨識別了微生物,且符合標准2和3,則認為微生物是新的潛在病原體;所有其他微生物都被認為是不太可能或不確定的病原體。結果分別由病毒PCR或細菌16S rRNA基因測序獨立證實,如(參考4)所述。
4 結論:
總而言之,我們利用元基因組測序的持續改進來擴大LRTI診斷急性呼吸系統疾病HCT受者的能力。我們證明,與目前的微生物診斷相比,mNGS具有更大的檢測微生物的能力,並且能夠將病原體檢測與宿主反應和氣道微生物組同步分析相結合。
參考:
臨床上那些潛藏的病原體,可以用宏基因組測序「揪出」嗎?
Ⅱ 病原微生物中細菌常見檢測方法有哪些
病原微生物種類繁多,變異迅速,快速鑒定病原微生物的檢驗技術也在不斷發展前進著。目前,應用比較廣泛的病原微生物檢測方法主要有直接塗片鏡檢、分離培養、生化反應、血清學反應、核酸分子雜交、基因晶片、多聚酶鏈反應等,該文對這些檢測技術進展做一綜述。 對人和動物具有致病性的微生物稱為病原微生物,又稱病原體,有病毒、細菌、立克次體、支原體、衣原體、螺旋體、真菌、放線菌、朊粒等。這些病原微生物可引起感染、過敏、腫瘤、痴獃等疾病,也是危害食品安全的主要因素之一。近年來出現的SARS、高致病性禽流感、西尼羅病毒感染等疾病的傳染性極強,往往造成世界性大流行,因此對病原體的檢測必須做到快速、准確。常規病原學檢測方法操作繁瑣,檢測周期長,而且對操作人員技術水平要求比較高。隨著醫學微生物學研究技術的不斷發展,病原學診斷已不再局限於病原體水平,深入到分子水平、基因水平的檢測手段不斷出現並被應用於臨床和實驗室 J。核酸分子雜交技術、PCR技術、基因晶片技術等檢測方法,自動化程度高,快速省時、無污染、結果精確,可以准確靈敏地鑒定病原微生物。1 傳統的病原微生物的檢測方法傳統的病原微生物學實驗室檢查以染色、培養、生化鑒定等為主,將標本直接塗片染色鏡檢和接種在培養基上進行分離培養是對細菌或真菌感染性疾病進行病原學診斷的常用方法。1.1 直接塗片鏡檢病原微生物體形體積微小,大多無色半透明狀,將其染色後可藉助顯微鏡觀察其大小、形態、排列等。直接塗片染色鏡檢簡便快速,對那些具有特殊形態的病原微生物感染仍然適用,例如淋球菌感染、結核分枝桿菌、螺旋體感染等的早期初步診斷。直接塗片鏡檢不需要特殊的儀器和裝置,在基層實驗室里仍然是十分重要的病原微生物檢測手段。1.2 分離培養與生化反應 分離培養主要用於臨床標本(如血液、痰、糞便等)或培養物中有多種細菌時對某一種細菌的分離。細菌的生長繁殖需要一定時間,檢測周期較長,不能同時處理批量樣本。為解決這一問題,各種自動化培養和鑒定系統不斷產生,傳統鑒定方法也在逐步改進,大大加快了檢驗速度。例如Microscan WalLCAway全自動微生物分析儀,可同時做細菌鑒定和葯敏試驗,檢驗500多個菌種。苛養菌如肺炎鏈球菌、淋病奈瑟菌、流感嗜血桿菌等對營養要求比較高,常規培養陽性率低。雍剛 等將不要同比例的葡萄糖、玉米澱粉、生長因子、酵母粉、氨基酸等特殊增菌劑加入到巧克力培養基中製成了新型淋病奈瑟菌培養基,大大提高了淋病奈瑟菌的分離培養率。蘇盛通等在營養瓊脂中加人了中葯紅棗、赤小豆培養甲型鏈球菌、乙型鏈球菌、肺炎鏈球菌等細菌,生長指數明顯高於血平板。1.3 組織細胞培養 活組織細胞培養適於專營活組織細胞內生存的病原體,包括病毒、立克次體、衣原體等。不同病原體敏感的組織細胞是不一樣的,將活細胞從病原體敏感的動物組織中取出在體外進行原代培養或用病原體敏感細胞系進行傳代培養,再將病原體接種於相應的組織細胞中後,病原體可在其中繁殖增長,引起特異性的細胞病變效應。也可以將病原體直接接種於敏感動物體內,引起相應組織器官出現特異的病理學改變。往往可以根據這些特異的病變對病原體進行鑒定。2 血清學與免疫學檢測血清學檢測是通過已知的抗體或抗原來檢測病原體的抗原或抗體從而對病原體進行快速鑒定的技術,簡化了鑒定步驟,常用的方法包括血清凝集技術、乳膠凝集實驗、熒光抗體檢測技術、協同凝集試驗、酶聯免疫測試技術等。酶聯免疫技術的應用大大提高了血清學檢測的敏感性和特異性,不僅可檢測樣本中病原體抗原,也可檢測機體的抗體成分。幽門螺奸菌在我國人群感染率高達50% ~80% ,應用酶聯免疫吸附法(ELISA)檢測唾液中抗HP抗體來診斷HP感染,其結果滿意。乙型肝炎病毒(HBV)在我國人群中感染率極高,ELISA應用於乙型肝炎病人早期血清學診斷的效果最為明顯。臨床上致病菌往往和非致病菌混合在一起,如何從這些細菌中分離出目標菌是關鍵。免疫磁珠分離技術(IMBS)是近年來發展起來的在微生物檢測領域中一種新技術。其基本原理是將特定病原體的單抗或多抗或二抗偶聯到磁珠微球上,通過抗原抗體反應形成磁珠一目標病原體復合物或磁珠一一抗一目標病原體復合物,在外部磁場磁力的作用下,將目標病原體分離出來。目前已經開發出了針對各種病原體的免疫磁珠,如大腸埃希菌、李斯特菌、白色念珠菌、軍團菌等,廣泛應用到各級科研和實驗室 。經IMBS分離出的白色念珠菌可直接在顯微鏡下檢測,檢測時間縮短至4 h。IM—Bs還可以和其它檢測技術聯合來檢測病原菌,免疫磁珠分離得到的目標菌可繼續用於分離培養使大腸埃希菌0157最低檢測限由200 cfu·g 提高到2 cfu·g~;IMBS結合聚合酶鏈反應(IMBS—PCR)可對培養條件比較特殊的細菌如苛養菌、厭氧菌進行快速檢測,肉類中的產毒素型產氣莢膜梭菌經IMBS.PCR檢測
目前主要普通培養(簡稱標)般報告要用儀器、核酸檢測(PCR)、目前快速檢測(主要包括:免疫磁珠、酶聯免疫試劑盒、金標檢測卡等根據自需求選擇
目前主要有普通培養法(簡稱國標方法)一般出報告的要用,儀器法、核酸檢測法(PCR)、還有目前的快速檢測法(主要包括:免疫磁珠、酶聯免疫試劑盒、金標檢測卡等。這個根據自己的需求來選擇吧。
簡述hiv的微生物學檢測方法有哪些
梅毒是由蒼白螺旋體感染引起的一種性傳播性疾病 。梅毒螺旋體感染人體後出現兩種抗體:一種是特異性抗體(TPHA),為lgM。當有補體存在和厭氧條件下,對活螺旋體的動力有抑製作用,並可將螺旋體殺死或溶解,對機體的再感染有保護作用。另一類是非特異性抗體(快速血漿反應素 RPR)。為lgA與lgM的混合物,可與正常生物組織中的類脂抗原發生非特異性結合,對人體無保護作用
傳統檢測有三種方法
1、直接顯微鏡觀察,正常情況,在一定的培養條件下(相同的培養基、溫度以及培養時間),同種微生物表現出穩定的菌落特徵。可以通過顯微鏡觀察菌落特徵對微生物種類進行判斷。
2、選擇培養基培養微生物或人為提供有利於目的菌株生長的條件,選擇培養基,其作用是允許特定種類的微生物生長,同時抑制或阻止其他微生物生長。選擇培養一般是通過觀察微生物的同化作用型別或某一特徵進行間接判斷,得到的微生物往往並不只有一種,但是能夠大致確定這些微生物存在的共有特徵從而對其分類。
3、鑒別培養基,根據微生物的代謝特點,在培養基中加入某種指示劑或化學葯品。與選擇培養相比,鑒別培養基的鑒別所得結果的范圍比較小,一般可直接測定某微生物的種類。
現代定義
微生物:個體難以用肉眼觀察的一切微小生物之統稱。
微生物包括細菌、病毒、真菌、和少數藻類等。(但有些微生物是肉眼可以看見的,像屬於真菌的蘑菇、靈芝等。)病毒是一類由核酸和蛋白質等少數幾種成分組成的「非細胞生物」,但是它的生存必須依賴於活細胞。
根據存在的不同環境分為空間微生物、海洋微生物等,按照細胞機構分類分為原核微生物和真核微生物。
主要特徵
1、體小面大
2、吸多轉快
3、生長繁殖快
微生物的這一特性使其在工業上有廣泛的應用,如發酵、單細胞蛋白等。微生物是人類不可或缺的好朋友。
這個是我在網上找到的的微生物的檢測試紙片,也不知道方法咋樣,你要也可以去網站上看看的
像大腸桿菌測試紙片 腸出血性大腸桿菌O157:H7是一種新出現的食物傳播性疾病的病因。它除了引起腹瀉、出血性腸炎外,還可發生溶血性尿毒綜合症、血栓性血小板減少性紫癜等嚴重的並發症。自1982年美國首次發現因該致病菌引起的食物中毒以來,腸出血性大腸桿菌O157:H7疫情開始逐漸擴散和蔓延,相繼在英國、加拿大、日本等多個國家引起腹瀉爆發和流行。我國已陸續有十餘個省份在市售食品、進口食品、腹瀉病患者、家畜家禽等分離到大腸桿菌O157:H7。大腸桿菌O157測試片(FilmplateTM E.coli O157BO204)3方元方圓生物的採用進口高選擇性顯色培養基作為主要原料,運用專有技術,做成一次性快速檢驗產品,一步培養15~24h就可確認,大大地簡化了檢測程式,非常適合各級檢驗部門和食品企業使用。本品適用於海產品、水產品、各類熟肉製品和冷葷、蛋及蛋製品等的快速檢測。參照標准:食品衛生微生物學檢驗大腸埃希氏菌O157:H7/NM檢驗(GB/T4789.36)。
; 用浸有滅菌生理鹽水的棉簽在被檢物體表面取25cm2的面積,在其內塗抹10次,然後剪去手接觸部分棉棒,將棉簽放入含10mL滅菌生理鹽水的取樣管內送檢。擦拭時棉簽要隨時轉動,保證擦拭的准確性。對每個擦拭點應詳細記錄所在分場的具 *** 置、擦拭時間及所擦拭環節的消毒時間
先配製固體培養基,再劃線培養1天,之後挑每一種菌落的細菌製片,顯微鏡下觀察細菌的種類
Ⅲ 鑒定未知病原體的技術有哪些
鑒定未知病原體的技術可以用快速測試片技術法,具體介紹如下:
快速測試片是指以紙片、紙膜、膠片等作為培養基載體,將特定的培養基和顯色物質附著在上面,通過微生物在上面的生長、顯色來測定食品中好拆弊友族微生物的方法。
細菌總數檢測紙片的研製始於20世紀80年代,其主要優點是簡便、實用、經濟、操作性強。近年來以濾紙和美國某公司的Petrifilm為載體的測試片已開始被廣泛應用。
每個人一生中可能受到150種以上的病原體感染,在人體免疫功能正常的條件下並不引起疾病,有些甚至對人體有益,如腸道菌群(大腸桿菌等)可以合成多種維生素。御枝
Ⅳ 食源性致病菌的快速檢測方法有哪些
檢測致病菌大概有如下幾種方法。
1 傳統生物學方法,按照標准檢測,最麻煩,最傳統,但是最經典,可作為其他方法之驗證。
2 顯色培養基方法,用國外進口顯色培養基檢測,比較方便,目前最流行,使用簡單,也不貴。
3 膠體金試紙條檢測,購買國外進口試紙條,現場檢測,這種方法10分鍾可以檢測到結果。但是檢測靈敏度偏低。
4 ELISA,酶聯免疫實驗。目前只有國外進口枝態,歐美四家大公司壟斷了全球95%以上的市場,一個96孔試劑盒,售價高達5000-6000元,非常無奈,但是是國外最流行的快速篩選技術,檢測靈敏度、檢測周期都比較理想,不過國內現在有公司專業在做這方面的試劑盒了,估計價格很快會降下來,可能是將來主流的檢測技術了,部分已經寫進國標了。
5 IC-PCR,免疫捕捉PCR,用抗體特異性識別捕捉,之後再PCR擴增。最大的優勢是,病原經過抗體識別、PCR檢測雙重檢測,可一次鑒定到種,檢測靈敏度可以達到十的兩次方,不用核酸提取,所有反應在一個PCR管里進行,減少了病原的損失,缺點是檢測時間大致在4個小時,是一張理想的驗證手段。
6 Direct-PCR,增菌後直接PCR,比較簡單的驗證手段,增菌後直接擴增,受PCR檢測體系的現實,靈敏度偏低,但是取決於樣品中的菌含量。
7 Nested-PCR,兩對引物巢式PCR。兩對引物兩次擴增,最大的優勢是檢測准確性、靈敏度可絕對保障,劣勢是檢測時間較長。
8膜過濾PCR,利用病原富集裝置,富集之後檢測,最笨的一種方法,但是是最實用的,病原經過微孔濾膜過濾後,可高效富集病原 ,之後去檢測,大大提高檢測靈敏度。
9 BIO-PCR,培養增菌後PCR擴增,這個技術只能做研究用了,就是分離培養後,用PCR檢測,乏善可陳。
10 IMS-PCR,免疫磁珠PCR,用免疫磁珠捕捉,之後進行PCR,用磁珠富集樣品中的病原,之後直接PCR擴增,非常實用的方法,主要是可以富集病原。
11 BAX快速檢測系統,按照系統說明書操作。貴族實驗室用的東西,靈敏度瞎搭仔和其成本、假陽性一樣出色。
12 RiboPrinter快速檢測系統磨汪,按照系統說明書操作。同上,大同小異。
Ⅳ 請學生物的同學幫忙介紹一下「PCR」
PCR
一、PCR概述
1、什麼是PCR
聚合酶鏈式反應(Polymerase Chain Reaction,簡稱PCR)又稱無細胞分子克隆或特異性DNA序列體外引物定向酶促擴增技術。 由美國科學家PE(Perkin Elmer珀金-埃爾默)公司遺傳部的Dr. Mullis發明,由於PCR技術在理論和應用上的跨時代意義,因此Mullis獲得了1993年化學諾貝爾獎。
2、PCR技術發展史
PCR原理是由一對引物介導,能在動植物體外對特定基因(DNA)片斷進行快速酶促擴增,經過n個熱循環擴增,擴增產物中所含特定基因數是原始模板數的(1+E)n(0<E<1,擴增效率=倍,使得檢測擴增產物中的特定基因成為可能。
聚合酶鏈式反應自從1993年到現在很快經歷了四代產品:
第一代:手動/機械手式水浴基因擴增
如上圖所示,用三個恆溫水浴箱,分別將三個水浴溫度恆定在三個溫度:PCR的高溫變性溫度(如94℃)低溫復性溫度(如58℃),適溫延伸溫度(如72℃)。再用一個裝有PCR標本試管的提籃,用手工在不同溫度的水浴箱中依次水浴,標本在每個水浴箱中恆溫的時間用秒錶計時。這樣PCR標本就能完成下述形式的熱循環:
94℃ 30S 58℃ 45S 72℃ 60S
40次循環
這種方法的特點是:實驗人員勞動強度大,容易因疲勞引起差錯;而優點是:設備簡單,投資少,與自動化基因擴增儀相比,它無須升降溫過程,實驗時間短,試驗更接近理想PCR反應條件,事實表明實驗效果還是不錯的,但由於標本試管從一個水浴箱往另一個水浴箱移動中要較短暫暴露於空氣中,因此如移動速度不夠快時也會對標本形成溫度干擾,影響結果。本方法的另外一些缺點包括只能局限三個溫階(某些PCR反應需要多於三個溫階)、液體污染以及在低氣壓地區水溫難以燒到94℃變性溫度等。
為改進提高本方法的自動化水平,有人設計了機械手裝置,替代上述手工移動標本過程,形成了機械手水浴式基因擴增儀,該改進解決了實驗人員的高強度勞動問題,但又帶來了一個機械手部件大行程頻繁相對運動而引起的高故障。這種類型的基因擴增儀在九十年代中期我國北京、上海有定型的產品銷售,應用也較廣,曾為我國的分子生物學的發展做出過積極貢獻,而後便逐步被自動化程度更高的擴增儀替代,現在很少有單位使用。
第二代:自動化控制型定性基因擴增儀
與上述水浴式擴增儀相比,也有人稱該種擴增儀為乾式基因擴增儀,它是最具代表性的擴增儀,包括後續介紹的第三代、第四代都是以第二代為基礎集成了定量檢測部分。
第三代:終點定量/半定量
第二代的定性PCR只能判斷陰性陽性,而無法評價特定核酸的濃度及定量分析,定量PCR至少能達到定性PCR無法實現的下列功能:
•潛伏期病毒濃度探測
•感染程度
•致病病原體數量變化測定
•抗病毒葯物療效評估
•恢復期病毒載量檢測
自從1996年美國ABI公司發明第一台熒光定量PCR儀以來,PCR技術和應用從定性向定量快速發展.終點定量PCR的優點是設備投資少,對於國內經濟條件還不能購買昂貴實時熒光定量PCR儀的科研單位和醫療機構,利用現有的第二代常規定性PCR儀,在添加一台專用的單孔PCR終點產物熒光定量檢測儀便可開始工作,起到定量的作用。終點定量PCR技術是從定性向實時定量過渡的一個中間產品,而PCR終點產物熒光定量儀進口產品較少,國產儀器較多,如西安天隆的TL988,上海棱光的DA620型等
第四代:實時定量PCR
實時定量QPCR儀+實時熒光定量試劑+通用電腦+自動分析軟體,構成PCR-DNA/RNA實時熒光定量檢測系統。
見下圖:(略)
2、實時熒光定量PCR的優勢:
設備由熒光定量系統和計算機組成,用來監測循環過程的熒光。與實時設備相連的計算機收集熒光數據。數據通過開發的實時分析軟體以圖表的形式顯示。原始數據被繪製成熒光強度相對於循環數的圖表。原始數據收集後可以開始分析。實時設備的軟體能使收集到的數據進行正常化處理來彌補背景熒光的差異。正常化後可以設定域值水平,這就是分析熒光數據的水平。樣品到達域值水平所經歷的循環數稱為Ct值(限制點的循環數)。域值應設定在使指數期的擴增效率為最大,這樣可以獲得最准確,可重復性的數據。如果同時擴增的還有標有相應濃度的標准品,線性回歸分析將產生一條標准曲線,可以用來計算未知樣品的濃度。
3、實時熒光定量PCR技術原理
所謂real-time Q-PCR技術,是指在PCR反應體系中加入熒光基因,利用熒光信號累積實時監測整個PCR進程,最後通過標准曲線對未知模板進行定量分析的方法。在 real-time 技術的發展過程中,兩個重要的發現起著關鍵的作用:(1)在90年代早期,Taq DNA多聚酶的5′核酸外切酶活性的發現,它能降解特異性熒光記探針,因此使得間接的檢測PCR產物成為可能。(2)此後熒光雙標記探針的運用使在一密閉的反應管中能實時地監測反應全過程。這兩個發現的結合以及相應的儀器和試劑的商品化發展導致real-time Q-PCR方法在研究工作中的運用。
PCR反應過程中產生的DNA拷貝數是呈指數方式增加的,隨著反應循環數的增加,最終PCR反應不再以指數方式生成模板,從而進入平台期。在傳統的PCR 中,常用凝膠電泳分離並用熒光染色來檢測PCR反應的最終擴增產物,因此用此終點法對PCR產物定量存在不可靠之處。在real-time Q-PCR中,對整個PCR反應擴增過程進行了實時的監測和連續地分析擴增相關的熒光信號,隨著反應時間的進行,監測到的熒光信號的變化可以繪製成一條曲 線。在PCR反應早期,產生熒光的水平不能與背景明顯地區別,而後熒光的產生進入指數期、線性期和最終的平台期,因此可以在PCR反應處於指數期的某一點 上來檢測PCR產物的量,並且由此來推斷模板最初的含量。為了便於對所檢測樣本進行比較,在real-time Q-PCR反應的指數期,首先需設定一定熒光信號的域值,一般這個域值(threshold)是以PCR反應的前15個循環的熒光信號作為熒光本底信號 (baseline),熒光域值的預設設置是3~15個循環的熒光信號的標准偏差的10倍。如果檢測到熒光信號超過域值被認為是真正的信號,它可用於定義 樣本的域值循環數(Ct)。Ct值的含義是:每個反應管內的熒光信號達到設定的域值時所經歷的循環數。研究表明,每個模板的Ct值與該模板的起始拷貝數的 對數存在線性關系,起始拷貝數越多,Ct值越小。利用已知起始拷貝數的標准品可作出標准曲線,因此只要獲得未知樣品的Ct值,即可從標准曲線上計算出該樣 品的起始拷貝數。
4、實時熒光定量PCR技術在醫療方面的應用
⑴ 病原體檢測:目前,採用熒光定量PCR檢測技術可以對淋球菌、沙眼衣原體、解脲支原體、人類乳頭瘤病毒、單純皰疹病毒、人類免疫缺陷病毒、肝炎病毒、流感病毒、結核分枝桿菌、EB病毒和巨細胞病毒等病原體進行定量測定。與傳統的檢測方法相比具有靈敏度高、取樣少、快速簡便等優點。
如:結核菌基因診斷的意義主要表現在:
a.區分TB與其它分枝桿菌;
b.檢測TB耐葯基因;
c.提高TB的陽性檢出率。
⑵ 產前診斷:到目前為止,人們對遺傳性物質改變引起的遺傳性疾病還無法治療,只能通過產前監測,減少病嬰出生,以防止各類遺傳性疾病的發生,如為減少X連鎖遺傳病患兒的出生,從孕婦的外周血中分離胎兒DNA,用實時熒光定量PCR檢測其Y性別決定區基因是一種無創傷性的方法,易為孕婦所接受。
⑶ 葯物療效考核:對乙型肝炎病毒 (HBV)、丙型肝炎病毒 (HCV) 定量分析顯示:病毒量與某些葯物的療效關系。HCV高水平表達,干擾素治療作用不敏感,而HCV低滴度,干擾素作用敏感;在拉米夫定治療過程中,HBV-DNA的血清含量曾有下降,隨後若再度上升或超出以前水平,則提示病毒發生變異。如PCR技術在HBV檢測中的應用及意義:
a.了解乙肝病毒在體內存在的數量。
b.是否復制。
c.是否傳染,傳染性有多強。
d.是否有必要服葯。
e.肝功能異常改變是否由病毒引起。
f.判斷病人是適合用哪類抗病毒葯物。
g.判斷葯物治療的療效。
⑷ 腫瘤基因檢測:盡管腫瘤發病的機理尚未清楚,但相關基因發生突變是致癌性轉變的根本原因已被廣泛接受。癌基因的表達增加和突變,在許多腫瘤早期就可以出現。實時熒光定量PCR不但能有效地檢測到基因的突變,而且可以准確檢測癌基因的表達量。目前用此方法進行過端粒酶hTERT基因、慢性粒細胞性白血病WT1基因、腫瘤ER基因、前列腺癌PSM基因、腫瘤相關的病毒基因等多種基因的表達檢測。隨著與腫瘤相關的新基因的不斷發現,熒光定量PCR技術將會在腫瘤的研究中發揮更大的作用。
(5)在優生優育中的應用:
近年來經濟發展迅猛,人民生活水平逐年提高,對自身及家人特別是下一代的身體健康愈來愈重視。另外,由於國內計劃生育工作逐步走向深化,獨生子女比較多,孩子的身體素質更成為長輩們關注的焦點。因此,怎樣提高新生兒質量改善人類遺傳素質,即優生優育已顯得非常重要。①避免有嚴重遺傳性疾病和先天性疾病的個體出生。②增進體力、智力優秀個體的繁衍。其中避免有嚴重遺傳性疾病及先天性疾病個體出生是優生優育最基本的內容。從臨床優生學角度分析具體工作包括在母親妊娠期間對母親及胎兒進行遺傳學檢查盡量排除常見的遺傳性疾病個體的出生,另外在妊娠期檢查母親是否患有某些易引起胎兒畸形的傳染性疾病如弓型蟲、風疹病毒、衣原體等感染。以往對遺傳性疾病的檢測主要使用染色體分析法,而臨床絕大部分遺傳性疾病是基因病而不是染色體病,染色體發析法不能檢出的。若使用PCR基因擴增法聯合單鏈構型多態性分析(sscp)、限制性片段長度多態性分析(RFCP)等位基因特異性寡核某酸(Aso)點雜交或差異PCR可以很方便地檢出單個基因的突變而且其准確性可達95%以上,因此使這一問題得到了較好的解決。常見的易致胎兒畸形的感染性疾病原體主要有單皰病毒(HSVⅡ)、風疹病毒(RV)、人巨細胞病毒(HCMV)、弓形體(TOX)及沙眼衣原體(CT)。以往這些病原體感染診斷比較困難,主要靠培養法進行確診,而培養法費時,代價昂貴,而且受到采樣、樣本保存及用葯等因素的影響,基本不能在臨床中推廣。PCR基因擴增法因其高敏感性、高特異性非常適合這些疾病診斷及療效跟蹤,是最值得推薦的檢驗方法。
1、PCR基因擴增法在遺傳性疾病產前診斷中的應用,遺傳病是由於遺傳物變化而引起的機體某一功能或缺陷或異常所致的疾病,其根本變化在於遺傳物質。其類型包括單基因遺傳病,染色體遺傳病及多基因遺傳病。遺傳病診斷除詢問病史,一般物理診斷,普通實驗室檢查及了解症狀、體征外有特殊性。過去常應用系譜分析,染色體及性染色色質檢驗作為遺傳病診斷的主要依據,再輔以相關的酶學分析從而作出診斷。隨著分子生物不的迅速發展及其在遺傳性病診斷中的廣泛應用,基因診斷技術誕生,基因診斷技術為遺傳病的臨床診斷起了很大的促進作用。聚合酶鏈反應(PCR)技術是基因診斷主要技術之一。這種快速、靈敏的基因體外擴增技術與多種分子生物學手段相配合可以檢出大部分已知的基因突變、基因缺失、染色體錯位等,PCR技術日益成為遺傳病診斷的最有效、最可靠的方法之一。以下舉幾個在國內有普遍意義的例子。
(一)、PCR檢測地中海貧血;地中海貧血(Thalassemia)是一種遺傳性慢性溶血性貧血病,是世界上最常見且發病北最高的一種單基因遺傳病。在兩廣、貴州、四川等地發病率較高,在廣西等地高達15%。地中海貧血是由於基因突變造成珠蛋白的不平衡,使結構正常的肽鏈合成量減少甚至沒有合成表現為溶血性貧血。接受累基因種類分為α、β、γ等,其中以 α、β地貧為最常見,危害了最大。珠蛋白基因簇位於人6號染色短臂上,有兩個重復基因基因位於α1、α2、兩個α基因及其旁側序列有很大的同源性,易出現染色體不等交換,導致α基因缺失-α地貧。α地貧基因部分缺失有α1基因部分缺失、α2基因缺失、α1及α2基因同時缺失及非缺失型地貧。可以應用PCR技術擴增α1、α2基因從而檢測這些基因是否缺失、突變等,從而對α型地中海貧血作出診斷。β地中海貧血基因缺陷主要表現為基因序列中單一核苷酸的突變,或少數鹼基的缺失、插入,使正常β珠蛋白肽鏈合成減注或缺失。應用位點特異性寡核苷探針(Aso)進行PCR產物斑點雜交即可對其作出診斷。
(二)、苯丙酮尿症,苯西酮尿證(PKU)是一種常染色體隱性遺傳病,患者因苯丙酸羥化酶轉化為酷氨酸,使苯氨酸及其代謝物在體內大量蓄積,出現腦組損傷及不可逆性智力發育障礙。PKU患者出生時正常,新生兒一經確診為PKU停止母乳喂養採用低苯丙氨酸欽食療法8—10年,可使患者智力水平發展維持正常。由於低苯丙氨酸欽食非常昂貴,一般家庭難以承受,因此,施行產前診斷,防止患兒出生是最好的選擇。PAH只在肝細胞中表達,不能用血細胞,成纖維細胞、羊水、絨毛細胞進行酶活性分析,只能進行基因診斷。PKU的基因變化並非全部PAH基因的缺失,而是以點突變為主要表現形式,而且其突變位點很多。必須使用PCR擴增結合,ASO,SSCP或使用擴增片段長度多態性分析(AmpFLA)進行檢測,這些技術都較復雜,檢驗人員須經專業培訓。
(三)、血友病,血友病是一組最為常見的遺傳性凝血障礙,根據因子缺陷的不同分為甲、乙兩型,(Ⅷ、Ⅸ因子缺陷),也有復合型血友病,但不常見。甲型血友病發病率為1/10000,Ⅷ因子基因位於G6PD基因附近,全長186Kb,大范圍的基因重排(缺失、插入、重復)導致甲型血友病的病例很少,僅為Ⅷ因子缺陷的5%,大部分病人表現為單個或少數鹼基的突變。由於Ⅷ因子基因長度為186Kb,突變位點多,而且新生突變頻率高,從臨床角度講不能對每一個突變都檢測,可對最為常見的幾種突變類型進行檢測,主要的檢測手段是PCR結合RELP分析。乙型血友病發病率占血友病的20%,其基因變化及檢測方法與甲型血友病類似。
(四)、性別發育異常,區別雄性及雌性的物質基礎是性染色體,哺乳動物胚胎發育中,雌性表型不需要任何調節,而雄性表型則由多因素決定,位於Y染色體上的指導雄性性別分ss化的基因命名為睾丸決定因子(TDF)。現代研究表明,SRY(Sex-determining region of Y chromosome)基因是TDF基因,位於Y染以體短臂末端。SRY區缺失易導致46XY核型個體發育成女性。進行基因檢測可以檢出SRY基因組的易位及缺失,從而診斷性別發育異常,這一探索性別異常的研究非常熱門。另外還有一種46XY核型異常的病人即睾丸女性化,這是用於雄激素受體(androgen receptor,AR)基因缺欠,使雄激素的靶基因對雄激素不應答就答或不全而引起的,根據病情的不同有不同的表型,AR缺陷有很高的新生突變頻率,表現為無家族史的散發病。AR基因長90Kb,位於X染色體上,AR基因異常大部分為個別基因鹼基的突變,可以通過PCR結合ASO或SSCP檢出。
(五)、脆—X綜合征,脆—X綜合片(fragile-X Syndrome,Frax)是發病率最高的一種X-連鎖的智力低下綜合征(X-linked mental retardation XLMR)。因這種綜合征與X染色體上的脆位點連鎖而得名。大多數FRAX男性智商(IQ)低於50,並有隨著年齡增長而下降的趨勢。用人工酵母染色體(artificial yeast chromosome,YAC)克隆技術分離獲得覆蓋X-脆位點區域的YAC克隆,在這一克隆中獲得一個能在人腦中表達的基因命名為FMR-1(fragile X mentai retardation-1),FMR-1的5『端有一個CGG(精)三核苷酸串(CGG)n,正常人群中(CGG)n中存在多態性,重復序列為6-46個,當重復超過52個時,此區域的分裂呈不穩定,導致重復序列大幅度增加,無臨床表現的攜帶者插入片段長度小於500bg,有臨床表現者,長度都大於600BP而且伴有甲基化。人們將500bp作為前突變與全突變的分界線。對Frax的診斷以前用細胞遺傳學的方法檢測脆位點,實驗條件嚴格,成功率不高。現在採用分子遺傳學方法即可診出前突變及全突變。用PCR擴增CGG重復序列,檢測擴增產物的長度。突變基因的擴增片段增大,體細胞異質性時出現多條長度不等的擴增帶甚至拖尾成一片,或者因為擴充的全突變插入片段過長超出PCR擴增能力而結果無擴增現象。
2、PCR基因擴增法在「Torsch」診斷中的應用,在妊娠早期(1-3個月),有些病原微生物的感染易導致胎兒畸形,這些病原體中最常見的有弓體(TOX)、風疹病毒(RV)、單純皰疹病毒(HSV)、沙眼衣原體(CT)、及巨細胞(HCMV),對這幾種病原體的檢測根據其英文詞首簡稱為Torsch試驗。
(一)、弓形體的PCR檢測,弓形體有廣泛的自然疫原性,人體多為隱性感染,抵抗力低時可以有臨床表現。弓形體的診斷較困難,血清學方法敏感性較高但有交叉性出現假陽性而且無法確定近期感染、遠期感染或一過性感染。確診的方法是活組織檢查或動物接各,這些方法陽性率太低不能推廣。PCR檢測可以檢出樣本中1-2個病原體而且准確性高,是目前對弓形體檢測最優秀的方法。作為優生優育檢查應於妊娠前或妊娠早期取全血樣本,可以用EDTA或肝素抗凝,以EDTA抗凝效果最好,檢測外周血白細胞中是否有TOX存在。對於不孕,多次自然流產或養小動物的產期婦女,作弓形蟲檢測有更重要的臨床意義。
(二)、風疹病毒感染:風疹病毒(RV)是一種單股正極性RNA病毒,人是風診病毒的唯一宿主。RV感染可以引起胎兒的畸形,影響胎兒免疫系統的發育,因此RV檢測在優生優育工作中顯得非常重要。RV檢測可以用直接培養法及IgM抗體測試法。培養法費時很長而且常受到其它病毒的干擾,IgM測定法結果了不太准確,PCR法敏感性及特異性都很高而且簡便快速,是RV感染最優秀的測試方法之一。風疹病毒侵入體內後在上呼吸道增殖而出現症狀,面部出現丘疹,迅速遍及全身。樣本採用妊娠母親的咽部拭子、血清、產婦的絨毛或妊娠如羊水等。RV病毒是RNA病毒,PCR擴增較復雜,應注意樣本的採集時機,操作的准確性。
(三)、單純皰診病毒,單純皰疹病毒(herpes simplex virus,HSV)是一種DNA病毒,可引起多器官的炎症,可通過性接觸傳播。HSVⅡ感染復發率高,80%的感染者於12個月內復發。HSV感染後經機體免疫系統清除,少數病人終生攜帶,體弱時復發。PCR法檢測HSV敏感性高而且可以直接對HSVⅠ/Ⅱ型進行分型鑒定。
(四)、沙眼衣原體,沙眼衣原體(CT)不僅能引起沙眼而且能引起生死器感染,是一種性傳播性疾病。與淋病(NG),梅毒等經典性傳播性疾病不同,CT易經其它接觸途徑傳播,少數地區對妊娠期婦女普查結果表明此人群中發病率高達20%-30%。在歐美等國家CT的感染已超過淋病而居性傳播性疾病之首。衣原體感染常呈無症性或非特異性症狀的隱性感染,不容易診斷。以往用培養法進行確診,費時且敏感性、准確性都不足。PCR用於CT檢測時應注意不同檢測目的的取材不同,對於性傳播性疾病診斷應取生殖道分泌物(查脫落細胞),而對於早期妊娠病人應查其全血樣本,在妊娠後期或臨產時再查陰道分泌物以便指導生育時產道清理。
(五)、人巨細胞(HCMV),HCMV感染十分普遍,除少數原發性感染發生原發性單核細胞增多症外,極大多數為隱性感染。HCMV可以長期潛伏在體內,當機體免疫功能低下時,病毒會激活而造成嚴重疾病在妊娠期如果孕婦感染HCMV可以引起早產、畸形、死胎及新生兒巨細胞包涵體病等。HCMV屬皰疹病毒科,可以從唾液、尿、宮頸分泌物及乳汁排出。HCMV「金標准」的診斷試驗是用單層成纖維細胞作病毒培養,其它的實驗檢查有血清學的檢測及包涵體檢測。PCR是HCMV檢測的一種新方法,用於檢測的樣本有血,生殖道分泌物拭子等,用於優生優育檢測時應取血樣本。對於早期妊娠病人若有HCMV感染應再檢測羊水,或其它妊娠物,對病人認真及進跟蹤檢查,綜合判斷並採取相應的醫療措施。
PCR應用於優生優育有很大的優越性,使這一技術的推廣應用剛剛起步,應注意操作的准確性,盡量避免誤診。對感染性疾病首先應取孕婦血樣檢測,有可疑時或血中檢出病原體核酸時應盡早作羊水等妊娠物檢查。不管是否懷疑胎兒有嚴重遺傳病傾和中或有感染引起的畸形風險,對胎兒的去留應尊重胎兒父母親的意見。
5、實時熒光定量PCR技術在研究方面的部分應用
一、 新葯開發研究,人用葯物及其他葯物
針對一些感染性疾病的葯物,如各種病毒病、細菌病等,在新葯的開發過程中,快速了解葯物對疾病進程的影響可以為新葯開發節約大量的人力、時間和資金,與以前所用的Elisa等方法相比,實時熒光定量PCR技術可以快速、准確、定量、靈敏地測定血液或組織中病原體的含量,因此有利用分析葯物的作用效果,為比較不同的配方的療效、用葯量、用葯時間等等提供快速、定量的評價。
此方法除了用於人用葯物以外,還可以用於畜用葯物,甚至其他經濟動物及植物的葯物研究等,因此其在葯物研究方面的應用范圍是很廣的。
二、 超早期感染用葯物及療法的研究與開發
實時熒光定量PCR方法測定是血液中病毒核酸的含量,因此不必等到病人體內產生抗體,同時,由於其靈敏度與Elisa相比不可同日而語,在病毒感染的早期,即血液中病毒含量很低時就可以測定。因此就出現了一個新的領域,即在病毒或細菌含量很低時如何用葯,用什麼葯以及用葯量等進行研究,為將疾病消滅在超早期作出貢獻。
三、 葯物療效研究,人用葯物及其他葯物
對於一些已經上市的新葯或是應用了很長時間的老葯,其用葯的效果以及用葯量及用葯時間都可以進行進一步的研究,為更加合理化的應用這些葯物為人類造福進行進一步的研究。以前所用的方法由於不能准確定量,靈敏度也不夠,因此有很多需要研究的內容沒有完成。這一方面需要研究內容很多,意義也很大。
四、 新的愈後指標的研究
對於感染性疾病,在葯物作用至一定程度後,就認為可以停葯了,但是應該在什麼停葯,現在大都沒有一個明確的指標,現在所用的指標由於受到檢測方法的靈敏度及准確性限制,這一指標未必合理,因此有必要對治癒的指標以及指標與復發率以及疾病轉化為其他疾病之間的關系等進行進一步的研究,從而為葯物或療法徹底治癒疾病打下堅實的理論基礎。
五、 新診斷及檢驗試劑的開發
現有的很多診斷及檢驗方法都不能同時滿足快速、靈敏、定量的要求如現有培養法、Elisa法等等,而熒光定量PCR方法以則可以做到這一點,從而可為臨床疾病、商檢、糧油檢驗、食品檢驗、血液檢驗等等開發新的試劑,從而提高檢驗的靈敏度、速度及准確性等;這類試劑的種類是非常多的,所開發的試劑的社會效益及經濟效益都是很巨大的。
六、 血液檢驗漏檢率
由於實時熒光定量PCR方法比Elisa靈敏很多,因此,血站或血液研究所一般用來研究Elisa方法的漏檢率,即分析Elisa方法測定為陰性的血樣,再用實時熒光定量PCR方法來復檢。復檢時,一般24個Elisa陰性的血樣混合成一個樣本進行檢測。上海用此方法在用於血液製品的血液中發現一例HIV,後經測定供血者,證實病人的確是HIV陽性。北京市紅十字血液中心正在測定北京血站中5萬份Elisa陰性血樣的漏檢率。由於不同地區所用的Elisa試劑、方法、批號等都不相同,因此不同地區都有必要進行這一工作。
由於熒光定量PCR方法的快速、靈敏、定量的特點,其在研究及開發方面的應用是不勝枚舉的,如研究個人基因型與葯物療效之間的關系等;研究人員也可以根據自己研究項目開發其新的用途。
二、TL988實時熒光定量PCR檢測系統產品介紹
1、如何選擇一款適合自己的PCR儀
回顧分子生物學的發展歷程,PCR技術的發明和普及無疑是最重要的篇章之一。而PCR技術在近20年的不斷發展創新中,最受矚目當屬熒光實時定量PCR技術(real-time quantitative PCR, or qPCR)。定量PCR技術真正實現了PCR從定性到定量的飛躍,通過對PCR過程的實時監控,專一、靈敏快速、可重復地精確定量起始模版濃度,已經在科研和臨床診斷領域得到了越來越廣泛的應用。我公司從熒光定量PCR的原理入手,詳細介紹熒光定量PCR儀的類型和技術,為定量PCR儀的選擇提供詳細參考。
定量PCR儀主要由兩部分組成,一個是PCR系統,一個是熒光檢測系統。從前面的原理介紹不難看出選擇定量PCR儀的關鍵--由於定量PCR必需藉助樣本和標准品之間的對比來實現定量的,對於定量PCR系統來說,重要的參數除了傳統PCR的溫控精確性、升降溫速度等等,更重要的還在於樣品孔之間的均一性,以避免微小的差別被指數級放大。至於熒光檢測系統,多色多通道檢測是當今的主流趨勢--儀器的激發通道越多,儀器適用的熒光素種類越多,儀器適用范圍就越寬;多通道指可同時檢測一個樣品中的多種熒光,儀器就可以同時檢測單管內多模版或者內標+樣品,通道越多,儀器適用范圍越寬、性能就更強大。熒光檢測系統主要包括激發光源和檢測器。激發光源有鹵鎢燈光源、氬離子激光器、發光二極體LED光源,前者可配多色濾光鏡實現不同激發波長,而單色發光二極體LED價格低、能耗少、壽命長,不過因為是單色,需要不同的LED才能更好地實現不同激發波長。監測系統有超低溫CCD成像系統和PMT光電倍增管,前者可以一次對多點成像,後者靈敏度高但一次只能掃描一個樣品,需要通過逐個掃描實現多樣品檢測,對於大量樣品來說需要較長的時間。定量PCR儀需要考慮的另外一個因素是軟體設計,這一點目前較新型號的儀器都有不錯的配套軟體可以滿足常規使用。--隨著定量PCR技術在臨床診斷、疾病
Ⅵ 人類歷史上對致病微生物的無知而遭受傳染病大流行的事例有哪些
黑死病
14世紀,鼠疫大流行,當時被稱為「黑死病」,流行於整個亞洲、歐洲和非洲北部,中國也有流行。在歐洲,黑死病猖獗了3個世紀,奪去了2500萬餘人的生命。引起瘟疫的病菌是由藏在黑鼠皮毛內的蚤攜帶來的。在14世紀,黑鼠的數量很多。一旦該病發生,便會迅速擴散。因黑死病死去的人很多,以至勞動力食缺。整個村莊被廢棄,農田荒鞠,糧食生產下降。緊隨著黑死病而來的便是歐洲許多地區發生了飢荒。勞動力匱乏經濟遭受重創。
誰知道歐洲黑死病的詳細歷史?
歐洲黑死病的病因、耐攜宏具體事例以及治療方法
黑死病是怎樣一種病啊?
肆虐歐洲的黑死病怎麼消失的?
鼠疫、黑死病能治療嗎?
是誰發現了能治療黑死病的人?
西班牙流感
西班牙大流感所造成的災難是流感流行史上最嚴重的一次,也是歷史上死亡人數最多的一次瘟疫,估計全世界患病人數在7億以上,發病率約20%~40%,死亡人數達4000-5000多萬。美國科學家的研究顯示,1918-1919年導致5000萬人死亡的西班牙流感病毒很可能源自鳥類。實際上是禽流感的變異。和黑死病類似,流感期間,交通、飯店、零售、隱櫻旅遊和娛樂業不景氣,醫院和健康服務成了最大的贏家。值得一提的是,通訊業得到了良好的發展。
1918年西班牙大流感對日常生活的影響
歷史上的高死亡率的疾病西班牙大流感
人類都經歷過哪些災害性疾病的洗禮?
歐洲曾經有次瘟疫死了一半的人,能介紹下詳細情況嗎?
為何要設立洗手日
西班牙大流感——有因為感冒而死的人嗎?
瘋牛病
主發國在英國。據估計死亡人數以每年30%左右的速度逐年上升,迄今為止死於此疫的人數為69人。波及至法國、愛爾蘭、加拿大、丹麥、葡萄牙、瑞士、阿曼、德國,波蘭、捷克、匈牙利、斯洛伐克、阿爾巴尼亞、愛沙尼亞、立陶宛和塞普勒斯等。據美國有線新聞網估計,瘋牛病事件將給美國造成了至少數十億美元的經濟損失。
瘋牛病如何防治?
如果人得了瘋牛病會傳染給和他接觸的人嗎
感染瘋牛病病毒的牛肉不能食用是因為什麼原因
為什麼人吃了瘋牛病的肉也會得瘋牛病呢?
有關瘋牛病對英國造成的災害
瘋牛病的「元兇」體內無哪種物質僅有哪種物質?
口蹄疫
2001年,英國暴發口蹄疫,集中宰殺、焚燒了近700萬頭感染口蹄疫的牲畜,許多農民損失慘重。世界上大多數的國家如美國、加拿大、日本、南韓、澳洲、紐西蘭及一些歐洲國家等;東南亞各國、中國香港、中國大陸等皆屬」口蹄疫疫區」。口蹄疫使英國當年的經濟增長速度由原先預測的2.3%降至2%,造成的經濟損失達到70億英鎊。支柱產業之一旅遊業受到重創。據報道,與2000年同期相比,僅英國鄉村地區的旅遊收入就減少了75%。
手足口病就是口蹄疫么?
牲畜口蹄疫昌冊如合防治?
豬口蹄疫有什麼葯吃
有沒有氣溫上了30度口蹄疫病毒就會死的說法?
巴氏消毒能不能殺死口蹄疫病毒
豬痘病、水皰病與口蹄疫怎麼治療
SARS
2003年,我國內地24個省區市先後發生非典型肺炎疫情,共波及266個縣和市(區)。截止8月16日10時,我國內地累計報告非典型肺炎臨床診斷病例5327例,治癒出院4959例,死亡349例。2003年旅遊收入減少約1200億元,影響全年GDP少增長1.1個百分點。餐飲業零售額減少約315億元,影響GDP少增長0.3個百分點。對其它消費品的整體影響較小,在200億元左右,影響GDP少增長0.2個百分點。外貿凈出口比2002年減少約70億美元。
sars死亡人數?
SARS不在海南流行的原因?
SARS的病毒到底是怎樣的病毒?
豬流感、禽流感和SARS有什麼異同?
SARS病毒是怎樣感染人的
SARS是病名還是病毒名
禽流感
到目前為止全球共有15個國家和地區的393人感染,其中248人死亡,死亡率63%。中國從03年至今有31人感染禽流感,其中21人死亡。2004年初禽流感席捲美國和亞洲部分國家,中國、日本、越南等國上百萬家禽染病死亡,多人可能因感染禽流感病毒而去世。截止到2005年,禽流感已造成全球超過1.5億只禽類被撲殺,63人死亡,直接經濟損失高達100億美元。范圍波及至農業、旅遊業等行業。世行預言禽流感將造成全球經濟損失達8千億美元。
什麼是禽流感?
禽流感起源於哪個國家?
禽流感傳播途徑
禽流感的症狀
關於禽流感艾滋病非典的資料有哪些?
禽流感的死亡紀錄
豬流感
主發於墨西哥,確認及疑似豬流感死亡人數升至152人;全國疑似病例高達4000餘人。美國確診病例上升至50人,此外還波及至加拿大,英國,法國,德國,韓國,紐西蘭,澳大利亞,義大利等19個國家。世界銀行預測全球將會因此損失3萬億美元,經濟復甦會遭受重大影響。豬流感極有可能存在兩種方式傳播,即豬傳染給人,人與人之間進一步傳播。
人感染「豬流感病毒」後什麼症狀?怎麼預防和治療?
正確面對「豬流感」不必驚慌
豬流感會影響到餐飲業嗎
抗病毒口服液能預防豬流感嗎?
豬流感會影響豬的市場價格嗎?
豬流感有哪些傳播途徑?如何預防?
望採納。
1、鼠疫(plague) 是由鼠疫耶爾森菌引起的自然疫源性疾病, 也叫做黑死病。是細菌,原核生物。
2、水痘(chickenpox, varicella) 是由水痘-帶狀皰疹病毒 (varicella-zoster virus, VZV)初次感染引起的急性傳染病
3、天花(Smallpox)是由天花病毒引起的一種烈性傳染病,也是到目前為止,在世界范圍被人類消滅的第一個傳染病
4、瘋牛病
牛海綿狀腦病(Bovine spongiform encephalopathy,簡稱BSE),俗稱瘋牛病(mad cow disease),是由傳染因子引起的牛的一種進行性神經系統的傳染性疾病,是一種傳染性海綿狀腦病。該病的主要特徵是牛腦發生海綿狀病變,並伴隨大腦功能退化,臨床表現為神經錯亂、運動失調、痴呆和死亡。
病原不確定,醫學界意見不一致,也沒有證明。
5、口蹄疫
由口蹄疫病毒(FMDV)所致急性、熱性、高度接觸性傳染病。主要侵害偶蹄獸,以發熱、口腔黏膜及蹄部和 *** 皮膚發生水泡和潰爛為特徵,是國際獸疫局規定的A類傳染病,易通過空氣傳播,傳染性強,流行迅速,偶爾感染人,主要發生在與患畜密切接觸的人員,多為亞臨床感染。
6、瘧疾
寄生於人體的瘧原蟲有4種,即間日瘧、惡性瘧、三日瘧和卵形瘧。瘧原蟲在紅細胞中增殖成裂殖子,使紅細胞脹大破裂時,大量的裂殖子和瘧原蟲代謝產物進入血流,引起異性蛋白反應,機體肌肉收縮產熱,網狀內皮系統吞噬細胞功能增強,故可引起肝、脾腫大,多次發作可致貧血等。瘧原蟲在紅細胞內增殖成熟所需時間不同,間日瘧和卵形瘧為48小時,三日瘧為72小時,惡性瘧為24~48小時,故臨床上出現周期性發作。瘧原蟲屬是一類單細胞、寄生性的原核動物。
7、大腸桿菌是人和動物腸道中最著名的一種細菌,原核生物。
8、綠膿桿菌廣泛存在於自然界,是傷口感染較常見的一種細菌,原核生物。
一般帶什麼桿菌的都是細菌。病毒是微生物,沒有細胞結構,既不是原核,也不是真核。
9、黑死病、鼠疫、天花、流感以前稱為四大瘟疫,現在不是了。
從我們環境工程學角度來講,污水中含有細菌總數與水污染狀況有一定的關系,與治病程度也有一定關系,但是不能直接說明是否有病原微生物存在。糞便污染指示菌一般是指如有該指示菌存在於水體中,即表示水體曾有過糞便污染,也就有可能(注意,這里是「可能」)存在腸道病原微生物。那麼該水質在衛生學上是不安全的,但是對人的影響還是因人而異的。
常用的指示菌或其它指示微生物有:總大腸菌群、糞大腸菌群、糞鏈球菌、產氣莢膜梭菌、雙歧桿菌屬、腸道病毒、大腸桿菌噬菌體、沙門氏菌屬、志賀氏菌屬、銅綠假單胞菌、葡萄球菌屬、副溶血弧菌等。此外,還有水生的真菌、放線菌和線蟲。——這是地表水和自來水水質評價的一些有害病菌的指標,污水同樣適用。畢竟自來水更關注於人的健康疾病之類的方面。微生物種類和名稱非常多,上述基本上就是主要的了,都列舉上估計都快可以出書了。這估計也不是一兩句話能講清楚的。需要環境學、醫學、衛生疾病學共同來給你解答了。
需要注意的是,上段中我這里說的是指示性微生物,也就是說,有這些微生物存在的時候治病的概率非常大,但是不能說這些微生物就是一定能誘發人體患病的根源,這取決於人體自身免疫力和微生物數量等一些列復雜因素。
傳染病由病原體引起的,能在人與人之間或人與動物之間傳播的疾病叫傳染病。病原體包括病毒、細菌、真菌、寄生蟲等。傳染病具有傳染性和流行性等特點。
傳染病流行的基本環節:
傳染病能夠在人群中流行,必須同時具備三個基本環節:傳染源、傳播途徑、易感人群,如果缺少其中任何一個環節,傳染病就不能流行。
(1)傳染源:能夠散播病原體的人或動物。
(2)傳播途徑:病原體離開傳染源到達健康人所經過的途徑。主要有空氣傳播、唾液傳播、水傳播、飲食傳播、生物媒介傳播、接觸傳播等。
(3)易感人群:對某種傳染病缺乏免疫力而容易感染該病的人群
溫度
營養物質
ph
空氣(厭氧除外)
防毒劑
可以從微生物的結構等等考慮
1、呼吸作用提供能量——————需要氧氣、營養物質
2、微生物的體內都有蛋白質---------------能使蛋白質變性的夜都符合條件,比如酒精、福爾馬林
3、……都有酶-------------------------------能使酶失活的夜可以,比如ph,溫度
4、微生物比如細菌,有細胞壁,所以影響到其細胞壁合成的就不行
白色葡萄球菌、金黃色葡萄球菌、綠膿桿菌(即銅綠色假單胞菌)、沙門氏菌、大腸桿菌、白喉桿菌、肺炎球菌及結核桿菌、病毒粒子、阿米巴(變形蟲)胞囊、立克次氏體等
下載檔案: 傳染病在蜂群中傳播,必須具備傳染源、傳播途徑和易感動物三個基本環節。
傳染病流行過程中三個基本環節的聯絡示意圖
(仿家畜傳染病學,1980年)
(1)傳染源是指病原體在其中寄生、生長繁殖,並能不斷排出體外的蜜蜂。
(2)傳播途徑是指病原體由傳染源排出後,經一定的方式,再侵入其他易感動物所經的途徑。
(3)蜂群的易感性易感性是抵抗力的反面,是指蜂群對於某種疾病的容易感受程度。
能引起人和動物致病的微生物叫病源微生物有八大類:
1.真菌:引起面板病。深部組織上感染。
2放線菌:面板,傷口感染。
3螺旋體:面板病,血液感染 如梅毒,鉤端螺旋體病。
4細菌:面板病化膿,上呼吸道感染 ,泌尿道感染,食物中毒,敗血壓症,急性傳染病等。
5立克次氏體:斑疹傷寒等。
6依原體:沙眼,泌尿生殖道感染。
7病毒:肝炎,乙型腦炎,麻疹,愛滋病等。
8支原體:肺炎,尿路感染。
生物界的微生物達幾萬種,大多數對人類有益,只有一少部份能致病。有些微生物通常不致病,在特定環境下能引起感染稱條件致病菌。 能引起食品變質,腐敗,正因為它們分解自然界的物體,才能完成大自然的物質迴圈。
微生物是指那些個體體積直徑一般小於1mm的生物群體,它們結構簡單,大多是單細胞,還有些甚至連細胞結構也沒有。人們通常會藉助顯微鏡或者電子顯微鏡才能看清它們的形態和結構。需要說明的是微生物是一個比較籠統的概念,界線有時會非常模糊。如單細胞藻類和一些原生動物也應算是微生物,但通常它們並不放在微生物中進行研究。
按我國學者提出的分類法將生物分成六界:病毒界、原核生物界、原生生物界、真菌界、植物界和動物界。不難看出微生物在六界中佔了四界,因此微生物在自然界中的重要地位是顯而易見的,其研究的物件也是十分廣泛而豐富的。
微生物(Microani *** )是廣泛存在於自然界中的一群肉眼看不見,必須藉助光學顯微鏡或電子顯微鏡放大數百倍、數千倍甚至數萬倍才能觀察到的微小生物的總稱。它們具有體形微小、結構簡單、繁殖迅速、容易變異及適應環境能力強等優點。
微生物種類繁多,至少有十萬種以上。按其結構、化學組成及生活習性等差異可分成三大類。
一、真核細胞型微生物 細胞核的分化程度較高,有核膜、核仁和染色體;胞質內有完整的細胞器(如內質網、核糖體及線粒體等)。真菌屬於此型別微生物。
二、原核細胞型微生物 細胞核分化程度低,僅有原始核質,沒有核膜與核仁;細胞器不很完善。這類微生物種類眾多,有細菌、螺旋體、支原體、立克次體、衣原體和放線菌。
三、非細胞型微生物 沒有典型的細胞結構,亦無產生能量的酶系統,只能在活細胞內生長繁殖。病毒屬於此型別微生物。
微生物的另一種分類是非致病微生物和致病性微生物
致病微生物是指能引起動物植物的某些疾病的微生物,佔少類,比如流感病毒可以起人類、禽類的流感。另外有的一部分是條件致病菌。
較大多數屬於非致病性甚至有益性微生物,廣泛存在自然界、人體面板粘膜表面等。
目前我國奶粉檢測國家標准規定的檢測內容主要包括蛋白質、脂肪和微生物三大類,微生物檢測包含沙門氏菌、志賀氏菌、金黃色葡萄球菌、李斯特氏菌、耶爾森氏菌、空腸彎麴菌、埃希氏菌O157:H7、副溶血性弧菌、霍亂弧菌、創傷弧菌、溶藻弧菌等 而阪崎氏腸桿菌是微生物檢測中的關鍵內容,技術細節見我國2005年5月通過的標准《SN/T 1632.3-2005 奶粉中阪崎腸桿菌檢驗方法 熒光PCR方法》,標准規定必須採用實時熒光定量PCR儀。
實時熒光定量PCR儀是應用十分廣廣泛的先進的分子生物學病原體檢測儀器,為食品安全必備,國家法規(SN/T 1870-2007 食品中致病菌檢測方法 實時PCR法)等已規定該儀器為食品生產企業生產許可證申領的必備檢測裝置。
據了解對於實時熒光定量pcr儀沒必要選擇價格昂貴的進口儀器,國產TL988型實時熒光定量pcr儀已經廣泛應用於食品行業的檢驗檢疫,並得到了使用者和行業的認可!
Ⅶ 抗體檢測怎麼檢測(核酸、抗原、抗體檢測)
自 2020 年新冠疫情爆發以來,「核酸檢測」作為一項檢測是否感染的重要指標,開始反復出現在我們的生活中。2022 年 3 月 10 日,國務院應對新型冠狀病毒肺炎疫情聯防聯控機制綜合組發布通知,決定推進「抗原篩查、核酸診斷」的檢測模式,在核酸檢測基礎上增加抗原檢測作為補充。
抗原檢測是什麼?和其他的檢測手段有什麼不同?這篇文章,我們以新型冠狀病毒為例,講講常見的快速篩查手段,聊聊相關的原理以及適用范圍。
想要對一種疾病或是一種物質進行篩查,我們首先要弄清楚的就是「從何下手」的問題,其次是「如何檢測」,讓微觀世界的變化反映到我們眼前,幫助我們作出判斷。
我們面對的是病毒。根據大家耳熟能詳的中學生物課知納者識,病毒是一類由遺傳物質和蛋白質外殼組成的類生命體 。如果想對病毒的感染情況進行探測,就需要從它的組分下手。接下來的內容,希望大家帶著自己中學的生物知識閱讀。
以目前正在困擾我們的 SARS-CoV-2 為例。它屬於冠狀病毒科下,冠狀病毒亞科的乙型冠狀病毒屬,是已知的第七種能夠感染人類的冠狀病毒。所有的冠狀病毒都是具有 包膜 的 正義單鏈 RNA 病毒 ,也就是說,它們沒碼的遺傳物質是一條單獨的 RNA 鏈,並且這條 RNA 鏈可以直接作為 mRNA(信使 RNA)參與翻譯,指導蛋白質的合成。
編號為NPRC 2020.00002的毒種,圖片由國家病原微生物資源庫(中國疾病預防控制中心病毒病預防控制所)提供。
我們現在的目的是檢測標本中是否存在這種病毒,無論是檢測它本身,還是檢測病毒帶來的產物,能夠下手的方向也就是兩種:蛋白質外殼(包膜)、遺傳物質。
順著這個邏輯,那最顯而易見的方法就是檢查它「能不能看到」,但病毒本體小得很,SARS-CoV-2 的直徑在 80-120 nm,要想每個標本都拿電鏡過一遍是不現實的,人力物力和財力都撐不住。那麼更經濟實惠的方法,就是通過某些措施,讓 病毒的組分 ,或是因為病毒而出現的 某些特殊物質 積攢到一定數量級後發光、變色,出現 宏觀表現 。
那麼我們的問題就轉化成了,選擇一種可以觀察到宏觀尺度變化的方法,和病毒的組分、病毒引發的某種物質產生關聯。我們能選擇的物質也擺在檯面上:病毒的遺傳物質,在這里是它的 RNA;病毒的包膜,也就是蛋白質外殼;以及,如果你還記得一些基礎的生物知識,人體的免疫系統會在感染病毒之後產生抗體以抵抗入侵,它也是不錯的選材。
我們目前採用的幾種檢測方式,也就從這些物質(以及它們的相關物質)脫胎而來,分別為針對遺傳物質的核酸檢測,針對包膜的抗原檢測,以及針對抗體的血清抗體檢測。
作為病毒的遺傳物質,核酸序列載寫了能夠鑒定病毒為某一特定種的基因特徵,因此核酸陽性,也就意味著病毒在體內存在過。
我們目前進行的「核酸檢測」其實分為兩個部分。平常我們進行的「捅鼻子」「捅嗓子」取樣和後續的定性是第一部分。在取得標本之後,因為病毒量太少,樣本會在實驗室中進行一定次數的擴增,並根據熒光反應結果來判定陽性陰性。
第二部分,確定為陽性的樣本,還需要通過基因測序,確定樣本病毒的分型,以便溯源。這一步已經不屬於日常篩查的范疇,但在流行病學調查上具有重大意義,如果有興趣了解,可以參看 Wikipedia 簡要了解。
我們平常參與的作為 篩查 工具的核酸檢測,指的就是採集到定性的第一部分。
在感染了 SARS-CoV-2 之後,咽拭子、痰、下呼吸道分泌物、血液等標本中均可發現病毒核酸。不同部分標本核酸檢測的陽性率有一定差異,隨著病程進展,各個部位的檢出率也會發生變化。
我們習慣稱洞察薯呼的「鼻拭子」與「咽拭子」,其實都是採集咽腔後壁的分泌物與組織,前者採集鼻咽,後者採集口咽。也有採用其他標準的,比如唾液等亦可作為檢測標本,本質上也是不同地區規定有差異
鼻(咽)拭子與(口)咽拭子已經是綜合了陽性率與便利程度的考量。糞便和尿液等其實也可以作為標本採集的對象。而且根據一項對 31 例患者的研究,肛拭子的准確率要高於鼻咽與口咽采樣,尤其病程後期,肛拭子確診病例的鼻拭子陽性率不到 30%。 4 但顯然,由於操作的限制,它無法作為早期篩查的首選手段。
接下來的工作,就是從獲取的那一點點標本中提取核酸。由於樣本中病毒的數量級很小,不足以拿來分析,還需要將其擴增並標記。需要用到的同樣是高中學過的知識:聚合酶鏈式反應(PCR)——這一步看起來麻煩,但由於它的原理和工序已經研究成熟,實際操作中只需要加好試劑送機器,整個核酸檢測的過程里最麻煩的還是讓待測者安安分分弄來標本(笑)。
各地疾控機構或檢測中心會采購合適的核酸 提取試劑盒 與核酸 檢測試劑盒 。提取試劑盒負責將 RNA 從混雜的樣本(細胞碎屑、分泌物、灰塵等雜質)中提取出來,常見的有磁珠法、離心柱法和釋放劑法,不同提取方法可能對後期檢測的准確度略有影響 。之後,提純出的 RNA 就會移交給檢測試劑盒(也有一些試劑盒將兩者合一),進行之後的工序。
檢測試劑盒帶著樣本在機器中進行的過程,就是這個檢測中最主要的反應:RT-qPCR(實時定量逆轉錄聚合酶鏈反應)。
接下來需要你撿起高中生物的知識。一般的 PCR 反應有以下幾步:
加熱:讓雙鏈 DNA 解旋變形,成為兩條單鏈; 退火:讓混合的單鏈 DNA 與根據需要復制的片段而設計好的引物結合; 延伸:調整溫度,讓 DNA 聚合酶順著引物開始工作,復制出新鏈,形成新的雙鏈。在對病毒的探測中,我們要做的工作也無非上面幾步,只是需要多出兩樣東西:
在第一次反應之前,使用 逆轉錄酶 (依賴 RNA 的 DNA 聚合酶),合成病毒單鏈 RNA 的互補鏈,組合成 cDNA ; 在退火與延伸的階段,除了引物和所需的酶外,還需要 TaqMan 探針 。你可以把 TaqMan 探針這樣理解:它的主體部分是一段寡核苷酸鏈,被設計成能和一小部分需要復制的基因片段配對成雙鏈的樣子;它一端接了一個熒光分子,另一端接了一個開關(淬滅基團),兩者和探針相連時,熒光就會被淬滅基團壓制,探測不到。退火時,這個探針會和引物一起結合在要復制的單鏈片段上。在延伸的過程中,DNA 聚合酶會把擋在面前的障礙物切碎,其中就包括這段探針,淬滅基團和熒光分子就這樣分離,熒光就表現出來。
隨著循環數的增多,擴增的 DNA 片段和熒光也越來越多。對比每個循環的熒光亮度和前若干次循環的基準亮度,我們就能得出目前的 DNA 片段量,也可以直接用循環數和熒光亮度做定性的判斷。
那麼具體復制哪一部分呢?既然要探測病毒,那我們就選取最有代表性的核酸片段。現行的標准中,ORF 基因與 N 基因是常用的檢測位點。
檢測試劑盒負責的就是將提取出的 RNA(樣本)投入後,根據試劑盒上的程序說明,設定對應的 PCR 溫度與時長,由機器控制完成擴增過程,在固定的環節收集熒光信號,記錄對應的循環數(Ct 值)。判斷陰性陽性 / 是否還具有傳染力的標准,就是看熒光信號達到閾值時,目前循環數是多少。根據目前現行的《新型冠狀病毒肺炎診療方案(試行第九版)》,解除隔離管理的標准為 Ct 值 ≥ 35 。和此前通行的 ≥40 標准相比,出院與解除隔離的時間會大大縮短 。
經 RT-PCR 的核酸檢測到現在都是確診的金標准,因為它在方法學的角度看來,(理論上)可以做到 100% 准確。但核酸檢測耗時長、對環境與操作人員要求高,在環境條件達不到標准、物資與儀器不齊全等情況下,大批量的核酸檢測會帶來巨大人力與財力消耗。
在本次疫情中,我們採用的免疫測定包括了快速抗原檢測與抗體檢測,它以 抗原-抗體反應 為基本原理,旨在通過抗原與抗體快速的中和效應,以較少的時間成本探測樣本中是否存在待測物。兩者都屬於免疫層析法的范疇。
以盒裝方式出現、可以自行操作的抗原檢測就很適合作為物資不足、自我測定等情況下的補充。
核酸檢測檢查的是病毒的(標志性)遺傳物質,是病毒的「內里」。那麼(快速)抗原檢測檢查的就是病毒的「外在」,直接檢查完整的病毒顆粒。目前通過審批的抗原檢測試劑盒包括三種類型:膠體金法、乳膠法、熒光免疫層析法。三者內在原理一致。但其中熒光免疫層析法試劑盒仍然需要專用的檢測儀或紫外線手電筒,不適合家庭自測;膠體金法和乳膠法則都是將檢查結果轉化成肉眼可見的條帶,差別在於用於標記上色的物質不同。
當然,抗原檢測自然有它的劣勢在,它的 假陰性率 (是陽性但顯示陰性)要更高,可能導致漏檢錯檢。但放在一杯茶就能出結果的時間優勢面前,准確性上的差距在某些特定情況下可以暫時讓步。
圖源:How the SARS-CoV-2 EUA Antigen Tests Work | ASM.org
和核酸檢測相比,抗原檢測增加了「鼻拭子」這一采樣途徑,降低了個人自測的難度。拭子上的樣本在緩沖液中洗脫,取液體滴加在加樣孔後,液體會因為毛細作用,帶著潛在的抗原,經過一片預載了抗體的區域(結合墊,conjugate pad)。
這片區域上的抗體,是抗目標抗原(SARS-CoV-2)的單克隆抗體,每一個抗體分子都和特別的標記結合,它們與樣本中的抗原發生反應,形成抗原-抗體復合物,並隨著毛細作用向下一條帶流去。
緊接著經過的是檢測線(T 線,test line),在檢測線上附著的同樣是抗目標抗原的單克隆抗體,你可以理解成這里的東西和結合墊上的一樣,只是沒帶標記。此時,如果受測者已經感染了 SARS-CoV-2,他留在樣本中的抗原形成的抗原-抗體復合物,會在此處與固定在線上的抗體再次結合。在這里,這些帶著標記的復合物不斷沉積,最終會顯示出一條或深或淺的條帶。條帶的顏色來源,就是之前結合墊上的抗體分子附著的標記,在膠體金法中是膠體狀態的金顆粒,在乳膠法中是上色的乳膠滴,在熒光法中是熒光分子。所以你在使用這類試紙時,會發現剛剛加樣結束,液體剛開始擴散的時候,擴散的最前端會有一點點很淡的顏色不斷推移,這就是還沒有固定沉積的標記的顏色。
接下來,液體繼續擴散,經過質控線(C 線,control line),在質控線上附著的是另一種抗體——『抗「抗目標抗原的單克隆 抗體 」 的 單克隆 抗體 』,簡稱「 二抗 」。這種新的抗體是讓上一種抗體在另一種動物的免疫系統中反應得來的,比如結合墊的抗體來自兔,那這里的抗體就來自羊,是羊抗兔的單克隆抗體。也就是說, 二抗的抗原是 之前在 結合墊上的抗體 。這條線就是為了檢測液體有沒有正常擴散、結合墊上的抗體有沒有失效等等而存在的。此時,液體中剩餘的大量來自結合墊的抗體就會作為抗原,與質控線上的二抗發生抗原抗體反應,形成復合物,顯出一條明顯的條帶。
由於結合墊上的抗體非常充裕,這條質控線條帶會出現得非常快、非常顯色,而檢測線由於抗原(病毒)數量不一定,顯色速度會有差別,但一般在 15 分鍾內就足夠判斷結果。所以不要看 C 線很明顯,T 線隱隱約約就覺得「沒事了」, T 線不管深淺,只要有,就是陽性 。
具體操作方面,可以參考醫政醫管局發布的 教學視頻。目前國家也在逐步推廣抗原自測試劑盒,在一定程度上可以減輕未來醫療與街道的壓力。
除了前兩種檢測手段外,還有一種使用不太多,但同樣重要的檢測方法,就是同屬免疫測定方法的「血清抗體檢測」。
抗體檢測採用的試劑盒與抗原檢測非常接近,但標本的限制更大——由於檢測的對象變成了抗體,標本就必須是明確有抗體存在的血液(或血漿、血清)。而且人體在初次感染病毒後,並不會第一時間內產生抗體。抗體能夠明確達到被檢測的數量級,一般是在初次感染(或接種疫苗)的一到兩周之後。這些條件限制了抗體檢測不能作為確診性質的檢查。目前,血清抗體檢測僅作為一定情況下檢查疫苗是否生效,或查驗受測者近期是否感染過新冠病毒的方法。
在人體中有五種抗體,分別是 IgA、IgD、IgE、IgG 和 IgM。IgA 主要負責黏膜免疫。IgD 與免疫反應激活有關。IgE 抵禦寄生蟲,同時也參與過敏反應。剩下的 IgG 與 IgM 就是對抗病原體的過程中,免疫系統派出的主力軍。
SARS-CoV-2 作為病原體,人體經刺激主要分泌的就是 IgG 與 IgM 兩種。現有的抗體檢測試劑盒,主要也是針對人體對 SARS-CoV-2 的 N 蛋白(核衣殼蛋白)或 S 蛋白(刺突蛋白)產生的 IgG 與 IgM。
抗體試劑盒的檢測裝置外觀和抗原檢測別無二致。二者的差別就是上文中提到的結合墊、檢測線、質控線上附著的物質。
這次,加樣孔中滴入的樣本可能有對 SARS-CoV-2 的抗體。因此,結合墊上就應當是帶了標記物的抗原——當然不可能放活病毒上來。一般這里使用的都是設計檢測的抗原蛋白,比如前文提到的 N 蛋白或 S 蛋白,或是重組病毒,無論是哪種,它都必須包含受體結合域(RBD)作為抗體結合的靶點。在檢測線上,附著的就是抗 IgM 或抗 IgG 抗體,以捕獲結合了抗原的抗體蛋白。最後,質控線上附著抗原的特異性抗體,捕獲剩餘的游離抗原。
總的說來,三種檢測方式針對的是不同的需求,互有優勢,互相補充。核酸檢測作為金標准,直接查驗病毒的 RNA,負責看被檢者帶不帶病毒;抗原檢測作為快速檢測方法,查的是病毒的蛋白質,但准確度不如核酸檢測,對傳染力強的感染者更有效;抗體檢測查的是疫苗有沒有生效、人近期有沒有感染過病毒。
近期,新冠疫情在各地卷土重來。Omicron 變種與此前流行的 Delta 變種相比,雖然病死率與重症率明顯下降,但潛伏期更短,病毒復制速度更快,傳染力明顯增強。希望大家在這樣的環境中保持健康。