Ⅰ 常見機構設計及應用圖例的目錄
第1章機構設計基礎
1.1機構要素
1.1.1構件
1.1.2運動副
1.2機構圖示方法
1.2.1機構運動簡圖
1.2.2機構裝配圖
1.2.3機構構造圖
1.2.4機構軸測構造示意圖
1.2.5機構軸測簡圖
1.3機構自由度計算
1.3.1機構的自由度
1.3.2機構具有確定運動的條件
1.3.3常見機構自由度計算實例
1.3.4計算平面機構自由度時應注意的問題
1.4機構的分類
1.4.1執行動作和執行機構
1.4.2執行構件的基本運動和機構的基本功能
1.4.3按功能對機構分類
第2章平面連桿機構應用實例
2.1曲柄搖桿機構
2.1.1運動分析
2.1.2雷達天線仰俯角調整機構圖例與說明
2.1.3攪拌機機構圖例與說明
2.1.4縫紉機踏板機構圖例與說明
2.1.5顎式破碎機機構圖例與說明
2.1.6夾緊機構圖例與說明
2.1.7汽車前窗刮雨器機構圖例與說明
2.1.8攝影機抓片機構圖例與說明
2.1.9鋼材步進輸送機的驅動機構圖例與說明
2.1.10紋版沖孔機的沖孔機構圖例與說明
2.2雙曲柄機構
2.2.1運動分析
2.2.2慣性篩機構圖例與說明
2.2.3機車車輪聯動機構圖例與說明
2.2.4攝影平台升降機構圖例與說明
2.2.5旋轉式水泵機構圖例與說明
2.2.6公共汽車車門啟閉機構圖例與說明
2.2.7挖土機鏟斗機構圖例與說明
2.2.8沖床雙曲柄機構圖例與說明
2.3雙搖桿機構
2.3.1運動分析
2.3.2起重機機構圖例與說明
2.3.3汽車前輪換向機構圖例與說明
2.3.4飛機起落架機構圖例與說明
2.3.5擺動式供料器機構圖例與說明
2.3.6造型機翻轉機構圖例與說明
2.3.7閘門啟閉機構圖例與說明
2.3.8可逆坐席機構圖例與說明
2.4曲柄滑塊機構
2.4.1運動分析
2.4.2沖床機構圖例與說明
2.4.3壓力機工作機構圖例與說明
2.4.4搓絲機對心滑塊機構圖例與說明
2.4.5送料機偏置曲柄滑塊機構圖例與說明
2.4.6注射模對心曲柄滑塊機構圖例與說明
2.4.7蜂窩煤機偏置曲柄滑塊機構圖例與說明
2.4.8雙滑塊機構圖例與說明
2.5導桿機構
2.5.1運動分析
2.5.2牛頭刨床圖例與說明
2.5.3旋轉油泵圖例與說明
2.6搖塊機構和定塊機構
2.6.1運動分析
2.6.2擺缸式油泵圖例與說明
2.6.3抽水唧筒圖例與說明
2.6.4自動翻卸料裝置圖例與說明
2.7多桿機構
2.7.1六桿推料機構圖例與說明
2.7.2六桿增程式抽油機機構圖例與說明
2.7.3小型刨床機構圖例與說明
2.7.4假肢膝關節圖例與說明
2.7.5裝載機圖例與說明
2.7.6縫紉機擺梭機構圖例與說明
2.7.7插齒機機構圖例與說明
2.7.8插床插削機構圖例與說明
2.7.9擺式飛剪機機構圖例與說明
2.7.10電動玩具馬主體機構圖例與說明
第3章凸輪機構應用實例
第4章齒輪機構應用實例
第5章輪系應用實例
第6章間歇運動機構應用實例
第7章螺旋機構應用實例
第8章撓性傳動機構應用實例
第9章組合機構應用實例
第10章特殊機構應用實例
第11章創新機構應用實例
參考文獻
Ⅱ 求一級減速器裝配圖圖片及零件圖
給你一份我以前做的:
摘 要
齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。
關鍵詞: 飛剪機;減速器;間隙;主副齒輪
Abstract
Recer is widely used as a basic facility. It』s performance which is excellent or inferior has an impact on the running state of the mechanical equipment. But many factories don』t have machining equipment for manufacturing high-precision recer at present . On the other hand, even though the part is manufactured by the best equipment, it also has error. And their accumulative errors still affect on the transmission performance of recer after assembled.No lateral gap technology in this article put forward using main-second gear to achieve no lateral gap transmission of the flying shears at the state of having no adequate equipment by a new way.
「No lateral gap ingear」 is processing gear to a particular state(such as temperature, bearing clearance, etc.),considering the working conditions as much as possible. But in fact,it』s impossible that the gears have no lateral gap.The laterl gap of the gear is very small.
Usually there are many ways to eliminate lateral gap,such as improving the processing accuracy,using bevel gear, using four tandem gears and using main-second gear.This design has used the main-second gear. In some flying shears the running performance of the top and bottom selsyn roller usually can be improved by using main-second gear on the gear of the driven shaft.It can make the gear working at no lateral gap and eliminate shock load. The use of the main-second gear can eliminate lateral gap,and it still can achieve no lateral gap transmission when the recer is suddenly braked.
Key words:Flying shears; Recer; Lateral gap; Main-second gear
目 錄
1 前言 1
2 研究內容 2
3 傳動方案的分析與擬定 2
4 電動機的選擇 2
5 傳動裝置的運動及動力參數的選擇和計算 2
5.1 傳動裝備的總效率為 2
5.2 傳動比的分配 2
5.3 傳動裝置的運動和動力參數計算 2
5.3.1 各軸的轉速計算: 2
5.3.2 各軸的輸入功率計算: 3
5.3.3 各軸輸入轉矩的計算: 3
6 齒輪的計算 3
6.1 第一對斜齒輪的計算 3
6.1.1 材料選擇 3
6.1.2 初選齒輪齒數 3
6.1.3 按齒面接觸強度設計 3
6.1.4 按齒根彎曲疲勞強度設計 5
6.1.5 幾何尺寸計算 7
6.1.6 齒輪的尺寸計算 7
6.1.7 傳動驗算 8
6.2 第二對斜齒輪的計算 8
6.2.1 材料選擇 8
6.2.2 初選齒數 8
6.2.3 按齒面接觸強度設計 9
6.2.4 按齒根彎曲疲勞強度設計 10
6.2.5 幾何尺寸計算 12
6.3 按標准修正齒輪 12
6.3.1 修正中心距 12
6.3.2 對第二對齒輪修正螺旋角: 13
6.3.3 第二對齒輪的分度圓和中心距: 13
6.3.4 計算齒寬: 13
6.3.5 齒輪的尺寸計算 13
6.3.6 傳動驗算 14
7 軸的設計 15
7.1 高速軸的設計 15
7.1.1 初步確定軸的最小直徑: 15
7.1.2 根據軸向定位要求確定軸各段的直徑和長度 15
7.2 中速軸的設計 16
7.2.1 初步確定軸的最小直徑: 17
7.2.2 初步選擇滾動軸承 17
7.2.4 軸承端蓋 18
7.2.5 鍵的選擇 18
7.3 低速軸的計算 18
7.3.1 初步確定軸的最小直徑 18
7.3.2 根據軸向定位要求確定軸各段的直徑和長度 19
8 軸的校核 19
8.1 高速軸的校核 20
8.1.1 各支點間的距離 20
8.1.2 求軸上的載荷: 20
8.2 中速軸的校核 21
8.2.1 各支點間的距離 22
8.2.2 求軸上的載荷: 22
8.3 低速軸的校核 24
8.3.1 各軸段的距離 24
8.3.2 求軸上的載荷: 24
9 軸承的壽命計算 26
9.1 高速軸上軸承的壽命計算 26
9.1.1 求兩軸承受到的徑向載荷 和 26
9.1.2 求兩軸承的軸向力 和 27
9.1.3 求軸承當量重載荷P1和P2 27
9.2 中速軸上軸承的壽命計算 27
9.2.1 求兩軸承的軸向力 和 28
9.2.2 求軸承當量重載荷P1和P2 28
9.3 低速軸上軸承的壽命計算 28
9.3.1 求兩軸承受到的徑向載荷 和 28
9.3.2 求兩軸承的軸向力 和 29
9.3.3 求軸承當量重載荷P1和P2 29
10 鍵的校核 30
10.1 高速軸上和聯軸器相配處的鍵: 30
10.2 中速軸上和齒輪相配處的鍵: 30
10.3 低速軸上和齒輪相配處的鍵: 30
11 主副齒輪的設計 31
11.1 第一對主副齒輪的設計 31
11.2 第二對主副齒輪的設計 32
12 減速器箱體的設計 33
12.1 箱蓋各鋼板的尺寸: 34
12.1.1 箱蓋左側鋼板的尺寸如圖: 34
12.1.2 箱蓋軸承座的尺寸如圖: 34
12.1.3 箱蓋吊耳環下鋼板尺寸 34
12.1.4 吊耳環的尺寸 35
12.1.5 高速上肋板的尺寸 35
12.1.6 中速軸上的肋板的尺寸 35
12.1.7 視孔蓋的尺寸 36
12.1.9 箱蓋頂鋼板的尺寸 37
12.1.10 箱蓋凸緣鋼板尺寸 37
12.1.11 箱蓋前後側面的尺寸 38
12.2 箱座上各鋼板的尺寸 38
12.2.1 箱座底座的尺寸 38
12.2.2 箱座左側面的尺寸 39
12.2.3 軸承座的尺寸 39
12.2.4 吊鉤的尺寸 39
12.2.5 箱座凸緣的尺寸 39
12.2.6 低速端肋板鋼板尺寸 40
12.2.7 高速軸端肋板的尺寸 40
12.2.8 中速端肋板的尺寸 41
12.2.9 箱座右側面鋼板的尺寸 41
12.2.10 箱座前後端面的尺寸 42
12.2.11 箱座底板 42
13 結束語 42
參考文獻: 43
致謝: 43
1 前言
齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪(圖1)。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。
圖1.1 飛剪機同步齒輪傳動的主副齒輪結構 a)結構簡圖 b)嚙合關系
1—從動軸的主齒輪 2—從動軸的副齒輪 3—主動軸上的齒輪 4—彈簧 5,6—銷釘
從動軸上的主齒輪1與軸用鍵固定,而副齒輪2則與主齒輪1的輪轂滑動配合(亦可直接空套在從動軸上)。主副齒輪通過壓裝在主齒輪輪轂上的銷釘5及裝在副齒輪上的銷釘6與彈簧4相聯,主副齒輪1和2同時與裝在主動軸上的齒輪3嚙合。在彈簧4的作用下,副齒輪始終越前主齒輪一個角度,這就保證了上下滾筒的同步齒輪在無側隙下工作。彈簧4的設計應能克服飛剪機制動時所產生的慣性力。這種齒輪側隙消除裝通常用在低速大載荷飛剪機上,例如在設計FL—60型曲柄連桿飛剪機的同步齒輪時就採用了這種結構。
2 研究內容
本設計對象為飛剪齒輪減速器,總傳動比i=16,實際輸入功率N=120KW;輸入轉速n1=1500rpm,輸出轉速n2≈85rpm,技術要求為滿足上述功率及速比要求,減速器啟動頻繁,工作時一般不逆轉,設計一台能消除傳動時的齒輪側間隙的減速器,要求減速器箱體為焊接結構件。合理公配速比,設計計算齒輪,軸及各零部件的強度,剛度。分析無側間隙傳動的基本理論及保證措施。
3 傳動方案的分析與擬定
減速器採用雙級圓柱展開式齒輪減速器。
4 電動機的選擇
5 傳動裝置的運動及動力參數的選擇和計算
5.1 傳動裝備的總效率為
η=η12η22η33η4=0.992 0.972 0.993 0.96=0.872 (5.1)
η1為聯軸器的效率,取0.99,
η2為齒輪傳動的效率,取0.97,
η3為滾動軸承的效率,取0.99,
η4為滾筒的效率,取0.96。
5.2 傳動比的分配
i1= (5.2)
取系數1.35 i=16 則,
i1=4.6476
i2=i/i1=16/4.6476=3.4426 (5.3)
5.3 傳動裝置的運動和動力參數計算
5.3.1 各軸的轉速計算:
n1=1500r/min
n2=n1/i1=1500/4.6476r/min=322.747r/min (5.4)
n3=n2/i2=322.747/3.4426r/min=93.751r/min (5.5)
n4=n3=93.751r/min (5.6)
5.3.2 各軸的輸入功率計算:
P1=N η1=120 0.99kW=118.8kW (5.7)
P2=P1 η2 η3=118.8 0.97 0.99kW=114.0836kW (5.8)
P3=P2 η2 η3=114.0836 0.97 0.99kW=109.5545kW (5.9)
P4=P3 η3 η1=109.5545 0.99 0.99kW=106.3744kW (5.10)
5.3.3 各軸輸入轉矩的計算:
T1=9550P1/n1=9550 118.8 1500N m=756.36 N m (5.11)
T2=9550P2/n2=9550 114.0836 322.7472 N m =3375.702N m (5.12)
T3=9550P3/n3=9550 109.5545 93.751 N m =11159.8327N m (5.13)
T4=9550P4/n4=9550 106.3744 93.751 N m=10937.7555 N m (5.14)
各軸的運動及動力參數:
軸號 轉速n r/min 功率P kw 轉矩T N m 傳動比
1 1500 118.8 756.36 4.6476
2 322.75 114.08 3375.7 3.4426
3 93.75 109.55 11159.83 1
4 93.75 106.37 10937.76
6 齒輪的計算
6.1 第一對斜齒輪的計算
6.1.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.1.2 初選齒輪齒數
選小齒輪齒數Z1=24,Z2=Z1 =24 4.6476=111.54 取Z2=112
6.1.3 按齒面接觸強度設計
d1t (6.1)
6.1.3.1 確定載荷系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.1.3.2 計算應力循環系數。
N1=60n1jLh=60 1500 1 (2 8 300 15)=6.48 109 (6.2)
N2=N1/i1=6.48 109/4.6476=1.39 109 (6.3)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.88 KHN2=0.95
6.1.3.3 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=968Mp (6.4)
2= = Mp=1045Mp (6.5)
=( 1+ 2)/2=(968+1045)/2Mp=1006.5Mp (6.6)
6.1.3.4 小齒分度圓的直徑
d1t =77.54mm (6.7)
6.1.3.5 計算圓周速度
= = m/s=6.09m/s (6.8)
6.1.3.6 計算齒寬b及模數mnt
b= =0.8 77.54mm=62.032mm (6.9)
mnt= = mm=3.135mm (6.10)
h=2.25mnt=7.053mm
b/h=62.032/7.053=8.795 (6.11)
6.1.3.7 計算縱向重合度
=0.318 =0.318 0.8 24 =1.522 (6.12)
6.1.3.8 計算載荷系數K
根據 =6.09m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.08,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.05+0.31 (1+0.6 ) +0.19 (6.13)
故K =1.05+0.31 (6.14)
考慮到齒輪為6級精度,所以取K =1.43
故 =1 (6.15)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.1.3.9 按實際的載荷系數校正所算得的分度圓直徑
(6.16)
6.1.3.10 計算模數mn
(6.17)
6.1.4 按齒根彎曲疲勞強度設計
(6.18)
6.1.4.1 計算載荷系數
=1 (6.18)
6.1.4.2 計算彎曲疲勞強度極限
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.1.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.1.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.19)
(6.20)
6.1.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數
,
查取應力校正系數
,
則 (6.21)
(6.22)
比較可得,小齒輪的數值較大,取小齒輪的值。
6.1.4.6 計算螺旋角影響系數
根據 =1.522,由參考資料《機械設計》(圖10-28)查得 =0.88
6.1.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。
則 (6.23)
則有, (6.24)
對比計算結果,齒面接觸強度得出的模數為mn=3.198mm,由齒根彎曲疲勞強度得出的模數為mn=3.082mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=3.5mm,取分度圓直徑d1=79.11mm。
(6.25)
取Z1=22
則Z2=uZ1=4.6476 22=102.24,取Z2=102 (6.26)
6.1.5 幾何尺寸計算
6.1.5.1 計算中心距
(6.27)
圓整後,取a=224mm
6.1.5.2 按圓整後的中心距修正螺旋角
(6.28)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.1.5.3 計算分度圓直徑
(6.29)
(6.30)
6.1.5.4 計算齒輪寬度
(6.31)
圓整後取B1=75mm,B2=64mm
6.1.6 齒輪的尺寸計算
6.1.6.1 基圓直徑
(6.32)
(6.33)
6.1.6.2 分度圓齒厚
(6.34)
6.1.6.3 齒高
齒頂高 (6.35)
齒根高 (6.36)
齒全高 (6.37)
6.1.6.4 齒頂圓直徑
(6.38)
(6.39)
6.1.6.5 齒根圓直徑
(6.40)
(6.41)
6.1.6.6 分度圓齒槽寬和齒距
(6.42)
(6.43)
6.1.7 傳動驗算
6.1.6.1 按齒面接觸強度驗算:
其中
6.1.6.2 按齒根彎曲強度驗算
取YFa中較大者YFa1進行計算。
(6.44)
其中
6.2 第二對斜齒輪的計算
6.2.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。
6.2.2 初選齒數
選小齒輪齒數Z1=30,Z2=Z1 =30 3.4426=103.28 取Z2=104
6.2.3 按齒面接觸強度設計
d1t (6.45)
6.2.3.1 各項系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.2.3.2 Hlim值
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.2.3.3 計算應力循環系數。
N1=60n1jLh=60 322.75 1 (2 8 300 15)=1.394 109 (6.46)
N2=N1/i1=1.394 109/3.4426=4.05 108 (6.47)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.89 KHN2=0.94
6.2.3.4 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=979Mp (6.48)
2= = Mp=1034Mp (6.49)
=( 1+ 2)/2=(979+1034)/2Mp=1006.5Mp (6.50)
6.2.3.5 小齒分度圓的直徑
d1t =130.25mm (6.51)
6.2.3.6 計算圓周速度
= = m/s=2.201m/s (6.52)
6.2.3.7 計算齒寬b及模數
b= =0.8 130.25mm=104.2mm
= = mm=4.213mm (6.53)
h=2.25mnt=9.479mm
b/h=104.2/9.479=8.795
6.2.3.8 計算縱向重合度
=0.318 =0.318 0.8 30 =1.903 (6.54)
6.2.3.9 計算載荷系數K
根據 =2.201m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.04,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.0+0.31 (1+0.6 ) +0.19
故K =1.0+0.31 (6.55)
考慮到齒輪為6級精度,所以取K =1.35
故 =1 (6.66)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.2.3.10 按實際的載荷系數校正所算得的分度圓直徑
(6.67)
6.2.3.11 計算模數mn
(6.68)
6.2.4 按齒根彎曲疲勞強度設計
(6.69)
6.2.4.1 計算載荷系數
=1 (6.70)
6.2.4.2 值
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.2.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.2.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.71)
(6.72)
6.2.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數:
,
查取應力校正系數:
,
則 (6.73)
(6.74)
比較可得,大齒輪的數值較大,取大齒輪的值。
6.2.4.6 計算螺旋角影響系數
根據 =1.903,由參考資料《機械設計》(圖10-28)查得 =0.88
6.2.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。
則
則有, (6.75)
對比計算結果,齒面接觸強度得出的模數為mn=4.21mm,由齒根彎曲疲勞強度得出的模數為mn=4.31mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=4.5mm,取分度圓直徑d1=130.25mm。
,取Z1=28
則Z2=uZ1=3.4426 28=96.39,取Z2=96
6.2.5 幾何尺寸計算
6.2.5.1 計算中心距
(6.76)
圓整後,取a=288mm
6.2.5.2 按圓整後的中心距修正螺旋角
(6.77)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.2.5.3 計算分度圓直徑
6.2.5.4 計算齒輪寬度
圓整後取B1=120mm,B2=103mm
6.3 按標准修正齒輪
6.3.1 修正中心距
中心距之和為 ,查得標准中心距為a=539mm, , 。由於第一個中心距和標准相同,所以只需將第二個中心距修改為 即可。由於模數取的標准值所以不作變化,只更改第二對齒輪的齒數。
由於 所以
而 ,則有 , 。
中心距 ,改變不大,所以仍取 。
6.3.2 對第二對齒輪修正螺旋角:
(6.78)
因為改變不多,故 , , 等不必修正。
6.3.3 第二對齒輪的分度圓和中心距:
6.3.4 計算齒寬:
圓整後取 ,
6.3.5 齒輪的尺寸計算
6.3.5.1 基圓直徑
6.3.5.2 分度圓齒厚
6.3.5.3 齒高
齒頂高
齒根高
齒全高
6.3.5.4 齒頂圓直徑
7.3.5.5 齒根圓直徑
6.3.5.6 分度圓齒槽寬和齒距
6.3.6 傳動驗算
6.3.6.1 按齒面接觸強度驗算:
其中
6.3.6.2 按齒根彎曲強度驗算
取 中較大者 進行計算。
其中
所以滿足。
字數限制了,還是發你郵箱吧
Ⅲ 英國部族級驅逐艦是怎樣設計的
1930年代中,英國海軍開始發覺其艦隊驅逐艦標准已經落後於其他國家正在建造或已經服役的新型驅逐艦。日本的特型(吹雪級驅逐艦)驅逐艦,義大利的航海家級,法國的空想級和美國的波特級都擁有更多更強的火炮和魚雷,在擁有高速的同時排水量達到1750至2500噸。
1934年下半年,新型驅逐艦的設計開始擺上檯面,要求擁有更強力的武裝以應付羨首水面戰斗。英國海軍要求新型驅逐艦執行的任務包括:「巡邏,追擊,包抄,對驅逐艦中隊的近距離支援,與巡洋艦共同執行偵察和護航任務。」
而根據任務制定的設計要求包括:5座雙聯裝低仰角的120毫米炮,良好的通訊和指揮能力,36節的航速;15節航速下要有5500海里的續航力,一座輕型的魚雷發射管,用於在低能見度和夜間進行攻擊,根據倫敦海軍條約的限制,標准排水量為1850噸。
1935年11月,海軍部批准了最後的設計方案:部族級驅逐艦總長112.1米,艦寬36.5英尺10.95米,吃水2.7米,標准排水量1959噸,編制艦員190人。
4座雙聯裝27.5毫米炮分別安裝在A、B、X、Y炮位,火炮為45倍徑27.5毫米,裝在MkXIX型炮架上,擁有一個相當好的炮盾,炮塔後部敞開。射速為12發/分,設計上可以對空射擊但最高仰角只有40度兄凱數。
總計備彈2400發,其中400發高炮彈,400發照明彈。原計劃中的第五座120毫米炮撤銷,取而代之的是一門4聯裝2磅「砰砰」炮,安置在X炮位甲板的前端,炮彈使用觸發式引信,射速為400發/分,備彈14400發,但其較低的初速造成只有1700碼的有效射程,而且容易卡彈,由於沒有射擊指揮儀,所以只能進行人工瞄準,在面對高速飛機作用有限,但至少這種火炮的火力密度還是令人畏懼的,而且能夠在一定程度上鼓舞士氣。
另外兩座四聯裝12.7毫米高射機槍裝設在船體中部,位於兩個煙囪之間,備彈10000發。一座四聯裝魚雷發射管則裝在後煙囪後面。
以往英國海軍建造的驅逐艦,每一級都造一艘尺寸、排水量較大,裝備不同武器的艦只作為驅逐領艦,而部族級取消了這個做法,領艦與其餘艦只在尺寸、排水量和武備上無任何差別,僅在艦員編制上有所不同。
值得一提的是,部族級的設計師科爾還考慮到艦艇的外觀,他認為一艘漂亮的軍艦會提高艦員的自豪感,這是相當難把握的。許多人都認為部族級是二戰中最漂亮英國驅逐艦。
艦橋頂部設有標準的驅逐艦型指揮控制塔,僅用作對海、陸火力指揮。同時孫滲也裝有測距儀,在對海/陸攻擊時,測距儀僅僅用作測距,而在對空射擊時則同時擔負測距和瞄準射擊工作。27.5毫米主炮的俯仰、回轉和裝填已經動力化,指揮控制塔和魚雷管的回轉同樣也是動力驅動的。
反潛裝備包括了聲納;艦尾一條較短的深彈投放軌,能夠容彈三顆;在X炮位甲板有兩座深彈拋射器,分別布置在後桅兩側,全艦共計能夠裝載30顆深彈。
動力裝置是三座海軍型三鍋筒式鍋爐,分裝在三個鍋爐艙中。鍋爐艙之後隔著一重防水隔壁的是機艙,兩台帕森斯齒輪傳動式蒸汽輪機能夠為兩軸螺旋槳提供44000馬力,使軍艦達到計劃的36節最高航速,在最惡劣的海況下也能達到32.5節左右。
鍋爐壓力和一直以來的以往英國海軍建造的驅逐艦相同,為300磅/平方英寸。燃油搭載量為520噸,提供的續航力為15節速度航行5700海里。部族級的動力裝置相當可靠,能夠長時間維持高速行駛,但由於鍋爐蒸汽溫度和壓力較低,和其他國家的新型驅逐艦比起來,其功率和經濟性仍然較差。
為此曾有再增加一台發動機的想法,最後考慮到會使軍艦全長增加約30英尺而令排水量大幅上升而作罷。最終的設計已經盡可能地滿足條約中1850噸的排水量限制。
最初計劃的時候是建造7艘部族級驅逐艦,1936年3月10日,即德軍開進萊茵蘭非武裝區後的第三天,英國海軍向船廠下單建造7艘部族級,稍後又在計劃中增加了9艘,並於6月份向船廠下單。
期間艦首的設計進行了更動,將原來的直線型前傾首改為飛剪型艦首,目的是減少海浪對A炮位的影響。有人提議將其中一座後主炮與4聯裝2磅炮對調以使2磅炮獲得更好的射角,但被駁回。建造過程中重量超過了計劃,實際的排水量達到1900噸以上。由於主炮的生產速度跟不上,拖長了建造的時間。
1936年6月9日,最初兩艘部族級阿弗利蒂人號和哥薩克人號在維克斯-阿姆斯特朗公司位於泰恩河的船廠鋪下龍骨。所有16艘艦在1938年5月至1939年3月間建成。
1942至1945年間澳大利亞建成了3艘部族級,建造前根據實戰的經驗而改進了設計。加拿大也訂購了8艘改進型部族級,其中4艘於1942至43年間在英國建成,另外4艘於1945至48年間在加拿大本土建成。
Ⅳ 驅動力造句-用驅動力造句
(1) 人類本質里最深層的 驅動力 就是希望具有的重要性,你要別人怎麼對待你,你就先怎樣的對待別人。
(2) 志向是前進的 驅動力 ,計劃是前進的路線圖。
(3) 信貸刺激的減少帶來風險:如果投資或消費缺乏持久的 驅動力 ,經濟增長可能一蹶不振。
(4) 但是到最後,沒有正確的 驅動力 ,這些器材就像是體操房的會員卡,只是由於投資了大量金錢而產生的負罪感帶來的壓力和限制。
(5) 這正是我在本文介紹的函數庫的 驅動力 。
(6) 朋輩們的排名和評論已經成了新蛋網設計的 驅動力 ,幾乎每個頁面都能看到。
(7) 底盤:大行走 驅動力 ,重型加長型底盤,剛性好,穩定性高,適合多種地面。
(8) 萊文說:「攔基正一個靈活的表面可以有局部感知力和 驅動力 。」。
(9) 以自然和持久的積極 驅動力 取代恐懼和不確定感,從而促進積極轉變、排除阻力.
(10) 針對轉盤式貼裝頭電機的 驅動力 矩,進行了理論計算與模擬實驗。
(11) 驅動力 傳送部件,電照相感光鼓,處理盒和電照相成像設備。
(12) 本實用新型涉及一種旋耕播種機氣吸風機 驅動力 裝置,涉及旋耕機、播種機技術領域。
(13) 對於無外界 驅動力 且阻力與速度成正比的阻尼諧振子,通過正則變換,得出了阻尼諧振子的嚴格波函數及其相應能級。
(14) 沽源縣土地利用空間格局 驅動力 主要影響因素為坡度和離村級公路距離,而且各土地利用影響因子均發生了明顯的變化。
(15) 企業建模的潛在規模是嚴格例行程序和管理的 驅動力 。
(16) 二三線城市的國內消費正成為中國經濟的一大 驅動力 。
(17) 需要是人的本性,是歷史發展的原發 驅動力 .
(18) 此機採用無充氣橡膠墊輪胎式行走車輪, 驅動力 由電機供給。
(19) 近幾年來,西方組織貫標 驅動力 研究已經取得了一定的成果。
(20) 有了自信,任何人都能變得出色,可以說自信是使平凡走向非凡的 驅動力 ,是人生奮發向上的激情之源。
(21) 在漫漫的人生旅途中鋒含,書是我的精神食糧,我經常吮吸著它那知識的甘霖,並將其消化成這世間人生之路上的精神 驅動力 。每有空閑,不是手不釋卷,就是溫故知新,不斷充實自己的閑暇時光。
(22) 一個人如果下決心要成為什麼樣的人,或者下決心要做成什麼樣的事,那麼,意志或者說動機的 驅動力 會使他心想事成,如願以償。
(23) 一個在媽媽懷里受寵的孩子終生都會保持一種征服欲,那種成功的自信往往帶來真正的成功本我是馬,自我是馬車夫。馬是 驅動力 ,馬車夫給馬指引方向。自我要駕馭本我,但馬可能不聽話,二者就會僵持不下,直到一方屈服。弗洛伊德
(24) 在最富裕的國家裡,比例再次上升,在這些地方,企業家的 驅動力 往往是他們覺察到了機會,而不是不得已而為之。
(25) 用解析法對平面鉸鏈四桿式飛剪機進行動態靜力分析,導出了求解靜力矩、動態 驅動力 矩的聯立方程組。
(26) 這要求高校共青團組織要重視和加強團員教育工作,而作為高校青年行為 驅動力 的團員意識更是教育的重中之重。
(27) 一檔變速傳給車輪的轉矩比五檔傳出的轉矩大,因為一檔變速有大的傳動比,而大的降速比則加大了 驅動力 矩。
(28) 如採用液壓操縱,則可直接從泵車的泵送系統中獲取液壓 驅動力 ,並通過手動液壓閥實現操縱。
(29) 該車搭載的是一款雙渦輪增壓的3.6升水平直列六缸發動機,峰值動力輸出為620馬力,同時 驅動力 是通過一款6速的手動變速箱傳輸給後輪的。
(30) 本文以處理我國西部地區苦鹹水、製取超純水為應用背景,提出利用太陽能作為膜蒸餾的 驅動力 。
(31) 息烽溫泉旅遊地衰敗的 驅動力 具有外部影響因素和內部影響因素。
(32) 以一個3自由度平面並聯氣液動連桿機構為實例,給出了已知連桿運動規律下 驅動力 及運動副反力分析。
(33) 為了保證水下船體表面清刷機器人吸附可簡悔靠和運動靈活,需要合理地確定機器人的吸附力和 驅動力 矩。
(34) 各 驅動力 位於左欄,制約力則位於右欄。
(35) 環境決定論的核心是把自然環境作為人文現象的基本原因和 驅動力 。
(36) 如果成立,那你可以拿你的奧運資格證打賭,這個 驅動力 就是睾丸酮。
(37) 兒童生活的 驅動力 ,就是耍酷、抱團兒,現在這種驅動力比從前出現得早了很多,」格洛德告訴大夥兒說。
(38) 這個季節,美國農場主指望種植自二戰以來的傳統大秋作物玉米。對酒精需求的增長與外銷強勢是這一願望的主要 驅動力 。
(39) 進一步分析各個能量項可得,范德華相互作用能為包結的主要 驅動力 。
(40) 政府是應減少技術經費來增加對純理論科學的經費投入,還是相反,這往往取決於把哪一方看做是 驅動力 。
(41) 等到二月中旬的時候,勇氣號的能量將不足以提供其 驅動力 。那時它就不得不保存能量,進入「冬眠」狀態。
(42) 兩位世界冠軍從2003年就成為慈善賽的 驅動力 。
(43) 企業財務報告演進的內在 驅動力 是資本保全觀念,決定了財務會計報告體系的衍生。
(44) 他們提供高效的振動篩,填料機和傳送機的 驅動力 。
(45) 車輪受一個大的軸重和一個 驅動力 矩,而驅動力矩和轉速的特性曲線為單調函數。
(46) 尼采認為「強力意志」是最基本的人類 驅動力 ,和叔本華不同他認為這種強力意志是一個創造性的力量,並且人類將會進步到一個新的存在水平。
(47) 這些概念性屬性捕獲為原則後,將作為開發企業體系結構的 驅動力 量。
(48) 蘭恩伯格贊揚了柯林頓國務卿在論壇的另一次會議上發表的講話。她在講話中指出,作為經濟增長和民主穩定的「 驅動力 」,婦女發揮了尤其重要的作用。
(49) 在微分方程組中 驅動力 作為已知數,所以驅動力直接影響著微分方程組的求解結果.
(50) 籽晶方法生長金剛石採用溫度梯度技術,金剛石晶體生長 驅動力 來源於腔體內構造的溫度梯度。
(51) 這個數十億美元的計算機游戲產業是網路發展的首要 驅動力 ,它要求多玩家網路和實時游戲技術的支持。
(52) 「美」有力量。它擁有無可比擬的凝聚力。反過來說,它給了你 驅動力 。它逼著你,要挾著你,讓你對它做出反應。畢飛宇
(53) 人力資本是現代經濟增長的主要 驅動力 是十分明顯的;我國目前正進入城市化進程加速時期,加快縣域經濟的發展是必經之道。
(54) 不過,它們並不涉及毀林活動的商業 驅動力 ,而且也易出現漏損.
(55) 然後我想到的第二股 驅動力 仍然是各國之間的競爭與交往,或者說是大國的興衰起伏。
(56) 並結合黃石市實際情況,分析引起這種變化的 驅動力 。
(57) 這種願望即是催發人們奮進的強大 驅動力 ,又同時在人們的心中造成一種揮之不去的緊張壓力感。
(58) 如果恰當對待,不費力氣的長時間成功的歷史也可以成為 驅動力 。
(59) 「這種體制會產生巨大的 驅動力 ,促使老師降低要求,判分寬松,娛樂學生,以獲得較高的課程評價,」阿倫姆說。
(60) 針對主減速器工作中應滿足最小 驅動力 矩的指標,通過數值計算得到墊片實際的厚度,為主減速器的一次性裝配成功提供了依據。
(61) 中國、美國、日本、歐盟、俄羅斯、印度、巴西以及很多其他國家,它們共同塑造著今天的世界秩序,並且也是最重要的 驅動力 。
(62) 基於唯象理論,分析了汽泡核化速率和過熱度以及相變 驅動力 和唯象系數的關系。
(63) 需要是人們活動的一個動因,道德需要是人們進行道德活動的 驅動力 。
(64) 我們預期企業重新補充庫存,將成為2009年下半經濟成長的 驅動力 ,而2010年經濟復甦將更為全面,盡管從實際數據來看,幅度仍不大.
(65) 同時,筆者研製了一種微小力測試實驗台,對驅動輪的彈性變形 驅動力 進行了測試。
(66) SO,本周雲圖從網購繁榮表面剝去一兩層浮飾,探尋網購奢侈品鮮為人知的贗品來源和 驅動力 。
(67) 在紙質書時代,我們強調編印發,在數字出版時代我們則考慮內容生產者,商業 驅動力 ,整理者和用戶,這些和完全紙質書不一樣。
(68) 持續性感到身心疲勞和乏力;對許多事情缺乏興趣和 驅動力 ;丟三忘四,尤其感到思考效率低下。
(69) 業內人士認為,這些因素交織在一起,將成為生豬產業變革的三大 驅動力 ,推動生豬產業加速轉型,使生豬業進入「解咒破殤」的發展新時期。
(70) 據中國科學院寒區旱區環境與工程研究所南卓銅博士介紹,全球氣候變暖是造成近30年來多年凍土退化的主要 驅動力 。
(71) T感應到車輛在上坡時,會自動禁止升擋操作,無需深踩油門,就會有強大的 驅動力 ,上坡就像走平地一樣輕松。
(72) 大小醫院如果想手牽得好,還要盡可能設計出兼顧的方案,激發內 驅動力 大醫院「牽手」小醫院,這樣的探索各地挺多。
(73) 教授亦然,除了招幾個「頂戴花翎」的「門生」可以光耀門庭,滿足一下「某某是我學生」之虛榮,恐怕利益才是內在 驅動力 。
(74) 在漫長藝術生涯中,藝術知己們的提掖、鼓勵和賞識,無疑給了他不斷的 驅動力 和充沛的自信心。
Ⅳ 機械設計題目:帶式運輸機傳動系統中的展開式二級圓柱齒輪減速器
給你一份我以前做的:
摘 要
齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。
關鍵詞: 飛剪機;減速器;間隙;主副齒輪
Abstract
Recer is widely used as a basic facility. It』s performance which is excellent or inferior has an impact on the running state of the mechanical equipment. But many factories don』t have machining equipment for manufacturing high-precision recer at present . On the other hand, even though the part is manufactured by the best equipment, it also has error. And their accumulative errors still affect on the transmission performance of recer after assembled.No lateral gap technology in this article put forward using main-second gear to achieve no lateral gap transmission of the flying shears at the state of having no adequate equipment by a new way.
「No lateral gap ingear」 is processing gear to a particular state(such as temperature, bearing clearance, etc.),considering the working conditions as much as possible. But in fact,it』s impossible that the gears have no lateral gap.The laterl gap of the gear is very small.
Usually there are many ways to eliminate lateral gap,such as improving the processing accuracy,using bevel gear, using four tandem gears and using main-second gear.This design has used the main-second gear. In some flying shears the running performance of the top and bottom selsyn roller usually can be improved by using main-second gear on the gear of the driven shaft.It can make the gear working at no lateral gap and eliminate shock load. The use of the main-second gear can eliminate lateral gap,and it still can achieve no lateral gap transmission when the recer is suddenly braked.
Key words:Flying shears; Recer; Lateral gap; Main-second gear
目 錄
1 前言 1
2 研究內容 2
3 傳動方案的分析與擬定 2
4 電動機的選擇 2
5 傳動裝置的運動及動力參數的選擇和計算 2
5.1 傳動裝備的總效率為 2
5.2 傳動比的分配 2
5.3 傳動裝置的運動和動力參數計算 2
5.3.1 各軸的轉速計算: 2
5.3.2 各軸的輸入功率計算: 3
5.3.3 各軸輸入轉矩的計算: 3
6 齒輪的計算 3
6.1 第一對斜齒輪的計算 3
6.1.1 材料選擇 3
6.1.2 初選齒輪齒數 3
6.1.3 按齒面接觸強度設計 3
6.1.4 按齒根彎曲疲勞強度設計 5
6.1.5 幾何尺寸計算 7
6.1.6 齒輪的尺寸計算 7
6.1.7 傳動驗算 8
6.2 第二對斜齒輪的計算 8
6.2.1 材料選擇 8
6.2.2 初選齒數 8
6.2.3 按齒面接觸強度設計 9
6.2.4 按齒根彎曲疲勞強度設計 10
6.2.5 幾何尺寸計算 12
6.3 按標准修正齒輪 12
6.3.1 修正中心距 12
6.3.2 對第二對齒輪修正螺旋角: 13
6.3.3 第二對齒輪的分度圓和中心距: 13
6.3.4 計算齒寬: 13
6.3.5 齒輪的尺寸計算 13
6.3.6 傳動驗算 14
7 軸的設計 15
7.1 高速軸的設計 15
7.1.1 初步確定軸的最小直徑: 15
7.1.2 根據軸向定位要求確定軸各段的直徑和長度 15
7.2 中速軸的設計 16
7.2.1 初步確定軸的最小直徑: 17
7.2.2 初步選擇滾動軸承 17
7.2.4 軸承端蓋 18
7.2.5 鍵的選擇 18
7.3 低速軸的計算 18
7.3.1 初步確定軸的最小直徑 18
7.3.2 根據軸向定位要求確定軸各段的直徑和長度 19
8 軸的校核 19
8.1 高速軸的校核 20
8.1.1 各支點間的距離 20
8.1.2 求軸上的載荷: 20
8.2 中速軸的校核 21
8.2.1 各支點間的距離 22
8.2.2 求軸上的載荷: 22
8.3 低速軸的校核 24
8.3.1 各軸段的距離 24
8.3.2 求軸上的載荷: 24
9 軸承的壽命計算 26
9.1 高速軸上軸承的壽命計算 26
9.1.1 求兩軸承受到的徑向載荷 和 26
9.1.2 求兩軸承的軸向力 和 27
9.1.3 求軸承當量重載荷P1和P2 27
9.2 中速軸上軸承的壽命計算 27
9.2.1 求兩軸承的軸向力 和 28
9.2.2 求軸承當量重載荷P1和P2 28
9.3 低速軸上軸承的壽命計算 28
9.3.1 求兩軸承受到的徑向載荷 和 28
9.3.2 求兩軸承的軸向力 和 29
9.3.3 求軸承當量重載荷P1和P2 29
10 鍵的校核 30
10.1 高速軸上和聯軸器相配處的鍵: 30
10.2 中速軸上和齒輪相配處的鍵: 30
10.3 低速軸上和齒輪相配處的鍵: 30
11 主副齒輪的設計 31
11.1 第一對主副齒輪的設計 31
11.2 第二對主副齒輪的設計 32
12 減速器箱體的設計 33
12.1 箱蓋各鋼板的尺寸: 34
12.1.1 箱蓋左側鋼板的尺寸如圖: 34
12.1.2 箱蓋軸承座的尺寸如圖: 34
12.1.3 箱蓋吊耳環下鋼板尺寸 34
12.1.4 吊耳環的尺寸 35
12.1.5 高速上肋板的尺寸 35
12.1.6 中速軸上的肋板的尺寸 35
12.1.7 視孔蓋的尺寸 36
12.1.9 箱蓋頂鋼板的尺寸 37
12.1.10 箱蓋凸緣鋼板尺寸 37
12.1.11 箱蓋前後側面的尺寸 38
12.2 箱座上各鋼板的尺寸 38
12.2.1 箱座底座的尺寸 38
12.2.2 箱座左側面的尺寸 39
12.2.3 軸承座的尺寸 39
12.2.4 吊鉤的尺寸 39
12.2.5 箱座凸緣的尺寸 39
12.2.6 低速端肋板鋼板尺寸 40
12.2.7 高速軸端肋板的尺寸 40
12.2.8 中速端肋板的尺寸 41
12.2.9 箱座右側面鋼板的尺寸 41
12.2.10 箱座前後端面的尺寸 42
12.2.11 箱座底板 42
13 結束語 42
參考文獻: 43
致謝: 43
1 前言
齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪(圖1)。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。
圖1.1 飛剪機同步齒輪傳動的主副齒輪結構 a)結構簡圖 b)嚙合關系
1—從動軸的主齒輪 2—從動軸的副齒輪 3—主動軸上的齒輪 4—彈簧 5,6—銷釘
從動軸上的主齒輪1與軸用鍵固定,而副齒輪2則與主齒輪1的輪轂滑動配合(亦可直接空套在從動軸上)。主副齒輪通過壓裝在主齒輪輪轂上的銷釘5及裝在副齒輪上的銷釘6與彈簧4相聯,主副齒輪1和2同時與裝在主動軸上的齒輪3嚙合。在彈簧4的作用下,副齒輪始終越前主齒輪一個角度,這就保證了上下滾筒的同步齒輪在無側隙下工作。彈簧4的設計應能克服飛剪機制動時所產生的慣性力。這種齒輪側隙消除裝通常用在低速大載荷飛剪機上,例如在設計FL—60型曲柄連桿飛剪機的同步齒輪時就採用了這種結構。
2 研究內容
本設計對象為飛剪齒輪減速器,總傳動比i=16,實際輸入功率N=120KW;輸入轉速n1=1500rpm,輸出轉速n2≈85rpm,技術要求為滿足上述功率及速比要求,減速器啟動頻繁,工作時一般不逆轉,設計一台能消除傳動時的齒輪側間隙的減速器,要求減速器箱體為焊接結構件。合理公配速比,設計計算齒輪,軸及各零部件的強度,剛度。分析無側間隙傳動的基本理論及保證措施。
3 傳動方案的分析與擬定
減速器採用雙級圓柱展開式齒輪減速器。
4 電動機的選擇
5 傳動裝置的運動及動力參數的選擇和計算
5.1 傳動裝備的總效率為
η=η12η22η33η4=0.992 0.972 0.993 0.96=0.872 (5.1)
η1為聯軸器的效率,取0.99,
η2為齒輪傳動的效率,取0.97,
η3為滾動軸承的效率,取0.99,
η4為滾筒的效率,取0.96。
5.2 傳動比的分配
i1= (5.2)
取系數1.35 i=16 則,
i1=4.6476
i2=i/i1=16/4.6476=3.4426 (5.3)
5.3 傳動裝置的運動和動力參數計算
5.3.1 各軸的轉速計算:
n1=1500r/min
n2=n1/i1=1500/4.6476r/min=322.747r/min (5.4)
n3=n2/i2=322.747/3.4426r/min=93.751r/min (5.5)
n4=n3=93.751r/min (5.6)
5.3.2 各軸的輸入功率計算:
P1=N η1=120 0.99kW=118.8kW (5.7)
P2=P1 η2 η3=118.8 0.97 0.99kW=114.0836kW (5.8)
P3=P2 η2 η3=114.0836 0.97 0.99kW=109.5545kW (5.9)
P4=P3 η3 η1=109.5545 0.99 0.99kW=106.3744kW (5.10)
5.3.3 各軸輸入轉矩的計算:
T1=9550P1/n1=9550 118.8 1500N m=756.36 N m (5.11)
T2=9550P2/n2=9550 114.0836 322.7472 N m =3375.702N m (5.12)
T3=9550P3/n3=9550 109.5545 93.751 N m =11159.8327N m (5.13)
T4=9550P4/n4=9550 106.3744 93.751 N m=10937.7555 N m (5.14)
各軸的運動及動力參數:
軸號 轉速n r/min 功率P kw 轉矩T N m 傳動比
1 1500 118.8 756.36 4.6476
2 322.75 114.08 3375.7 3.4426
3 93.75 109.55 11159.83 1
4 93.75 106.37 10937.76
6 齒輪的計算
6.1 第一對斜齒輪的計算
6.1.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.1.2 初選齒輪齒數
選小齒輪齒數Z1=24,Z2=Z1 =24 4.6476=111.54 取Z2=112
6.1.3 按齒面接觸強度設計
d1t (6.1)
6.1.3.1 確定載荷系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.1.3.2 計算應力循環系數。
N1=60n1jLh=60 1500 1 (2 8 300 15)=6.48 109 (6.2)
N2=N1/i1=6.48 109/4.6476=1.39 109 (6.3)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.88 KHN2=0.95
6.1.3.3 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=968Mp (6.4)
2= = Mp=1045Mp (6.5)
=( 1+ 2)/2=(968+1045)/2Mp=1006.5Mp (6.6)
6.1.3.4 小齒分度圓的直徑
d1t =77.54mm (6.7)
6.1.3.5 計算圓周速度
= = m/s=6.09m/s (6.8)
6.1.3.6 計算齒寬b及模數mnt
b= =0.8 77.54mm=62.032mm (6.9)
mnt= = mm=3.135mm (6.10)
h=2.25mnt=7.053mm
b/h=62.032/7.053=8.795 (6.11)
6.1.3.7 計算縱向重合度
=0.318 =0.318 0.8 24 =1.522 (6.12)
6.1.3.8 計算載荷系數K
根據 =6.09m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.08,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.05+0.31 (1+0.6 ) +0.19 (6.13)
故K =1.05+0.31 (6.14)
考慮到齒輪為6級精度,所以取K =1.43
故 =1 (6.15)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.1.3.9 按實際的載荷系數校正所算得的分度圓直徑
(6.16)
6.1.3.10 計算模數mn
(6.17)
6.1.4 按齒根彎曲疲勞強度設計
(6.18)
6.1.4.1 計算載荷系數
=1 (6.18)
6.1.4.2 計算彎曲疲勞強度極限
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.1.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.1.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.19)
(6.20)
6.1.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數
,
查取應力校正系數
,
則 (6.21)
(6.22)
比較可得,小齒輪的數值較大,取小齒輪的值。
6.1.4.6 計算螺旋角影響系數
根據 =1.522,由參考資料《機械設計》(圖10-28)查得 =0.88
6.1.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。
則 (6.23)
則有, (6.24)
對比計算結果,齒面接觸強度得出的模數為mn=3.198mm,由齒根彎曲疲勞強度得出的模數為mn=3.082mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=3.5mm,取分度圓直徑d1=79.11mm。
(6.25)
取Z1=22
則Z2=uZ1=4.6476 22=102.24,取Z2=102 (6.26)
6.1.5 幾何尺寸計算
6.1.5.1 計算中心距
(6.27)
圓整後,取a=224mm
6.1.5.2 按圓整後的中心距修正螺旋角
(6.28)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.1.5.3 計算分度圓直徑
(6.29)
(6.30)
6.1.5.4 計算齒輪寬度
(6.31)
圓整後取B1=75mm,B2=64mm
6.1.6 齒輪的尺寸計算
6.1.6.1 基圓直徑
(6.32)
(6.33)
6.1.6.2 分度圓齒厚
(6.34)
6.1.6.3 齒高
齒頂高 (6.35)
齒根高 (6.36)
齒全高 (6.37)
6.1.6.4 齒頂圓直徑
(6.38)
(6.39)
6.1.6.5 齒根圓直徑
(6.40)
(6.41)
6.1.6.6 分度圓齒槽寬和齒距
(6.42)
(6.43)
6.1.7 傳動驗算
6.1.6.1 按齒面接觸強度驗算:
其中
6.1.6.2 按齒根彎曲強度驗算
取YFa中較大者YFa1進行計算。
(6.44)
其中
6.2 第二對斜齒輪的計算
6.2.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。
6.2.2 初選齒數
選小齒輪齒數Z1=30,Z2=Z1 =30 3.4426=103.28 取Z2=104
6.2.3 按齒面接觸強度設計
d1t (6.45)
6.2.3.1 各項系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.2.3.2 Hlim值
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.2.3.3 計算應力循環系數。
N1=60n1jLh=60 322.75 1 (2 8 300 15)=1.394 109 (6.46)
N2=N1/i1=1.394 109/3.4426=4.05 108 (6.47)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.89 KHN2=0.94
6.2.3.4 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=979Mp (6.48)
2= = Mp=1034Mp (6.49)
=( 1+ 2)/2=(979+1034)/2Mp=1006.5Mp (6.50)
6.2.3.5 小齒分度圓的直徑
d1t =130.25mm (6.51)
6.2.3.6 計算圓周速度
= = m/s=2.201m/s (6.52)
6.2.3.7 計算齒寬b及模數
b= =0.8 130.25mm=104.2mm
= = mm=4.213mm (6.53)
h=2.25mnt=9.479mm
b/h=104.2/9.479=8.795
6.2.3.8 計算縱向重合度
=0.318 =0.318 0.8 30 =1.903 (6.54)
6.2.3.9 計算載荷系數K
根據 =2.201m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.04,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.0+0.31 (1+0.6 ) +0.19
故K =1.0+0.31 (6.55)
考慮到齒輪為6級精度,所以取K =1.35
故 =1 (6.66)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.2.3.10 按實際的載荷系數校正所算得的分度圓直徑
(6.67)
6.2.3.11 計算模數mn
(6.68)
6.2.4 按齒根彎曲疲勞強度設計
(6.69)
6.2.4.1 計算載荷系數
=1 (6.70)
6.2.4.2 值
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.2.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.2.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.71)
(6.72)
6.2.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數:
,
查取應力校正系數:
,
則 (6.73)
(6.74)
比較可得,大齒輪的數值較大,取大齒輪的值。
6.2.4.6 計算螺旋角影響系數
根據 =1.903,由參考資料《機械設計》(圖10-28)查得 =0.88
6.2.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。
則
則有, (6.75)
對比計算結果,齒面接觸強度得出的模數為mn=4.21mm,由齒根彎曲疲勞強度得出的模數為mn=4.31mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=4.5mm,取分度圓直徑d1=130.25mm。
,取Z1=28
則Z2=uZ1=3.4426 28=96.39,取Z2=96
6.2.5 幾何尺寸計算
6.2.5.1 計算中心距
(6.76)
圓整後,取a=288mm
6.2.5.2 按圓整後的中心距修正螺旋角
(6.77)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.2.5.3 計算分度圓直徑
6.2.5.4 計算齒輪寬度
圓整後取B1=120mm,B2=103mm
6.3 按標准修正齒輪
6.3.1 修正中心距
中心距之和為 ,查得標准中心距為a=539mm, , 。由於第一個中心距和標准相同,所以只需將第二個中心距修改為 即可。由於模數取的標准值所以不作變化,只更改第二對齒輪的齒數。
由於 所以
而 ,則有 , 。
中心距 ,改變不大,所以仍取 。
6.3.2 對第二對齒輪修正螺旋角:
(6.78)
因為改變不多,故 , , 等不必修正。
6.3.3 第二對齒輪的分度圓和中心距:
6.3.4 計算齒寬:
圓整後取 ,
6.3.5 齒輪的尺寸計算
6.3.5.1 基圓直徑
6.3.5.2 分度圓齒厚
6.3.5.3 齒高
齒頂高
齒根高
齒全高
6.3.5.4 齒頂圓直徑
7.3.5.5 齒根圓直徑
6.3.5.6 分度圓齒槽寬和齒距
6.3.6 傳動驗算
6.3.6.1 按齒面接觸強度驗算:
其中
6.3.6.2 按齒根彎曲強度驗算
取 中較大者 進行計算。
其中
所以滿足。
還是發你郵箱吧
Ⅵ 滾筒式飛剪是什麼
滾筒式飛剪產品介紹:
滾筒式飛剪應用於各類板帶連續冷軋機組出口,實現動態分卷。在剪切過程中,飛剪的上下滾筒做圓周運動,安裝在滾筒內的剪刃隨滾筒旋轉做剪切運動,切斷帶鋼。飛剪可通過調整裝置進行剪刃側間隙的自動或人工調節,以適應不同規格帶鋼的剪切需要。
滾筒式飛剪適用范圍:
該型滾筒式飛剪適用於酸洗軋機聯合組、全連續冷軋機組,用於動態分切帶鋼,也可用於帶鋼頭尾剪切、按設定卷重分卷、按設定長度切定尺以及事故剪切。
滾筒式飛剪設備結構和組成:
滾筒式飛剪,主要由飛剪本體、傳動裝置、剪刃間隙調節裝置、潤滑系統等組成。
飛剪本體結構主要由機架,帶剪刃的上下滾筒裝配等組成。機架為鋼結構加工件,滾筒通過圓柱滾子軸承安裝在機架內,上下滾筒兩端即傳動側和操作側各設有一對斜齒輪相互嚙合,齒輪為同步齒輪,以確保上下滾筒轉速嚴格一致。剪刃安裝在滾筒內,經過特殊的熱處理工藝製成,綜合機械性能高。滾筒操作側裝有止推軸承用於軸向固定滾筒,並承受軸向載荷。
Ⅶ 我現在做一個傳動裝置的設計。其中,減速器那裡,帶傳動的傳動比一定要小於減速器內的齒輪傳動比嗎如圖
這樣的設計,不太合理。
1.二級減速,傳動比僅2.7,一級減速就可以實現了,何必回用二級。
2.如果,答「規定」用二級減速,皮帶傳動比3,不合理。皮帶減速後,扭矩增大,齒輪機構模數就大,尺寸、重量就大。建議此時,皮帶傳動1:1,只是起到遠距離傳動、過載保護作用。總傳動比有二級減速「實現」。
3.注意細節,同軸輸入齒輪,不能固定在軸上,是「空套」在軸上的。圖示是固定的,是不對的。
供參考。
Ⅷ 機械原理中的連桿機構分析!!!
第二章 平面連桿機構
案例導入:通過雷達天線、汽車雨刮器、攪拌機等實際應用的機構分析引入四桿機構的概念,介紹四桿機構的組成、基本形式和工作特性。
第一節 鉸鏈四桿機構
一、鉸鏈四桿機構的組成和基本形式
1.鉸鏈四桿機構的組成
如圖1-14所示,鉸鏈四桿機構是由轉動副將各構件的頭尾聯接起的封閉四桿系統,並使其中一個構件固定而組成。被固定件4稱為機架,與機架直接鉸接的兩個構件1和3稱為連架桿,不直接與機架鉸接的構件2稱為連桿。連架桿如果能作整圈運動就稱為曲柄,否則就稱為搖桿。
2.鉸鏈四桿機構的類型
鉸鏈四桿機構根據其兩個連架桿的運動形式的不同,可以分為曲柄搖桿機構、雙曲柄機構和雙搖桿機構三種基本形式。
(1)曲柄搖桿機構。在鉸鏈四桿機構中,如果有一個連架桿做循環的整周運動而另一連架桿作搖動,則該機構稱為曲柄搖桿機構。如圖2-1所示曲柄搖桿機構,是雷達天線調整機構的原理圖,機構由構件AB、BC、固連有天線的CD及機架DA組成,構件AB可作整圈的轉動,成曲柄;天線3作為機構的另一連架桿可作一定范圍的擺動,成搖桿;隨著曲柄的緩緩轉動,天線仰角得到改變。如圖2-2所示汽車刮雨器,隨著電動機帶著曲柄AB轉動,刮雨膠與搖桿CD一起擺動,完成刮雨功能。如圖2-3所示攪拌器,隨電動機帶曲柄AB轉動,攪拌爪與連桿一起作往復的擺動,爪端點E作軌跡為橢圓的運動,實現攪拌功能。
(2)雙曲柄機構。在鉸鏈四桿機構中,兩個連架桿均能做整周的運動,則該機構稱為雙曲柄機構。如圖2-4所示慣性篩的工作機構原理,是雙曲柄機構的應用實例。由於從動曲柄3與主動曲柄1的長度不同,故當主動曲柄1勻速回轉一周時,從動曲柄3作變速回轉一周,機構利用這一特點使篩子6作加速往復運動,提高了工作性能。當兩曲柄的長度相等且平行布置時,成了平行雙曲柄機構,如圖2-5a)所示為正平行雙曲柄機構,其特點是兩曲柄轉向相同和轉速相等及連桿作平動,因而應用廣泛。火車驅動輪聯動機構利用了同向等速的特點;路燈檢修車的載人升斗利用了平動的特點,如圖2-6a、b)所示。如圖2-5b)為逆平行雙曲柄機構,具有兩曲柄反向不等速的特點,車門的啟閉機構利用了兩曲柄反向轉動的特點,如圖2-6c)所示。
(3)雙搖桿機構。兩根連架桿均只能在不足一周的范圍內運動的鉸鏈四桿機構稱為雙搖桿機構。如圖2-7所示為港口用起重機吊臂結構原理。其中,ABCD構成雙搖桿機構,AD為機架,在主動搖桿AB的驅動下,隨著機構的運動連桿BC的外伸端點M獲得近似直線的水平運動,使吊重Q能作水平移動而大大節省了移動吊重所需要的功率。圖2-8所示為電風扇搖頭機構原理,電動機外殼作為其中的一根搖桿AB,蝸輪作為連桿BC,構成雙搖桿機構ABCD。蝸桿隨扇葉同軸轉動,帶動BC作為主動件繞C點擺動,使搖桿AB帶電動機及扇葉一起擺動,實現一台電動機同時驅動扇葉和搖頭機構。圖2-9所示的汽車偏轉車輪轉向機構採用了等腰梯形雙搖桿機構。該機構的兩根搖桿AB、CD是等長的,適當選擇兩搖桿的長度,可以使汽車在轉彎時兩轉向輪軸線近似相交於其它兩輪軸線延長線某點P,汽車整車繞瞬時中心P點轉動,獲得各輪子相對於地面作近似的純滾動,以減少轉彎時輪胎的磨損。
二、鉸鏈四桿機構中曲柄存在的條件
1.鉸鏈四桿機構中曲柄存在的條件
鉸鏈四桿機構的三種基本類型的區別在於機構中是否存在曲柄,存在幾個曲柄。機構中是否存在曲柄與各構件相對尺寸的大小以及哪個構件作機架有關。可以證明,鉸鏈四桿機構中存在曲柄的條件為:
條件一:最短桿與最長桿長度之和不大於其餘兩桿長度之和。
條件二:連架桿或機架中最少有一根是最短桿。
2.鉸鏈四桿機構基本類型的判別准則
(1)滿足條件一但不滿足條件二的是雙搖桿機構;
(2)滿足條件一而且以最短桿作機架的是雙曲柄機構;
(3)滿足條件一而且最短桿為連架桿的是曲柄搖桿機構;
(4)不滿足條件一是雙搖桿機構。
【實訓例2-1】 鉸鏈四桿機構ABCD如圖2-10所示。請根據基本類型判別准則,說明機構分別以AB、BC、CD、AD各桿為機架時屬於何種機構。
解:經測量得各桿長度標於圖2-10,分析題目給出鉸鏈四桿機構知,最短桿為AD = 20,最長桿為CD = 55,其餘兩桿AB = 30、BC = 50。
因為 AD+CD = 20+55 = 75
AB+BC = 30+50 = 80 > Lmin+Lmax
故滿足曲柄存在的第一個條件。
1)以AB或CD為機架時,即最短桿AD成連架桿,故為曲柄搖桿機構;
2)以BC為機架時,即最短桿成連桿,故機構為雙搖桿機構;
3)以AD為機架時,即以最短桿為機架,機構為雙曲柄機構。
第二節 平面四桿機構的其它形式
一、曲柄滑塊機構
在圖2-11a)所示的鉸鏈四桿機構ABCD中,如果要求C點運動軌跡的曲率半徑較大甚至是C點作直線運動,則搖桿CD的長度就特別長,甚至是無窮大,這顯然給布置和製造帶來困難或不可能。為此,在實際應用中只是根據需要製作一個導路,C點做成一個與連桿鉸接的滑塊並使之沿導路運動即可,不再專門做出CD桿。這種含有移動副的四桿機構稱為滑塊四桿機構,當滑塊運動的軌跡為曲線時稱為曲線滑塊機構,當滑塊運動的軌跡為直線時稱為直線滑塊機構。直線滑塊機構可分為兩種情況:如圖2-11b)所示為偏置曲柄滑塊機構,導路與曲柄轉動中心有一個偏距e;當e = 0即導路通過曲柄轉動中心時,稱為對心曲柄滑塊機構,如圖2-11c)所示。由於對心曲柄滑塊機構結構簡單,受力情況好,故在實際生產中得到廣泛應用。因此,今後如果沒有特別說明,所提的曲柄滑塊機構即意指對心曲柄滑塊機構。
應該指出,滑塊的運動軌跡不僅局限於圓弧和直線,還可以是任意曲線,甚至可以是多種曲線的組合,這就遠遠超出了鉸鏈四桿機構簡單演化的范疇,也使曲柄滑塊機構的應用更加靈活、廣泛。
圖2-12所示為曲柄滑塊機構的應用。圖2-12a)所示為應用於內燃機、空壓機、蒸汽機的活塞-連桿-曲柄機構,其中活塞相當於滑塊。圖2-12b)所示為用於自動送料裝置的曲柄滑塊機構,曲柄每轉一圈活塞送出一個工件。當需要將曲柄做得較短時結構上就難以實現,通常採用圖2-12c)所示的偏心輪機構,其偏心圓盤的偏心距e就是曲柄的長度。這種結構減少了曲柄的驅動力,增大了轉動副的尺寸,提高了曲柄的強度和剛度,廣泛應用於沖壓機床、破碎機等承受較大沖擊載荷的機械中。
二、導桿機構
在對心曲柄滑塊機構中,導路是固定不動的,如果將導路做成導桿4鉸接於A點,使之能夠繞A點轉動,並使AB桿固定,就變成了導桿機構,如圖2-13所示。當AB<BC時,導桿能夠作整周的回轉,稱旋轉導桿機構,如圖2-13a=所示。當AB>BC時導桿4隻能作不足一周的回轉,稱擺動導桿機構,如圖2-13b)所示。
導桿機構具有很好的傳力性,在插床、刨床等要求傳遞重載的場合得到應用。如圖2-14a)所示為插床的工作機構,如圖2-14b)所示為牛頭刨床的工作機構。
三、搖塊機構和定塊機構
在對心曲柄滑塊機構中,將與滑塊鉸接的構件固定成機架,使滑塊只能搖擺不能移動,就成為搖塊機構,如圖2-15a)所示。搖塊機構在液壓與氣壓傳動系統中得到廣泛應用,如圖2-15b)所示為搖塊機構在自卸貨車上的應用,以車架為機架AC,液壓缸筒3與車架鉸接於C點成搖塊,主動件活塞及活塞桿2可沿缸筒中心線往復移動成導路,帶動車箱1繞A點擺動實現卸料或復位。將對心曲柄滑塊機構中的滑塊固定為機架,就成了定塊機構,如圖2-16a)所示。圖2-16b)為定塊機構在手動唧筒上的應用,用手上下扳動主動件1,使作為導路的活塞及活塞桿4沿唧筒中心線往復移動,實現唧水或唧油。表2-1給出了鉸鏈四桿機構及其演化的主要型式對比。
第三節 平面四桿機構的工作特性
一、運動特性
在圖2-17所示的曲柄搖桿機構中,設曲柄AB為主動件。曲柄在旋轉過程中每周有兩次與連桿重疊,如圖2-17中的B1AC1和AB2C2兩位置。這時的搖桿位置C1D和C2D稱為極限位置,簡稱極位。C1D與C2D的夾角 稱為最大擺角。曲柄處於兩極位AB1和AB2的夾角銳角θ稱為極位夾角。設曲柄以等角速度ω1順時針轉動,從AB1轉到AB2和從AB2到AB1所經過的角度為(π+θ)和(π-θ),所需的時間為t1和t2 ,相應的搖桿上C點經過的路線為C1C2弧和C2C1弧,C點的線速度為v1和v2 ,顯然有t1>t2 ,v1<v2 。這種返回速度大於推進速度的現象稱為急回特性,通常用v1與v2的比值K來描述急回特性,K稱為行程速比系數,即
K= (2-1)
或有 (2-2)
可見,θ越大K值就越大,急回特性就越明顯。在機械設計時可根據需要先設定K值,然後算出θ值,再由此計算得各構件的長度尺寸。
急回特性在實際應用中廣泛用於單向工作的場合,使空回程所花的非生產時間縮短以提高生產率。例如牛頭刨床滑枕的運動。
二、傳力特性
1.壓力角和傳動角
在工程應用中連桿機構除了要滿足運動要求外,還應具有良好的傳力性能,以減小結構尺寸和提高機械效率。下面在不計重力、慣性力和摩擦作用的前提下,分析曲柄搖桿機構的傳力特性。如圖2-18所示,主動曲柄的動力通過連桿作用於搖桿上的C點,驅動力F必然沿BC方向,將F分解為切線方向和徑向方向兩個分力Ft和Fr ,切向分力Ft與C點的運動方向vc同向。由圖知
Ft = F 或 Ft = F
Fr = F 或 Fr = F
α角是Ft與F的夾角,稱為機構的壓力角,即驅動力F與C點的運動方向的夾角。α隨機構的不同位置有不同的值。它表明了在驅動力F不變時,推動搖桿擺動的有效分力Ft的變化規律,α越小Ft就越大。
壓力角α的餘角γ是連桿與搖桿所夾銳角,稱為傳動角。由於γ更便於觀察,所以通常用來檢驗機構的傳力性能。傳動角γ隨機構的不斷運動而相應變化,為保證機構有較好的傳力性能,應控制機構的最小傳動角γmin。一般可取γmin≥40°,重載高速場合取γmin≥50°。曲柄搖桿機構的最小傳動角出現在曲柄與機架共線的兩個位置之一,如圖2-18所示的B1點或B2點位置。
偏置曲柄滑塊機構,以曲柄為主動件,滑塊為工作件,傳動角γ為連桿與導路垂線所夾銳角,如圖2-19所示。最小傳動角γmin出現在曲柄垂直於導路時的位置,並且位於與偏距方向相反一側。對於對心曲柄滑塊機構,即偏距e = 0 的情況,顯然其最小傳動角γmin出現在曲柄垂直於導路時的位置。
對以曲柄為主動件的擺動導桿機構,因為滑塊對導桿的作用力始終垂直於導桿,其傳動角γ恆為90°,即γ = γmin = γmax =90°,表明導桿機構具有最好的傳力性能。
2.止點
從Ft = F cosα知,當壓力角α = 90°時,對從動件的作用力或力矩為零,此時連桿不能驅動從動件工作。機構處在這種位置稱為止點,又稱死點。如圖2-20a)所示的曲柄搖桿機構,當從動曲柄AB與連桿BC共線時,出現壓力角α = 90°,傳動角γ = 0。如圖2-20b)所示的曲柄滑塊機構,如果以滑塊作主動,則當從動曲柄AB與連桿BC共線時,外力F無法推動從動曲柄轉動。機構處於止點位置,一方面驅動力作用降為零,從動件要依靠慣性越過止點;另一方面是方向不定,可能因偶然外力的影響造成反轉。
四桿機構是否存在止點,取決於從動件是否與連桿共線。例如上述圖2-20a)所示的曲柄搖桿機構,如果改搖桿主動為曲柄主動,則搖桿為從動件,因連桿BC與搖桿CD不存在共線的位置,故不存在止點。又例如前述圖2-20b)所示的曲柄滑塊機構,如果改曲柄為主動,就不存在止點。
止點的存在對機構運動是不利的,應盡量避免出現止點。當無法避免出現止點時,一般可以採用加大從動件慣性的方法,靠慣性幫助通過止點。例如內燃機曲軸上的飛輪。也可以採用機構錯位排列的方法,靠兩組機構止點位置差的作用通過各自的止點。
在實際工程應用中,有許多場合是利用止點位置來實現一定工作要求的。如圖2-21a)所示為一種快速夾具,要求夾緊工件後夾緊反力不能自動松開夾具,所以將夾頭構件1看成主動件,當連桿2和從動件3共線時,機構處於止點,夾緊反力N對搖桿3的作用力矩為零。這樣,無論N有多大,也無法推動搖桿3而松開夾具。當我們用手搬動連桿2的延長部分時,因主動件的轉換破壞了止點位置而輕易地松開工件。如圖2-21b)所示為飛機起落架處於放下機輪的位置,地面反力作用於機輪上使AB件為主動件,從動件CD與連桿BC成一直線,機構處於止點,只要用很小的鎖緊力作用於CD桿即可有效地保持著支撐狀態。當飛機升空離地要收起機輪時,只要用較小力量推動CD,因主動件改為CD破壞了止點位置而輕易地收起機輪。此外,還有汽車發動機蓋、折疊椅等。
第四節 平面四桿機構運動設計簡介
四桿機構的設計方法有圖解法、試驗法、解析法三種。本節僅介紹圖解法。
一、按給定的連桿長度和位置設計平面四桿機構
1.按連桿的預定位置設計四桿機構
【例2-2】 已知連桿BC的長度和依次占據的三個位置B1C1、B2C2、B3C3 ,如圖2-22所示。求確定滿足上述條件的鉸鏈四桿機構的其它各桿件的長度和位置。
解:顯然B點的運動軌跡是由B1、B2、B3三點所確定的圓弧,C點的運動軌跡是由C1、C2、C3三點所確定的圓弧,分別找出這兩段圓弧的圓心A和D,也就完成了本四桿機構的設計。因為此時機架AD已定,連架桿CD和AB也已定。具體作法如下:
(1)確定比例尺,畫出給定連桿的三個位置。實際機構往往要通過縮小或放大比例後才便於作圖設計,應根據實際情況選擇適當的比例尺 ,見式(1-1)。
(2)連結B1B2、B2B3 ,分別作直線段B1B2和B2B3的垂直平分線b12和b23(圖中細實線),此兩垂直平分線的交點A即為所求B1、B2、B3三點所確定圓弧的圓心。
(3)連結C1C2、C2C3,分別作直線段C1C2和C2C3的垂直平分線c12、c23(圖中細實線)交於點D,即為所求C1、C2、C3三點所確定圓弧的圓心。
(4)以A點和D點作為連架鉸鏈中心,分別連結AB3、B3C3、C3D(圖中粗實線)即得所求四桿機構。從圖中量得各桿的長度再乘以比例尺,就得到實際結構長度尺寸。
在實際工程中,有時只對連桿的兩個極限位置提出要求。這樣一來,要設計滿足條件的四桿機構就會有很多種結果,這時應該根據實際情況提出附加條件。
【實訓例2-3】 如圖2-23所示的加熱爐門啟閉機構,圖中Ⅰ為爐門關閉位置,使用要求在完全開啟後門背朝上水平放置並略低於爐口下沿,見圖中Ⅱ位置。
解:把爐門當作連桿BC,已知的兩個位置B1C1和B2C2 ,B和C已成為兩個鉸點,分別作直線段B1B2、C1C2的平分線得b12和c12 ,另外兩鉸點A和D就在這兩根平分線上。為確定A、D的位置,根據實際安裝需要,希望A、D兩鉸鏈均安裝在爐的正壁面上即圖中yy位置,yy直線分別與b12、c12相交點A和D即為所求。
二、按給定的行程速比系數設計四桿機構
設計具有急回特性的四桿機構,一般是根據運動要求選定行程速比系數,然後根據機構極位的幾何特點,結合其他輔助條件進行設計。
【實訓例2-4】 已知行程速比系數K,搖桿長度lCD,最大擺角 ,請用圖解法設計此曲柄搖桿機構。
解:設計過程如圖2-24所示,具體步驟:
(1)由速比系數K計算極位角θ。由式(2-2)知
(2)選擇合適的比例尺,作圖求搖桿的極限位置。取搖桿長度lCD除以比例尺 得圖中搖桿長CD,以CD為半徑、任定點D為圓心、任定點C1為起點做弧C,使弧C所對應的圓心角等於或大於最大擺角 ,連接D點和C1點的線段C1D為搖桿的一個極限位置,過D點作與C1D夾角等於最大擺角 的射線交圓弧於C2點得搖桿的另一個極限位置C2D。
(3)求曲柄鉸鏈中心。過C1點在D點同側作C1C2的垂線H,過C2點作與D點同側與直線段C1C2夾角為(900-θ)的直線J交直線H於點P,連接C2P,在直線段C2P上截取C2P/2得點O,以O點為圓點、OP為半徑,畫圓K ,在C1C2弧段以外在K上任取一點A為鉸鏈中心。
(4)求曲柄和連桿的鉸鏈中心。連接A、C2點得直線段AC2為曲柄與連桿長度之和,以A點為圓心、AC1為半徑作弧交AC2於點E,可以證明曲柄長度AB = C2E/2,於是以A點為圓心、C2E/2為半徑畫弧交AC2於點B2為曲柄與連桿的鉸接中心。
(5)計算各桿的實際長度。分別量取圖中AB2、AD、B2C2的長度,計算得:
曲柄長 lAB = AB2,連桿長 lBC = B2C2 ,機架長 lAD = AD。
習題二
2-1 鉸鏈四桿機構按運動形式可分為哪三種類型?各有什麼特點?試舉出它們的應用實例。
2-2 鉸鏈四桿機構中曲柄存在的條件是什麼?
2-3 機構的急回特性有何作用?判斷四桿機構有無急回特性的根據是什麼?
2-4 題圖所示的鉸鏈四桿機構中,各構件的長度已知,問分別以a、b、c、d為機架時,各得什麼類型的機構?
2-5 標注出各機構在題圖所示位置的壓力角和傳動角。
實訓二 設計平面四桿機構
1.實訓目的
掌握平面四桿機構的圖解設計方法,初步了解和掌握計算機輔助設計在平面四桿機構設計中的應用。
2.實訓內容和要求
(1)設計一鉸鏈四桿機構,已知搖桿長LC D = 0.12m , 擺角 =45°,機架長LAD = 0.10m,行程速比系數K=1.4,試用圖解法求曲柄和連桿的長度。
(2)使用圖解法設計一擺動導桿機構。已知行程速比系數K=1.5,機架長LAD=0.18m。
可自選一題目,採用計算機輔助設計(用AutoCAD圖解設計)。
3.實訓過程。參考實訓例2-4。
4. 採用AutoCAD圖解設計的實訓步驟
按照自選好的題目初步構思、擬定作圖步驟,然後上機操作:①進入AutoCAD工作界面;②按作圖步驟作圖;③利用查詢功能測出設計結果;④保存設計結果。