導航:首頁 > 裝置知識 > 典型起落裝置的組成其主要作用

典型起落裝置的組成其主要作用

發布時間:2023-03-18 21:02:51

㈠ 飛機主要哪些部件組成各部件作用是什麼

大多數飛機都是由下面六個主要部分組成,即:機翼、機身、尾翼、起落裝置、操縱系統和動力裝置。它們各有其獨特的功用。

一、機身

機身主要用來裝載人員、貨物、燃油、武器和機載設備,並通過它將機翼、尾翼、起落架等部件連成一個整體。在輕型飛機和殲擊機、強擊機上,還常將發動機裝在機身內。

二、機翼

機翼是飛機上用來產生升力的主要部件,一般分為左右兩個翼面。

機翼通常有平直翼、後掠翼、三角翼等。機翼前後綠都保持基本平直的稱平直翼,機翼前緣和後緣都向後掠稱後掠翼,機翼平面形狀成三角形的稱三角翼,前一種適用於低速飛機,後兩種適用於高速飛機。近來先進飛機還採用了邊條機翼、前掠機翼等平面形狀。

左右機翼後緣各設一個副翼,飛行員利用副翼進行滾轉操縱。即飛行員向左壓桿時,左機翼上的副翼向上偏轉,左機翼升力下降;

右機翼上的副翼下偏,右機翼升力增加,在兩個機翼升力差作用下飛機向左滾轉。為了降低起飛離地速度和著陸接地速度,縮短起飛和著陸滑跑距離,左右機翼後緣還裝有襟翼。襟翼平時處於收上位置,起飛著陸時放下。

三、尾翼

1、垂直尾翼

垂直尾翼垂直安裝在機身尾部,主要功能為保持飛機的方向平衡和操縱。

通常垂直尾翼後線設有方向舵。飛行員利用方向舵進行方向操縱。當飛行員右用航時,方向舵右們,相對氣流吹在垂尾上,使垂尾產生一個向左的側力,此側力相對於飛機重心產生一個使飛機機頭有偏的力矩,從而使機頭右偏。

同樣,蹬左舵時,方向舵左偏,機頭左偏。某些高速飛機,沒有獨立的方向舵。整個垂尾跟著腳蹬操縱而偏轉,稱為全動垂尾。

2、水平尾翼

水平尾翼水平安裝在機身尾部,主要功能為保持俯仰平衡和俯仰操縱。低速飛機水平尾翼前段為水平安定面,是不可操縱的,其後緣設有升降舵,飛行員利用升降舵進行俯仰操縱。

即飛行員拉桿時,升降舵上偏,相對氣流吹向水平尾翼時,水平尾翼產生附加的負升力(向下的升力),此力對飛機重心產生一個使機頭上仰的力矩,從而使飛機抬頭。同樣飛行員推杯時升降舵下偏,飛機低頭。

超音速飛機採用全動平尾,即將水平安定面與升降舵合為一體。飛行員推拉桿時整個水平尾翼都隨之偏轉。飛行員用全動平尾來進行俯仰操縱。其操縱原理與升降舵相同。某些高速飛機為了提高滾轉性能,在左、右壓桿時,左、右平尾反向偏轉,以產生附加的滾轉力矩,這種平尾稱為差動平尾。

有些飛機的水平尾翼放在機翼前邊,這種飛機叫鴨式飛機。這時放在機翼前面的水平尾翼稱為鴨翼或前翼。也有一部分飛機沒有水平尾翼,這種飛機稱為無尾飛機。現在有些飛機還採用了三翼面的布局方法,也就是說既有機翼前面的前翼,也有機翼後面的水平尾翼。

四、起落裝置

起落裝置的功用是使飛機在地面或水面進行起飛、著陸、滑行和停放。著陸時還通過起落裝置吸收撞擊能量,改善著陸性能。

早期陸上飛機起落裝置比較簡單,只有三個起落架,而且在空中不能收起,飛行阻力大。現代的陸上飛機起落裝置包含起落架和改善起落性能的裝置兩部分,且起落架在起飛後即可收起,以減少飛行阻力。改善起落性能的裝置主要有起飛加速器、機輪剎車、減速傘等。水上飛機的起落架由浮筒代替機輪。

五、控制系統

飛機操縱系統是指從座艙中飛行員駕駛桿(盤)到水平尾翼、副翼、方向舵等操縱面,用來傳遞飛行員操縱指令,改變飛行狀態的整個系統。早期的操縱系統是由拉桿、搖臂(或鋼索)組成的純機械操縱系統。現代飛機在操縱系統中採用了很多自動控制裝置,因而,通常把它稱為飛行控制系統。

六、動力裝置

飛機動力裝置是用來產生拉力(螺旋槳飛機)或推力(噴氣式飛機),使飛機前進的裝置。採用推力矢量的動力裝置,還可用來進行機動飛行。現代的軍用飛機多數為噴氣式飛機。 噴氣式飛機的動力裝置主要分為渦輪噴氣發動機和渦輪風扇發動機兩類。

設計製造

大多數飛機是由公司製造的,目的是為客戶批量生產。小型渦輪螺旋槳飛機的設計和規劃過程(包括安全測試)可持續長達四年,而大型飛機則需要更長的時間。

在此過程中,確定了飛機的目標和設計規范。首先,建築公司使用圖紙和方程、模擬、風洞測試和經驗來預測飛機的行為。公司使用計算機來繪制、規劃和進行飛機的初始模擬。然後在風洞中測試飛機全部或某些部分的小型模型和模型,以驗證其空氣動力學特性。

當設計通過這些過程時,該公司構建了數量有限的原型用於地面測試。航空管理機構的代表經常進行首飛。飛行測試繼續進行,直到飛機滿足所有要求。然後,國家航空管理公共機構授權該公司開始生產。

在美國,該機構是美國聯邦航空管理局(FAA),在歐盟是歐洲航空安全局(EASA)。在加拿大,負責和授權大規模生產飛機的公共機構是加拿大運輸部。

當零件或組件需要通過焊接連接在一起以用於幾乎任何航空航天或國防應用時,它必須符合最嚴格和特定的安全法規和標准。Nadcap或國家航空航天和國防承包商認證計劃為航空航天工程制定了質量、質量管理和質量保證的全球要求。

運輸公共機構的許可。例如,歐洲公司空客製造的飛機需要獲得美國聯邦航空局的認證才能在美國飛行,而美國波音公司製造的飛機需要獲得歐洲航空安全局的批准才能在歐盟飛行。

為了應對機場附近城市地區空中交通增長造成的雜訊污染增加,法規已導致飛機發動機的雜訊降低。

業余愛好者可以自行設計和建造小型飛機。其他自製飛機可以使用預先製造的零件套件組裝成基本飛機,然後必須由製造商完成。

很少有公司大規模生產飛機。然而,為一家公司生產一架飛機實際上是一個涉及數十家甚至數百家其他公司和工廠的過程,這些公司和工廠生產進入飛機的零件。例如,一家公司可以負責起落架的生產,而另一家公司則負責雷達。

此類零件的生產不限於同一個城市或國家;就大型飛機製造公司而言,此類零件可能來自世界各地

零件被送到飛機公司的主要工廠,生產線就在那裡。在大型飛機的情況下,可以存在專用於飛機某些部件組裝的生產線,尤其是機翼和機身。

完成後,將對飛機進行嚴格檢查以尋找缺陷和缺陷。經檢查員批准後,飛機將進行一系列飛行測試,以確保所有系統都正常工作並且飛機操作正常。通過這些測試後,飛機就可以接受「最終修飾」(內部配置、噴漆等),然後就可以為客戶做好准備了。

以上內容參考 網路-飛機

㈡ 飛機主要哪些部件組成各部件作用是什麼

一,飛機的原理飛行
飛機是重於空氣的飛行器,當飛機飛行在空中,就會產生作用於飛機的空氣動力,飛機就是靠空氣動力升空飛行的。
二,飛行的主要組成部分及功用
到目前為止,除了少數特殊形式的飛機外,大多數飛機都由機翼、機身、尾翼、起落裝置和動力裝置五個主要部分組成。
1.
機翼——機翼的主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定和操作作用。在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。機翼上還可安裝發動機、起落架和油箱等。不同用途的飛機其機翼形狀、大小也各有不同。
2.
機身——機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。
3.
尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,有的高速飛機將水平安定面和升降舵合為一體成為全動平尾。垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。
4.起落裝置——飛機的起落架大都由減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支掌飛機。
5.動力裝置——動力裝置主要用來產生拉力和推力,使飛機前進。其次還可為飛機上的其他用電設備提供電源等。現在飛機動力裝置應用較廣泛的有:航空活塞式發動機加螺旋槳推進器、渦輪噴氣發動機、渦輪螺旋槳發動機和渦輪風扇發動機。除了發動機本身,動力裝置還包括一系列保證發動機正常工作的系統。
*飛機上除了這五個主要部分外,根據飛機操作和執行任務的需要,還裝有各種儀表、通訊設備、領航設備、安全設備等其他設備。

㈢ 輪式起落架由哪些部分組成

【直升機起落裝置的分類】 在陸地上使用時,直升機起落裝置有輪式起落架和滑橇式起落架兩種。如果要求直升機具備在 水面起降或應急著水迫降能力,一般要求有水密封機身和保證橫側穩定性的浮筒,或應急迫降浮筒。對於艦載直升機,還需裝備特殊著艦裝置,如拉降設備等。現詳述如下:
1、輪式起落架缺棚: 和固定翼飛機相似,直升機輪式起落架由油氣式減震器和橡膠充氣機輪組成。優點是可以收放,有利於減小飛行阻力;地面滑行、移動方便,對起降地點有很好的適應性。缺點是結構較復雜,重量較大,容易損壞;不適合小型直升機使用。
2、滑橇式起落架:優點是結構簡單,重量輕;可靠性肢搭高,不易損壞。缺點是無法收放,容易增大阻力;地面滑行、移動不便,且對起降地點適應性差;不適合大中型直升機。
3、浮筒式起落架:主要用於水上降落,可以看作滑橇式的衍生。
【直升機起落裝置】是直升機上用於地面停放時支撐重量和著陸時吸收撞擊能量的部件。主要作用是吸收在著陸時由於有垂直速度而帶來的能量,減少著陸時撞擊引起的過載,以及保證在整個使用過程中不發生「地面共振」。此外,起落裝置往往還用來使直升機具有在地面運動的能力,減少滑行時由於地面不平而產生的撞擊與顛簸。
直升機起落架減展器除了具有吸收伏飢則著陸能量、減小撞擊等功能以外,還需要通過減震器彈性和阻尼的配置消除「地面共振」。為了在所有使用狀態減震器都能提供阻尼,消除「地面共振」的發生,直升機上普遍採用雙腔式減震器。

㈣ 起落架詳細資料大全

起落架是飛機下部用於起飛降落或地面(水面)滑行時支撐飛機並用於地面(水面)移動的附屬檔案裝置。起落架是唯一一種支撐整架飛機的部件,因此它是飛機不可分缺的一部份;沒有它,飛機便不能在地面移動。當飛機起飛後,可以視飛行性能而收回起落架。

基本介紹

發展歷程,基本組成,綜述,減震器,收放系統,機輪和剎車系統,轉彎系統,布置形式,前三點式,後三點式,腳踏車式,多支點式,結構形式,桁架式起落架,梁架式起落架,混合式起落架,多輪小車式起落架,緩沖裝置,起落架減震器的要求,減震器的類型,故障迫降記錄, 起落架裝置是飛行器重要的具有承力兼操縱性的部件,在飛行器安全起降過程中擔負著極其重要的使命。起落架是飛機起飛、著陸、滑跑、地面移動和停放所必需的支持系統,是飛機的主要部件之一,其性能的優劣直接關繫到飛機的使用於安全。

發展歷程

1903年12月17日,人類歷史上第一次有動力、載人、持續、穩定、可操縱的重於空氣的飛行器成功飛行。這就是萊特兄弟所製造的「飛行者一號」。然而在這架飛機上,並沒有現代起落架的影子,而是有一對類似滑橇的裝置。它用帶輪子的小車在滑軌衫吵搭上靠落錘裝置彈射輔助起飛,如右圖所示。 在1906年上天的Santos-Dumont(山度士·杜蒙)的「飛機-14BIS」上,就有了現代起落架的樣子。在採用輪式起落架以後,飛機在地面的移動、起飛前滑跑和著陸性能都有了很大的提高,如右圖所示。 然而隨著飛機的逐漸成功,飛機設計質量和飛行速度不斷增加.提高飛機的起飛和著陸性能,就成為了急需解決的問題之一。第一次世界大戰時的飛機已經有了減震的起落架.這些起落架採用把橡皮繩繞在軸上,並把它們固定在支柱上來進行減震。此時的起落架在著陸減震方面進入了角色。 隨著飛行速度的提高.現代飛機的起落架都要求可收放,以減小飛行時的空氣阻力。因此,起落架的結構形式也由架構式發展為支柱式和搖臂式。

基本組成

綜述

為適應飛機起飛、著陸滑跑和地面滑行的需要,起落架的最下端裝有帶充氣輪胎的機輪。為了縮短著陸滑跑距離,機輪上裝有剎車或自動剎車裝置。此外還包括承力支柱、減震器(常用承力支柱作為減震器外筒)、收放機構、前輪減擺器和轉彎操縱機構等。承力支柱將機輪和減震器連線在機體上,並將著陸和滑行中的撞擊載荷傳遞給機體。前輪減擺器用於消除高速滑行中前輪的擺振。前輪轉彎操縱機構可以增加飛機地面轉彎的靈活性。對於在雪地和冰上起落的飛機,起落架上的機輪用滑橇代替。 美國B-36轟炸機實驗履帶式起落架

減震器

飛機在著陸接地瞬間或在不平的跑道上高速滑跑時,與地面發生劇烈的撞擊,除充氣輪胎可起小部分緩沖作用外,大部分撞擊能量要靠減震器吸收。現代飛機上套用最廣的是油液空氣減震器。當減震器受撞擊壓縮時,空氣的作用相當於彈簧,貯存能量。而油液以極高的速度穿過小孔,吸收大量撞擊能量,把它們轉或拿變為熱能,使飛機撞擊後很快平穩下來,不致顛簸不碰昌止。

收放系統

收放系統一般以液壓作為正常收放動力源,以冷氣、電力作為備用動力源。一般前起落架向前收入前機身,而某些重型運輸機的前起落架是側向收起的。主起落架收放形式大致可分為沿翼展方向收放和翼弦方向收放兩種。收放位置鎖用來把起落架鎖定在收上和放下位置,以防止起落架在飛行中自動放下和受到撞擊時自動收起。對於收放系統,一般都有位置指示和警告系統。 起落架收放系統

機輪和剎車系統

機輪的主要作用是在地面支持飛機的重量,減少飛機地面運動的阻力,吸收飛機著陸和地面運動時的一部分撞擊動能。主起落架上裝有剎車裝置,可用來縮短飛機著陸的滑跑距離,並使飛機在地面上具有良好的機動性。機輪主要由輪轂和輪胎組成。剎車裝置主要有彎塊式、膠囊式和圓盤式三種。套用最為廣泛的是圓盤式,其主要特點是摩擦面積大,熱容量大,容易維護。

轉彎系統

操縱飛機在地面轉彎有兩種方式,一種是通過主輪單剎車或調整左右發動機的推力(拉力)使飛機轉彎;而另一種方式是通過前輪轉彎機構操縱前輪偏轉使飛機轉彎。輕型飛機一般採用前一種方式;而中型及以上的飛機因轉彎困難,大多裝有前輪轉彎機構。另外,有些重型飛機在轉彎操縱時,主輪也會配合前輪偏轉,提高飛機的轉彎性能。

布置形式

前三點式

現代飛機上使用最廣泛的是前三點式起落架。兩個主輪保持一定間距左右對稱地布置在飛機質心稍後處,前輪布置在飛機頭部的下方。飛機在地面滑行和停放時,機身地板基本處於水平位置,便於旅客登機和貨物裝卸。重型飛機用增加機輪和支點數目的方法減低輪胎對跑道的壓力,以改善飛機在前線土跑道上的起降滑行能力。 優點 (1)具有滑跑方向穩定性。當機身軸線偏離滑跑方向時,主輪摩擦力的合力將產生恢復力矩,使飛機回到原來的運動方向。側風著陸時較安全。地面滑行時,操縱轉彎較靈活。 (2) 當飛機以較大速度小迎角著陸時,主輪著陸撞擊力對飛機質心產生低頭力矩,減小迎角,使飛機繼續沿地面滑行而不致產生「跳躍」現象,因此著陸操縱比較容易。 (3)由於前起落架遠離質心,因此著陸時可以大力剎車而不致引起飛機「翻倒」,從而打打縮短著陸滑跑距離。 (4)由於飛機軸線接近水平,因此起飛滑跑阻力小,加速快,起飛距離短,而且駕駛員前視界好,乘坐舒適。 (5)噴氣發動機的噴流不會直接噴向跑道,因而對跑道的影響較小。 缺點 (1)前起落架的安排較困難,尤其是對單發動機的飛機,機身前部剩餘的空間很小。 (2)前起落架承受的載荷大、尺寸大、構造復雜,因而質量大。 (3)著陸滑跑時處於小迎角狀態,因而不能充分利用空氣阻力進行制動。在不平坦的跑道上滑行時,超越障礙(溝渠、土堆等)的能力也比較差。 (4) 前輪會產生擺振現象,因此需要有防止擺震的設備和措施,這又增加了前輪的復雜程度和重量。 盡管如此,由於現代飛機的著陸速度較大,並且保證著陸時的安全成為考慮確定起落架形式的首要決定因素,而前三點式在這方面與後三點式相比有著明顯的優勢,因而得到最廣泛的套用。

後三點式

早期在螺旋槳飛機上廣泛採用後三點式起落架。其特點是兩個主輪(主起落架)布置在飛機的質心之前並靠近質心,尾輪(尾支撐)遠離質心布置在飛機的尾部。在停機狀態時,飛機90%的質量落在主起落架上,其餘的10%由尾支撐來分擔。後三點起落架重量比前三點輕,但是地面轉彎不夠靈活,剎車過猛時飛機有「拿大頂」的危險,現代飛機已很少採用。 優點 (1)後三點式起落架整體構造比較簡單,重量也較輕。 (2)在螺旋槳飛機上容易配置。螺旋槳飛機要產生大的推力槳葉就很大,這不得不迫使飛機設計安裝時提高螺旋槳發動機的離地高度,而正好裝有後三點式起落架的飛機停留在地面時機頭抬起很高迎角很大。 (3)在飛機上易於裝置尾輪。與前輪相比,尾輪結構簡單,尺寸、質量都較小; (4)正常著陸時,三個機輪同時觸地,這就意味著飛機在飄落(著陸過程的第四階段)時的姿態與地面滑跑、停機時的姿態相同。也就是說,地面滑跑時具有較大的迎角,因此,可以利用較大的飛機阻力來進行減速,從而可以減小著陸時和滑跑距離。因此,早期的飛機大部分都是後三點式起落架布置形式。 缺點 (1)在大速度滑跑時,遇到前方撞擊或強烈制動,容易發生倒立現象(俗稱拿大頂)。因此為了防止倒立,後三點式起落架不允許強烈制動,因而使著陸後的滑跑距離有所增加。 (2)著陸速度要求高。若著陸速度過大,主輪接地的沖擊力會使飛機抬頭迎角增加,會引起飛機升力增大而重新離地「跳躍」現象,甚至會跳起後失速,發生事故。 (3)地面滑跑時方向穩定性差。如過在滑跑過程中,某些干擾(側風或由於路面不平,使兩邊機輪的阻力不相等)使飛機相對其軸線轉過一定角度,這時在支柱上形成的摩擦力將產生相對於飛機質心的力矩,它使飛機轉向更大的角度。 (4)在停機、起、落滑跑時,前機身仰起,因而向下的視界不佳。 基於以上缺點,後三點式起落架的主導地位便逐漸被前三點式起落架所替代,只有一小部分小型和低速飛機仍然採用後三點式起落架。

腳踏車式

還有一種用得不多的腳踏車式起落架,它的前輪和主輪前後布置在飛機對稱面內(即在機身下部),重心距前輪與主輪幾乎相等。為防止轉彎時傾倒,在機翼下還布置有輔助小輪。這種布置型式由於起飛時抬頭困難而較少採用。 腳踏車式起落架 優點 解決了部分薄機翼飛機主起落架的收放問題。 缺點 (1)前起落架承受的載荷較大,而使尺寸、質量增大。 (2)起飛滑跑時不易離地而使起飛滑跑距離增大。為使飛機達到起飛迎角,需要依靠專門措施,例如在起飛滑跑時伸長前起落架支柱長度或縮短後起落架支柱長度。 (3)不能採用主輪剎車的方法,而必須採用轉向操縱機構實現地面轉彎等。 由於以上的不利因素,除非是不得以,一般不採用腳踏車起落架。目前僅有少數飛機採用這種起落架布局形式,如英國的「海鷂」垂直起降戰斗機等。

多支點式

這種起落架的布置形式與前三點式起落架類似,飛機的重心在主起落架之前,但其有多個主起落架支柱,一般用於大型飛機上。如美國的波音747客機、C-5A(軍用運輸機(起飛質量均在350噸以上)以及蘇聯的伊爾86客機(起飛質量206噸)。 波音777-300的起落架 採用多支點式可以使局部載荷減小,有利於受力結構布置;還能夠減小機輪體積,從而減小起落架的收放空間。

結構形式

根據承受和傳遞載荷的方式,即結構受力形式,可將起落架分為桁架式、梁架式和混合式三種形式。

桁架式起落架

桁架式起落架由空間桿系組成的桁架結構和機輪組成。構架式起落架的主要特點是:它通過承力構架將機輪與機翼或機身相連。承力構架中的桿件及減震支柱都是相互鉸接的。它們只承受軸向力(沿各自的軸線方向)而不承受彎矩。因此,這種結構的起落架構造簡單,質量也較小,在過去的輕型低速飛機上用得很廣泛。但由於難以收放,通常只用在速度不大的輕型飛機或直升機上。 桁架式起落架

梁架式起落架

梁式起落架通常由受力支柱、減震器、扭力臂、支撐桿系、機輪和剎車系統等組成。其主要承力構件是梁(支柱或減震支柱),根據支柱樑的支撐形式不同,可分為簡單支柱式、撐桿支柱式、搖臂式和外伸式等多種形式。 簡單支柱式 簡單支柱式起落架 支柱式起落架的主要特點是:減震器與承力支柱合而為一,機輪直接固定在減震器的活塞桿上。減震支柱上端與機翼的連線形式取決於收放要求。對收放式起落架,撐桿可兼作收放作動筒。扭矩通過扭力臂傳遞,亦可以通過活塞桿與減震支柱的圓筒內壁採用花鍵連線來傳遞。這種形式的起落架構造簡單緊湊,易於放收,而且質量較小,是現代飛機上廣泛採用的形式之一。 支柱式起落架的缺點是: (1) 質量輕,容易收放,結構簡單。 (2)可以用不同的輪軸,輪叉形式來調整機輪接地點與機體,連線點之間的相互位置和起落架的高度。 (3)由於是懸臂式,因此支柱根部彎矩較大。由於桿與筒不能直接傳遞扭矩,因而桿與外筒之間必須用扭力臂連線。 (4)機輪通過輪軸與減震器支柱直接連線,減震器不能很好的吸收前方來的撞擊。 (5)減震支柱本身是一個承受彎矩的構件,因此密封性較差,減震器內灌充的氣體壓力受到限制,使減震器行程增大,整個支柱較長,質量增加,並且在伸縮過程中容易出現卡滯。 撐桿支柱式 撐桿支柱式起落架 主要構件是減震支柱、扭力臂、機輪、收放作動筒和斜撐桿,與簡單支柱式不同的是多了一個或幾個斜撐桿。在收放時,撐桿可以作為起落架的收放連桿,有時撐桿本身就是收放作動筒。 當受到來自正面水平撞擊,減震支柱不能很好地其減震作用,在著陸時,支柱必須承受彎矩,減震支柱的密封裝置易受磨損。 搖臂式 搖臂式起落架 搖臂式起落架主要是在支柱下端安有一個搖臂,搖臂的一端支柱和減震器相連,另一端與機輪相連,這種結構多用於前起落架。 搖臂改變了起落架的受力狀態和承受迎面撞擊的性能,提高了再跑道上的適應性,降低了起落架的高度。構造和工藝比較復雜,質量大,機輪離支柱軸線較遠,附加彎矩較大,收藏空間大。 外伸式 外審式起落架 外伸式起落架由外伸支柱、減震器、收放機構、收放作動筒、垂直支柱和機輪等組成。為了增加了輪距,將起落架向外伸出,收起時則收藏於機身內。 由於斜撐桿式的支柱受有很大彎矩,收放機構比較復雜,因此支柱和收放機構質量大。

混合式起落架

混合式起落架由支柱、多根斜撐桿和橫梁等構件組成,撐桿鉸接在機體結構上,是桁架式和梁架式的混合結構。支柱承受剪下、壓縮、彎矩和扭矩等多種載荷,撐桿只承受軸向載荷,撐桿兩端固定在支柱和橫樑上,既能承受軸向力,又能承受彎矩,因此大大提高了支柱的剛度,避免了擺振現象的發生。 混合式起落架

多輪小車式起落架

多輪式起落架由車架、減震支柱、拉桿、阻尼器、輪架和及輪組等組成,一般用於質量大的運輸機和客機上,採用多個尺寸小的機輪取代單個大幾輪,提高了飛機的漂浮性,減小了收藏空間,在一個輪胎損壞時保證了飛機的安全。 多輪小車式起落架

緩沖裝置

飛機在著陸和起飛時,地面要對飛機產生很大的沖擊力和顛簸振動,對飛機的結構和安全產生很大的影響。飛機上常採用緩沖裝置來減小沖擊和振動載荷,並吸收撞擊能量。減震器的主要作用是吸收沖擊能量,使傳到機體上結構上的沖擊載荷步超過允許值,在吸收能量過程中,減震器通過來回振盪,把吸收的能量變成熱能耗散掉。

起落架減震器的要求

滿足飛機機構設計要求 (1)強度,剛度要求; (2)疲勞,耐久性要求;(3) 損傷容限;(4)維修性要求;(5)適航性要求;(6)合理選材;(7) 工藝要求;(8) 經濟性要求;(9)重量要求 ;(10)防雷擊要求 ;(11)抗腐蝕要求。 滿足起落架的功能要求 (1)在壓縮行程(正行程)中,減震裝置所承受的載荷,應隨壓縮量的增大而增大。 (2)減震裝置在吸收的過程中,應盡量產生較大的變形來吸收撞擊能量,以減小機體受到的撞擊力,並且有較好的熱耗作用。 (3)在伸展行程(反行程)中,減震器應把吸收的大部分能量轉化成熱能耗散掉。 (4)減震裝置要有連續接受撞擊的能力。

減震器的類型

減震器一般有兩種類型,一是固體減震器,如橡膠減震器、彈簧減震器、摩擦塊減震器等;二是氣體、液體或氣液混合減震器。固體減震器效率低,能量耗散能力較小,常用於低速或輕型小飛機的不可收放起落架。油氣減震器效率高,常用於高速,大型飛機上。全油式減震器結構緊湊,尺寸小,效率可達75%~90%,但壓力過大,密封困難,溫度變化對其影響大,目前只有少數飛機使用。 彈簧式減震器 利用彈簧變形吸收能量,在減震器內筒上加裝摩擦墊圈,以增大熱耗作用。結構簡單,維修方便。 橡皮減震器 利用橡皮的彈性變形吸收撞擊能量,並利用橡皮伸縮來消耗能量,飛機會產生較強的顛簸跳動,只有用於一些減震要求不高的飛機上。 油液彈簧式減震器 在起落架伸展和壓縮的過程中,油液被迫高速流過小孔產生劇烈摩擦來耗散能量,在壓縮過程中,彈簧變形吸收能量,伸展過程中,將積蓄的能量釋放出。 油氣式減震器 利用氣體的壓縮變形來吸收能量,並利用液體高速流過小孔時的摩擦來消耗能量。質量較輕且體積較小,吸能效率較高,是現代飛機上套用最廣的減震器形式。 全油式減震器 它主要是利用液體在高壓作用下產生壓縮變形來吸收能量,利用液體高速流過小孔時的摩擦來消耗能量,這種減震器體積小,密封非常重要,一般用於軍用飛機和高速重型飛機上。

故障迫降記錄

1998年9月10日,中國東方航空一架MD-11型客機因前起落架無法展開,被迫在上海虹橋機場迫降。事後此事件被改編成一部紀實電影《緊急迫降》。 中國東方航空迫降現場 2005年9月21日,美國捷藍航空一架空客A320型客機因前起落架無法收回機腹內,起落架扭曲90度。被迫在洛杉磯國際機場迫降。 2007年3月13日,全日空一架龐巴迪DHC8-Q400型客機因前起落架無法展開,被迫在高知機場迫降。迫降時未發生著火或爆炸事故。 2007年4月9日,印度航空一架空客A310「空中皇宮」客機從中國上海飛往印度新德里客機因前起落架無法展開,被迫在新德里國際機場迫降。機上所有人員安然無恙。但是機場的兩條主要跑道因此受阻,造成大量航班延誤。 2009年2月28日,羅馬尼亞喀爾巴阡山航空一架SAAB2000型客機因前起落架無法展開,被迫在蒂米什瓦拉機場迫降。機上所有人員安然無恙。 前起落架正常但缺右側主起落架的「瘸腿」 2010年1月10日,在美國新澤西紐瓦克國際機場,一架美國聯邦航空公司的客機在准備降落時發現右側主起落架出了故障,無法放下,經過幾次失敗的嘗試後只好迫降,無人員傷亡。

㈤ 飛機的翅膀叫什麼名字

飛機的翅膀叫機翼。

翼主要是指飛行動物的翅膀,但是飛機是由人類製造出來的飛行器械,而且飛機的翅膀發生的作用與飛行動翅膀的作用是不同的,為了區別這兩種不同我們把飛行動物的叫做翅膀把飛機的叫做機翼。

機翼是飛機的重要部件之一,安裝在機身上。其最主要作用是產生升力,與尾翼一起形成良好的穩定性與操縱性。另外可以在機翼內部裝載彈葯、設備和油箱,在機翼上可以安裝起落架、發動機、懸掛導彈、副油箱以及其他外掛設備。

飛機的各部位名稱

1、機翼

機翼—主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定渣緩悶和操作作用。

在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。機翼上還可安裝發動機、起落架和油箱等。

2、機身

機身—主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。

3、尾翼

尾翼—包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,有的高速飛機將水平安定面和升降舵合為一體成為哪培全動平尾。垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。

4、起落裝置

起落裝置—飛機的起落架大都由如彎減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支撐飛機。

5、動力裝置

動力裝置—動力裝置主要用來產生拉力和推力,使飛機前進。其次還可為飛機上的其他用電設備提供電等。



㈥ 誰能跟我講解飛機上的各部件作用

超輕型飛機-蟋蟀
蟋蟀的原型機(注冊號F-WTXJ)裝有兩台137cc的單缸二沖程Rowena6507J發動機,單台重6.5公斤,輸出功率9馬力。作為當時最小的雙引擎飛機,蟋蟀的載重比是最高的,有效載荷達空重的1.7倍!由於特殊的設計使得整架飛機的拆裝只要5分鍾,其極小的尺寸和重量也便於運輸。
蟋蟀的首飛是在1973年7月19日,是由有12000小時飛行經驗的68歲老飛行員Robert Buisson試飛的,在15天的時間里共試飛了13個小時,動作包括了橫滾、急上升轉彎、半滾倒轉、倒飛等特技動作!試飛中最大飛行速度超過220公里/小時。試飛得出飛機具有很好的穩定性和操縱性,飛行員不需要特殊的技術就可以駕駛。難得的是蟋蟀操縱起來象一架單發飛機,它的單發飛行性能特別棒,這主要得益於發動機裝配很一致、座艙蓋巧妙的避開了螺旋槳的滑流,而且尾翼的設計使得單發停車時不會帶來危險的操縱問題(眾所周知,雙發飛機單發停車後的橫側操縱很麻煩)。當把一台發動機的油門收到最後,手腳松開桿舵,蟋蟀只會緩慢的進入柔和的轉彎。
以下是蟋蟀的一些詳細資料:
類型:
雙發單座微型飛機,最大使用載荷+10g,-5g
機翼:
懸臂式矩形下單翼,翼型相對厚度21.7%(按弦長48厘米算,最大厚度在10.4厘米),機翼上反角4度,翼根安裝角1度,翼尖-30秒,無後掠角。機翼為單梁盒型結構,主梁是兩塊緣條鉚接在一塊腹板上,均為AU4G鋁製作,梁沿翼展方向帶一定的扭轉角,一端是類似滑翔機上的「叉舌」,用來和機身快速連接(只需2分鍾)。翼肋是由Klegecell(一種聚胺酯泡沫塑料)切割而成,總共70塊。蒙皮是單塊的AU4G鋁板,前緣是預成型的(直接蒙是很困難的),之後被粘接到翼肋和樑上。每塊機翼的兩端各是一個鋁翼肋。在機翼的後緣連接了兩塊全展長的襟副翼(用作襟翼時上偏5度,下偏30度;用作副翼時上偏8度下偏5度),為無梁硬殼式結構,每塊有4個金屬翼肋(兩端和兩個連接處各一個),全展長填充了20%弦長的Klegecell泡沫塑料,每塊襟副翼在根部都有一個球型連接用來和操縱系統相接。除了帶翼尖副油箱的改型有一根鋁輸油管貫穿翼盒外,沒有操縱剛索或連桿通過。
尾翼:
懸臂式T型尾翼,包括一塊帶後掠角的垂尾和一塊平直矩形 全動平尾,結構都類似機翼結構,沒有調整片;平尾是硬式連桿操縱,而方向舵則是軟式剛索操縱。平尾的載荷感覺由一根彈簧繩提供。
機身:
簡單的全金屬盒型結構,分前後兩段,後段的截面呈倒三角形,前段則是矩形,前後兩段通過四個角片連接在一起;機身中粘接有Klegecell泡沫塑料的加強隔框;AU4G的骨架在機翼、起落架、尾翼、發動機支桿等連接處都有接頭。
起落架:
不可收放的前三點式,前輪裝在一個彈簧減震器上,並且與方向舵操縱系統相連。主輪裝在玻璃鋼制的懸臂式支柱上。主輪尺寸為210-70,前輪為200-50,剎車為炭片盤式。三個輪子都裝有整流罩(原型機沒有)。
動力裝置:(適用MC-12)
兩台單缸二沖程活塞發動機,單台排量120cc,最大輸出功率12hp/5300rpm,重量9公斤,驅動一副雙葉螺旋槳,薄膜式化油器准許飛機倒飛;油箱裝在機身中。後來的改型裝有各類發動機,甚至噴氣發動機!
座艙:
巨大的透明座艙蓋向右打開,左座艙壁上有通風口,沒有加溫裝置。
尺寸:
翼展(有或沒有副油箱): 4.90米
翼弦(包括襟副翼,等長): 0.63米
翼弦(不包括襟副翼,等長): 0.48米
機翼總面積: 3.10平方米
展弦比: 7.75
機長: 3.91米
機高: 1.20米
平尾展長: 1.55 米
主輪距: 1.10 米
前主輪距: 1.15 米
螺旋槳直徑: 0.75米
螺旋槳中心距: 0.95米
座艙
長: 1.30米
最大寬度: 0.55米
最大高度: 0.82米
重量:
空重: 75公斤
最大起飛著陸重量: 180公斤
主油箱載油量: 20公升
副油箱載油量: 24公升
最大翼載: 58.1公斤/平方米
最大功載: 10.06公斤/千瓦
性能:
最大允許速度: 293公里/小時
最大平飛速度: 220公里/小時
最大巡航速度(75%功率): 195公里/小時
失速速度:
襟翼放下: 77公里/小時
襟翼收上: 93公里/小時
海平面最大爬升率: 336米/分鍾
單發海平面最大爬升率: 80米/分鍾
升限: 4600米
起飛滑跑距離: 170米

㈦ 遙控飛機主要組成部分在飛行中起到什麼樣的作用

遙控飛機的飛行原理是根據空氣動力學來設計的,在設計的時候要遵守這三個守恆定律.質量守恆是只有在氣體的速度高至必須考慮相對論效應時此定律才會失效。動量守恆由牛頓第二定律推導可得。能量守恆在不考慮粘性時,即機械能守恆;在必須考慮粘性的情況下,即機械能和熱能的守恆。這樣方可保證飛機在空中能保持不下落的狀態,大多數遙控飛機都是由機翼、機身、尾翼、起落裝置和動力裝置五個主要部分組成.這五個部分在飛行中起到什麼樣的作用呢? 1. 機翼—機翼的主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定和操作作用。在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。不同用途的飛機其機翼形狀、大小也各有不同。 2. 機身—機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。 3. 尾翼—尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。 4.起落裝置—飛機的起落架大都由減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支撐飛機。 5.動力裝置—動力裝置主要用來產生拉力和推力,使飛機前進。

㈧ 民航客機起落裝置大多都是可收放式的對嗎

飛機起落架系統簡介;起落架是飛機的重要部件,用來保證飛機在地面靈活運;後三點式起落架具有以下優點:(1)在飛機上易於裝;時的姿態與地面滑跑、停機時的姿態相同;暴露出了越來越多的缺點:(1)在大速度滑跑時,遇;(3)在起飛、降落滑跑時是不穩定的;前三點式起落架的主要優點有:1)著陸簡單,安全可靠;接地時,作用在主輪的撞擊力使迎角急劇減小,因而不;2)前起落架。
起落架是飛機的重要部件,用來保證飛機在地面靈活運動,減小飛機著陸撞擊與顛簸,滑行剎車減速;收上起落架減小飛行阻力,放下支持飛機。本文將簡要介紹現代民用飛機起落架的組成及工作。 一、起落架的作用 起落架就是飛機在地面停放、滑行、起飛著陸滑跑時用於支撐飛機重力,承受相應載荷的裝置。概括起來,起落架的主要作用有以下四個: 1、承受飛機在地面停放、滑行、起飛著陸滑跑時的重力; 2、承受、消耗和吸收飛機在著陸與地面運動時的撞擊和顛簸能量;3、滑跑與滑行時的制動;4、滑跑與滑行時操縱飛機。二、起落架的配置形式 起落架的布置形式是指飛機起落架支柱(支點)的數目和其相對於飛機重心的布置特點。目前,飛機上通常採用四種起落架形式: 1、後三點式:這種起落架有一個尾支柱和兩個主起落架。並且飛機的重心在主起落架之後。後三點式起落架的結構簡單,適合於低速飛機,因此在四十年代中葉以前曾得到廣泛的應用。目前這種形式的起落架主要應用於裝有活塞式發動機的輕型、超輕型低速飛機上。

閱讀全文

與典型起落裝置的組成其主要作用相關的資料

熱點內容
沖床自動送料送料裝置 瀏覽:384
鑄造配重一般是什麼牌號 瀏覽:256
裝貨卸貨設備哪個好 瀏覽:432
新中國成立自動升旗裝置 瀏覽:410
氧氣閥門壞了能修嗎 瀏覽:136
電腦機械鍵盤什麼軸最好 瀏覽:320
智能儀表不知道站地址了怎麼辦 瀏覽:366
機床加工中應注意什麼 瀏覽:908
儀表盤260碼的大眾車多少錢 瀏覽:329
我的世界無中生有自動篩礦裝置 瀏覽:672
頂樓樓道暖氣排氣閥門圖 瀏覽:3
自動化給水裝置 瀏覽:764
花鼓軸承損壞後什麼聲音 瀏覽:21
什麼是超聲波清洗機 瀏覽:120
機械製造都是學什麼 瀏覽:731
gle儀表盤是什麼意思 瀏覽:179
電叉車軸承怎麼換 瀏覽:18
汽車儀表盤wifi燈閃爍是什麼故障 瀏覽:131
紹興五金機電城新開 瀏覽:693
怎麼說明閥門關不住水 瀏覽:869