A. 放寒假了,駕駛哪吒N01去給愛人的小店做展品
孩子上大學了,平時就兩個人在家裡。妻子感覺時間充足就開了一家兒童科學實驗室。春節前基礎裝修結束了,開始布置門頭和教室。商家給了一些展品,我在家裡沒事就組裝起來。別看這些小實驗簡單,做起來還真費勁。別看這些小實驗簡單,里邊可有大道理呢!你看有電動機的原理模型,有視覺停留的驗證實驗,有反推力小車,還有我國古代的織布機模型。我用了整整一天,把他們組裝起來。大家看看怎麼樣?想不想自己也親手做一個?現在是假期,剛好把小店好好准備一下。等春暖花開時,就開業,讓孩子來學習這些科學知識,長大成為國家棟梁!
B. 視覺暫留的實驗操作
方法如下:
1、注視右圖(點擊放大原圖)中心紅點15秒 — 30秒鍾!(不要看整個圖片,而是只看那中間的紅點!)
2、然後朝自己身邊的牆壁看(白色的牆或白色的背景)或者看此頁面的白色部分。
3、看的同時快速眨幾下眼睛,看看您能看到什麼?(答案:你猜) 實驗目的
研究人眼的視覺暫留特性。
實驗原理
演示儀器利用人眼的視覺惰性即視覺暫留結合頻閃燈的特殊作用,演示了電影成像的原理。在未打開頻閃燈時,台階和彎桿的運動隨轉盤轉動,看不出一定的規律。打開頻閃燈後,調節頻率使頻閃燈閃亮的時間間隔與兩相鄰台階經過同一位置的時間間隔相同或成整數倍,由於眼睛的視覺暫留,我們感覺台階已經靜止,但彎桿卻在不斷變換,便形成了彎桿爬台階的動畫場面。
實驗操作
1、打開電機開關;
2、電機轉動平穩後,打開頻閃燈開關,適當調節頻閃燈頻率的粗調(轉換開關)、細調(電位器)旋鈕;直到看到白色的台階穩定不動,紅色的小棍在台階上跳動;
3、實驗結束後,分別關閉頻閃燈和電機開關。
C. 什麼是視覺暫留
人眼在觀察景物時,光信號傳入大腦神經,需經過一段短暫的時間,光的作用結束後,視覺形象並不立即消失,這種殘留的視覺稱「後像」,視覺的這一現象則被稱為「視覺暫留」。電影正是利用這個視覺暫留把一幅幅靜止的場景通過快速變換成為活動畫面。
當物體在快速運動的時候, 當人眼所看到的影像消失後,人眼仍能繼續保留其影像0.1-0.4秒左右的圖像,這種現象被稱為視覺暫留現象。
也就是說當看到一樣東西,它就算消失了,視神經對物體的印象不會立即消失,要延續0.1 -0.4秒的時間它才會真正消失,而動畫片每秒有24幀圖片,當舊的印象消失,新的又補上來了,每個畫面之間有微小的變化,這樣就不會感覺是一副副的畫了,而是一個連貫的動作,就是大家平時所看到的電影和電視了。
(3)視覺暫留實驗裝置介紹擴展閱讀
視覺暫留現象首先被中國人運用,走馬燈便是據歷史記載中最早的視覺暫留運用。宋時已有走馬燈 ,當時稱 「馬騎燈 」 。
隨後法國人保羅·羅蓋在1828年發明了留影盤,它是一個被繩子在兩面穿過的圓盤。盤的一個面畫了一隻鳥,另一面畫了一個空籠子。當圓盤旋轉時,鳥在籠子里出現了,這證明了當眼睛看到一系列圖像時,它一次保留一個圖像。
D. 何時哪國科學家用什麼方法把光分解出紅橙黃綠青dian紫的,其意義在哪裡
復色光分解為單色光的現象叫光的色散.牛頓在1672年最先利用三棱鏡觀察到光的色散,把白光分解為彩色光帶(光譜).色散現象說明光在媒質中的速度(或折射率n=c/v)隨光的頻率而變.光的色散可以用三棱鏡,衍射光柵,干涉儀等來實現.
白光是由紅、橙、黃、綠、藍、靛、紫等各種色光組成的叫做復色光。紅、橙、黃、綠等色光叫做單色光。
色散:復色光分解為單色光而形成光譜的現象叫做光的色散。色散可以利用棱鏡或光柵等作為「色散系統」的儀器來實現。復色光進入棱鏡後,由於它對各種頻率的光具有不同折射率,各種色光的傳播方向有不同程度的偏折,因而在離開棱鏡時就各自分散,形成光譜。
1、光的色散
dispersion of light
介質折射率隨光波頻率或真空中的波長而變的現象。當復色光在介質界面上折射時,介質對不同波長的光有不同的折射率,各色光因折射角不同而彼此分離。1672年,I.牛頓利用三棱鏡將太陽光分解成彩色光帶,這是人們首次作的色散實驗。通常用介質的折射率n或色散率dn/dλ與波長λ的關系來描述色散規律。任何介質的色散均可分正常色散和反常色散兩種。
復色光分解為單色光而形成光譜的現象.讓一束白光射到玻璃棱鏡上,光線經過棱鏡折射以後就在另一側面的白紙屏上形成一條彩色的光帶,其顏色的排列是靠近棱鏡頂角端是紅色,靠近底邊的一端是紫色,中間依次是橙黃綠藍靛,這樣的光帶叫光譜.光譜中每一種色光不能再分解出其他色光,稱它為單色光.由單色光混合而成的光叫復色光.自然界中的太陽光、白熾電燈和日光燈發出的光都是復色光.
光波都有一定的頻率,光的顏色是由光波的頻率決定的,在可見光區域,紅光頻率最小,紫光的頻率最大,各種頻率的光在真空中傳播的速度都相同,等於.但是不同頻率的單色光,在介質中傳播時由於受到介質的作用,傳播速度都比在真空中的速度小,並且速度的大小互不相同.紅光速度大,紫光的傳播速度小,因此介質對紅光的折射率小,對紫光的折率大.當不同色光以相同的入射角射到三棱鏡上,紅光發生的偏折最少,它在光譜中處在靠近頂角的一端.紫光的頻率大,在介質中的折射率大,在光譜中也就排列在最靠近棱鏡底邊的一端.
夏天雨後,在朝著太陽那一邊的天空上,常常會出現彩色的圓弧,這就是虹.形成虹的原因就是下雨以後,天上懸浮著很多極小的水滴,太陽光沿著一定角度射入這些水滴發生了色散,朝著小水滴看過去就會出現彩色的虹,虹的顏色是紅色在外紫色在內依次排列.
2、光的色散
一、中國古代對光的色散現象
中國古代對光的色散現象的認識最早起源於對自然色散現象——虹的認識.虹,是太陽光沿著一定角度射入空氣中的水滴所引起的比較復雜的由折射和反射造成的一種色散現象.中國早在殷代甲骨文里就有了關於虹的記載.當時把「虹」字寫成「 」.戰國時期《楚辭》中有把虹的顏色分為「五色」的記載.東漢蔡邕(132—192)在《月令章句》中對虹的形成條件和所在方位作了描述.唐初孔穎達(574—648)在《禮記註疏》中粗略地揭示出虹的光學成因:「若雲薄漏日,日照雨滴則生虹」說明虹是太陽光照射雨滴所產生的一種自然現象.公元八世紀中葉,張志和(744—773)在《玄真子·濤之靈》中第一次用實驗方法研究了虹,而且是第一次有意識地進行的白光色散實驗:「背日噴呼水成虹霓之狀,而不可直也,齊乎影也」.唐代以後,不斷有人重復類似的實驗,如南宋朝蔡卞進行了一個模擬「日照雨滴」的實驗,把虹和日月暈現象聯系起來,有意說明虹的產生是一種色散過程,並指出了虹和陽光位置之間的關系.南宋程大昌(1123—1195)在《演繁露》中記述了露滴分光的現象,並指出,日光通過一個液滴也能化為多種顏色,實際是色散,而這種顏色不是水珠本身所具有,而是日光的顏色所著,這就明確指出了日光中包含有數種顏色,經過水珠的作用而顯現出來,可以說,他已接觸到色散的本質了.
在我國從晉代開始,許多典籍都記載了晶體的色散現象.如記載過孔雀毛及某種昆蟲表皮在陽光下不斷變色的現象,雲母片向日舉之可觀察到各種顏色的光.李時珍也曾指出較大的六棱形水晶和較小的水晶珠,都能形成色散.到了明末,方以智(1611—1671)在所著《物理小識》中綜合前人研究的成果,對色散現象作了極精彩的概括,他把帶棱的自然晶體和人工燒制的三棱晶體將白光分成五色,與向日噴水而成的五色人造虹、日光照射飛泉產生的五色現象,以及虹霓之彩、日月之暈、五色之雲等自然現象聯系起來,認為「皆同此理」即都是白光的色散.所有這些都表明中國明代以前對色散現象的本質已有了較全面的認識,但也反映中國古代物理學知識大都是零散、經驗性的知識.
二、西方牛頓以前對光的色散的認識
在光學發展的早期,對顏色的解釋顯得特別困難.在牛頓以前,歐洲人對顏色的認識流行著亞里士多德的觀點.亞里士多德認為,顏色不是物體客觀的性質,而是人們主觀的感覺,一切顏色的形成都是光明與黑暗、白與黑按比例混合的結果.1663年波義耳也曾研究了物體的顏色問題,他認為物體的顏色並不是屬於物體的帶實質性的性質,而是由於光線在被照射的物體表面上發生變異所引起的.能完全反射光線的物體呈白色,完全吸收光線的物體呈黑色.另外還有不少科學家,如笛卡兒、胡克等也都討論過白光分散或聚集成顏色的問題,但他們都主張紅色是大大地濃縮了的光,紫光是大大地稀釋了的光這樣一個復雜紊亂的理論.所以在牛頓以前,由棱鏡產生的折射被假定是實際上產生了色,而不是僅僅把已經存在的色分離開來.
三、牛頓對光的色散的實驗探索與理論研究
(1)設計並進行三棱鏡實驗
當白光通過無色玻璃和各種寶石的碎片時,就會形成鮮艷的各種顏色的光,這一事實早在牛頓的幾個世紀之前就已有了解,可是直到十七世紀中葉以後,才有牛頓通過實驗研究了這個問題.
牛頓首先做了一個有名的三棱鏡實驗,他在著作中記載道:「1666年初,我做了一個三角形的玻璃稜柱鏡,利用它來研究光的顏色.為此,我把房間里弄成漆墨的,在窗戶上做一個小孔,讓適量的日光射進來.我又把棱鏡放在光的入口處,使折射的光能夠射到對面的牆上去,當我第一次看到由此而產生的鮮明強烈的光色時,使我感到極大的愉快.」牛頓的實驗設計如下圖:通過這個實驗,在牆上得到了一個彩色光斑,顏色的排列是紅、橙、黃、綠、青、藍、紫.牛頓把這個顏色光斑叫做光譜.
(2)進一步設計實驗,獲得純光譜
牛頓在上述實驗中所得到的光譜是不純的,他認為光譜之所以不純是因為光譜是由一系列相互重疊的圓形色斑的像所組成.牛頓為了獲得很純的光譜,便設計了一套光學儀器進行實驗,其實驗設計如圖所示:
用白光通過一透鏡後照亮狹縫S,狹縫後放一會聚透鏡以便形成狹縫S的像I.然後在透鏡的光路上放一個棱鏡.結果光通過棱鏡因偏轉角度不同而被分開,以至在白色光屏上形成一個由紅到紫的光譜帶.這個光譜帶是由一系列彼此鄰接的狹縫的彩色像組成的.若狹縫做得很窄,重疊現象就可以減小到最低限度,因而光譜也變得很純.
(3)牛頓提出解釋光譜的理論
牛頓為了解釋三棱鏡實驗中白光的分解現象,認為白光是由各種不同顏色光組成的,玻璃對各種色光的折射率不同,當白光通過棱鏡時,各色光以不同角度折射,結果就被分開成顏色光譜.白光通過棱鏡時,向棱鏡的底邊偏折,紫光偏折最大,紅光偏折最小.棱鏡使白光分開成各種色光的現象叫做色散.嚴格地說,光譜中有很多各種顏色的細線,它們都及平滑地融在相鄰的細線里,以至使人覺察不到它的界限.
(4)設計實驗驗證上述理論的正確性
為了進一步研究光的顏色,驗證上述理論的正確性,牛頓又做了另一個實驗.實驗設計如圖所示:
牛頓在觀察光譜的屏幕DE上打一小孔,再在其後放一有小孔的屏幕de,讓通過此小孔的光是具有某種顏色的單色光.牛頓在這個光束的路徑上再放上第二個棱鏡abc,它的後面再放一個新的觀察屏V.實驗表明,第二個棱鏡abc只是把這個單色光束整個地偏轉一個角度,而並不改變光的顏色.實驗中,牛頓轉動第一個棱鏡ABC,使光譜中不同顏色的光通過DE和de屏上的小孔,在所有這些情況下,這些不同顏色的單色光都不能被第二個棱鏡再次分解,它們各自通過第二個檢鏡後都只偏轉一定的角度,而且發現,對於不同顏色的光偏轉的角度不同.
通過這些實驗,牛頓得出結論:白光能分解成不同顏色的光,這些光已是單色的了,棱鏡不能再分解它們.
(5)單色光復合為白光的實驗
白光既然能分解為單色光,那麼單色光是否也可復合為白光呢」為此牛頓進行實驗.如圖55所示,把光譜成在一排小的矩形平面鏡上,就可使光譜的色光重新復合為白光.調節各平面鏡與入射光的夾角,使各反射光都落在光屏的同一位置上,這樣就得到一個白色光班.
牛頓指出,還可以用另一種方法把色光重新復合為白光.把光譜畫在圓盤上成扇形,然後高速旋轉這個圓盤,圓盤就呈現白色.這種實驗效果一般稱為「視覺暫留效應」.眼睛視網膜上所成的像消失後,大腦還可以把印象保留零點幾秒種.從而,大腦可將迅速變化的色像復合在一起,就形成一個靜止的白色像.在電視屏幕上或電影屏幕上,我們能夠看到連續的圖像,其原因也正在於利用了人的「視覺暫留效應」.
(6)牛頓對光的色散研究成果.
牛頓通過一系列的色散實驗和理論研究,把結果歸納為幾條,其要點如下:
①光線隨著它的折射率不同而顏色各異.顏色不是光的變樣,而是光線本來就固有的性質.
②同一顏色屬於同一折射率,反之亦然.
③顏色的種類和折射的程度為光線所固有,不因折射、反射和其它任何原因而變化.
④必須區別本來單純的顏色和由它們復合而成的顏色.
⑤不存在自身為白色的光線.白色是由一切顏色的光線適當混合而產生的.事實上,可以進行把光譜的顏色重新合成而得到白光的實驗.
⑥根據以上各條,可以解釋三棱鏡使光產生顏色原因以及虹的原理等.
⑦自然物的顏色是由於該物質對某種光線反射得多,而對其他光線反射得少的原因.
⑧由此可知,顏色是光(各種射線)的質,因而光線本身不可能是質.因為顏色這樣的質起源於光之中,所以現在有充分的根據認為光是實體.
(7)牛頓對於光的色散現象的研究方法的特點.
從以上可看出牛頓在對光的色散研究中,採用了實驗歸納——假說理論——實驗檢驗的典型的物理規律的研究方法,並滲透著分析的方法(把白光分解為單色光研究)和綜合的方法(把單色光復合為白光)等物理學研究的方法.
後來C.V.拉曼 印度 研究光的散射並發現拉曼效應,並於1930年獲得諾貝爾物理學獎。
【英文名稱】
[編輯本段]
拉曼效應:Raman effect
【概述】
[編輯本段]
1930年諾貝爾物理學獎授予印度加爾各答大學的拉曼(SirChandrasekhara Venkata Raman,1888——1970年),以表彰他研究了光的散射和發現了以他的名字命名的定律。
在光的散射現象中有一特殊效應,和X射線散射的康普頓效應類似,光的頻率在散射後會發生變化。頻率的變化決定於散射物質的特性。這就是拉曼效應,是拉曼在研究光的散射過程中於1928年發現的。在拉曼和他的合作者宣布發現這一效應之後幾個月,蘇聯的蘭茲伯格(G.Landsberg)和曼德爾斯坦(L.Mandelstam)也獨立地發現了這一效應,他們稱之為聯合散射。拉曼光譜是入射光子和分子相碰撞時,分子的振動能量或轉動能量和光子能量疊加的結果,利用拉曼光譜可以把處於紅外區的分子能譜轉移到可見光區來觀測。因此拉曼光譜作為紅外光譜的補充,是研究分子結構的有力武器。
1921年夏天,航行在地中海的客輪「納昆達」號(S.S.Narkunda)上,有一位印度學者正在甲板上用簡易的光學儀器俯身對海面進行觀測。他對海水的深藍色著了迷,一心要追究海水顏色的來源。這位印度學者就是拉曼。他正在去英國的途中,是代表了印度的最高學府——加爾各答大學,到牛津參加英聯邦的大學會議,還准備去英國皇家學會發表演講。這時他才33歲。對拉曼來說,海水的藍色並沒有什麼稀罕。他上學的馬德拉斯大學,面對本加爾(Bengal)海灣,每天都可以看到海灣里變幻的海水色彩。事實上,他早在16歲(1904年)時,就已熟悉著名物理學家瑞利用分子散射中散射光強與波長四次方成反比的定律(也叫瑞利定律)對蔚藍色天空所作的解釋。不知道是由於從小就養成的對自然奧秘刨根問底的個性,還是由於研究光散射問題時查閱文獻中的深入思考,他注意到瑞利的一段話值得商榷,瑞利說:「深海的藍色並不是海水的顏色,只不過是天空藍色被海水反射所致。」瑞利對海水藍色的論述一直是拉曼關心的問題。他決心進行實地考察。於是,拉曼在啟程去英國時,行裝里准備了一套實驗裝置:幾個尼科爾棱鏡、小望遠鏡、狹縫,甚至還有一片光柵。望遠鏡兩頭裝上尼科爾棱鏡當起偏器和檢偏器,隨時都可以進行實驗。他用尼科爾棱鏡觀察沿布儒斯特角從海面反射的光線,即可消去來自天空的藍光。這樣看到的光應該就是海水自身的顏色。結果證實,由此看到的是比天空還更深的藍色。他又用光柵分析海水的顏色,發現海水光譜的最大值比天空光譜的最大值更偏藍。可見,海水的顏色並非由天空顏色引起的,而是海水本身的一種性質。拉曼認為這一定是起因於水分子對光的散射。他在回程的輪船上寫了兩篇論文,討論這一現象,論文在中途停靠時先後寄往英國,發表在倫敦的兩家雜志上。
【研究過程】
[編輯本段]
拉曼1888年11月7日出生於印度南部的特里奇諾波利。父親是一位大學數學、物理教授,自幼對他進行科學啟蒙教育,培養他對音樂和樂器的愛好。他天資出眾,16歲大學畢業,以第一名獲物理學金獎。19歲又以優異成績獲碩士學位。1906年,他僅18歲,就在英國著名科學雜志《自然》發表了論文,是關於光的衍射效應的。由於生病,拉曼失去了去英國某個著名大學作博士論文的機會。獨立前的印度,如果沒有取得英國的博士學位,就沒有資格在科學文化界任職。但會計行業是唯一的例外,不需先到英國受訓。於是拉曼就投考財政部以謀求職業,結果獲得第一名,被授予總會計助理的職務。拉曼在財政部工作很出色,擔負的責任也越來越重,但他並不想沉浸在官場之中。他念念不忘自己的科學目標,把業余時間全部用於繼續研究聲學和樂器理論。加爾各答有一所學術機構,叫印度科學教育協會,裡面有實驗室,拉曼就在這里開展他的聲學和光學研究。經過十年的努力,拉曼在沒有高級科研人員指導的條件下,靠自己的努力作出了一系列成果,也發表了許多論文。1917年加爾各答大學破例邀請他擔任物理學教授,使他從此能專心致力於科學研究。他在加爾各答大學任教十六年期間,仍在印度科學教育協會進行實驗,不斷有學生、教師和訪問學者到這里來向他學習、與他合作,逐漸形成了以他為核心的學術團體。許多人在他的榜樣和成就的激勵下,走上了科學研究的道路。其中有著名的物理學家沙哈(M.N.Saha)和玻色(S.N.Bose)。這時,加爾各答正在形成印度的科學研究中心,加爾各答大學和拉曼小組在這裡面成了眾望所歸的核心。1921年,由拉曼代表加爾各答大學去英國講學,說明了他們的成果已經得到了國際上的認同。
拉曼返回印度後,立即在科學教育協會開展一系列的實驗和理論研究,探索各種透明媒質中光散射的規律。許多人參加了這些研究。這些人大多是學校的教師,他們在休假日來到科學教育協會,和拉曼一起或在拉曼的指導下進行光散射或其它實驗,對拉曼的研究發揮了積極作用。七年間他們共發表了大約五六十篇論文。他們先是考察各種媒質分子散射時所遵循的規律,選取不同的分子結構、不同的物態、不同的壓強和溫度,甚至在臨界點發生相變時進行散射實驗。1922年,拉曼寫了一本小冊子總結了這項研究,題名《光的分子衍射》,書中系統地說明了自己的看法。在最後一章中,他提到用量子理論分析散射現象,認為進一步實驗有可能鑒別經典電磁理論和光量子碰撞理論孰是孰非。
1923年4月,他的學生之一拉瑪納桑(K.R.Ramanathan)第一次觀察到了光散射中顏色改變的現象。實驗是以太陽作光源,經紫色濾光片後照射盛有純水或純酒精的燒瓶,然後從側面觀察,卻出乎意料地觀察到了很弱的綠色成份。拉瑪納桑不理解這一現象,把它看成是由於雜質造成的二次輻射,和熒光類似。因此,在論文中稱之為「弱熒光」。然而拉曼不相信這是雜質造成的現象。如果真是雜質的熒光,在仔細提純的樣品中,應該能消除這一效應。
在以後的兩年中,拉曼的另一名學生克利希南(K.S.Krishnan)觀測了經過提純的65種液體的散射光,證明都有類似的「弱熒光」,而且他還發現,顏色改變了的散射光是部分偏振的。眾所周知,熒光是一種自然光,不具偏振性。由此證明,這種波長變化的現象不是熒光效應。
拉曼和他的學生們想了許多辦法研究這一現象。他們試圖把散射光拍成照片,以便比較,可惜沒有成功。他們用互補的濾光片,用大望遠鏡的目鏡配短焦距透鏡將太陽聚焦,試驗樣品由液體擴展到固體,堅持進行各種試驗。
與此同時,拉曼也在追尋理論上的解釋。1924年拉曼到美國訪問,正值不久前A.H.康普頓發現X射線散射後波長變長的效應,而懷疑者正在挑起一場爭論。拉曼顯然從康普頓的發現得到了重要啟示,後來他把自己的發現看成是「康普頓效應的光學對應」。拉曼也經歷了和康普頓類似的曲折,經過六七年的探索,才在1928年初作出明確的結論。拉曼這時已經認識到顏色有所改變、比較弱又帶偏振性的散射光是一種普遍存在的現象。他參照康普頓效應中的命名「變線」,把這種新輻射稱為:「變散射」(modified scattering)。拉曼又進一步改進了濾光的方法,在藍紫濾光片前再加一道鈾玻璃,使入射的太陽光只能通過更窄的波段,再用目測分光鏡觀察散射光,竟發現展現的光譜在變散射和不變的入射光之間,隔有一道暗區。
就在1928年2月28日下午,拉曼決定採用單色光作光源,做了一個非常漂亮的有判決意義的實驗。他從目測分光鏡看散射光,看到在藍光和綠光的區域里,有兩根以上的尖銳亮線。每一條入射譜線都有相應的變散射線。一般情況,變散射線的頻率比入射線低,偶爾也觀察到比入射線頻率高的散射線,但強度更弱些。
不久,人們開始把這一種新發現的現象稱為拉曼效應。1930年,美國光譜學家武德(R.W.Wood)對頻率變低的變散射線取名為斯托克斯線;頻率變高的為反斯托克斯線。
【拉曼貢獻】
[編輯本段]
拉曼發現反常散射的消息傳遍世界,引起了強烈反響,許多實驗室相繼重復,證實並發展了他的結果。1928年關於拉曼效應的論文就發表了57篇之多。科學界對他的發現給予很高的評價。拉曼是印度人民的驕傲,也為第三世界的科學家作出了榜樣,他大半生處於獨立前的印度,竟取得了如此突出的成就,實在令人欽佩。特別是拉曼是印度國內培養的科學家,他一直立足於印度國內,發憤圖強,艱苦創業,建立了有特色的科學研究中心,走到了世界的前列。
1934年,拉曼和其他學者一起創建了印度科學院,並親任院長。1947年,又創建拉曼研究所。他在發展印度的科學事業上立下了豐功偉績。拉曼抓住分子散射這一課題是很有眼力的。在他持續多年的努力中,顯然貫穿著一個思想,這就是:針對理論的薄弱環節,堅持不懈地進行基礎研究。拉曼很重視發掘人才,從印度科學教育協會到拉曼研究所,在他的周圍總是不斷涌現著一批批賦有才華的學生和合作者。就以光散射這一課題統計,在三十年中間,前後就有66名學者從他的實驗室發表了377篇論文。他對學生諄諄善誘,深受學生敬仰和愛戴。拉曼愛好音樂,也很愛鮮花異石。他研究金剛石的結構,耗去了他所得獎金的大部分。晚年致力於對花卉進行光譜分析。在他80壽辰時,出版了他的專集:《視覺生理學》。拉曼喜愛玫瑰勝於一切,他擁有一座玫瑰花園。拉曼1970年逝世,享年82歲,按照他生前的意願火葬於他的花園里。
E. 誰有關於移動物體視覺暫留現象的報告
1824年彼得馬克羅傑出版的一本談眼球構造的小書《移動物體的視覺暫留現象》中提出如下觀點:形象刺激在最初顯露後,能在視網膜上停留若干時間。當多個刺激相當迅速地連續顯現時,在視網膜上的刺激信號會重疊起來,形象就成為連續進行的了。 上述觀念,就是作為動畫基石的視覺暫留現象。而羅傑的書引起了一陣實驗熱,很多人針對潛在的歐洲和美國市場做了一堆動畫短片,並利用視覺暫留發明了「哲學式」器物,如「幻透鏡」與「西洋鏡」(回轉式畫筒),在紙卷上畫上一系列連續的素描繪畫,然後通過細縫看到活動的形象。還有「實用鏡」、「魔術畫片」、「手翻書」,也都利用了旋轉畫盤和視覺暫留原理,得到了賞心悅目的戲劇效果。 後來,愛德華穆布里治不斷從事動作捕捉方面的實驗,並有了具體的成果。自1873年開始,他拍攝了一套馬在飛奔的微型立體幻影;1877年至1879年間,他更將馬在奔跑中的連續照片翻直成回轉式畫筒的長條尺寸,將之搬上「幻燈鏡」演出。他還嘗試改良艾米爾雷納德的「實用鏡」,大膽地將魔術的幻光影、西洋鏡和攝影融於一體。 他發明的「變焦實用鏡」,被稱為「第一架動態影像放映機」。後來愛迪生在發明相關器材時,也受到了穆布里治的不少啟發。而穆布里治拍攝的連續照片,後來被收集成兩套攝影集《運動中的動物》(1899年)《運動中的人體》(1901年),成為後人的參考典範。1884年至1885年間藝術家湯瑪斯艾金斯亦加入他的行列,他們所建立的動作分析方式一直沿用與今日的生物學及人體學研究上。
F. 什麼是視覺暫留原理
視覺暫留原理:人眼在觀察景物時,光信號傳入大腦神經,需經過一段短暫的時間,光的作用結束後,視覺形象並不立即消失,這種殘留的視覺稱「後像」,視覺的這一現象則被稱為「視覺暫留」。
1824年由英國倫敦大學教授皮特.馬克.羅葛特在他的研究報告《移動物體的視覺暫留現象》中最先提出。視覺暫留現象即視覺暫停現象又稱「余暉效應」。
(6)視覺暫留實驗裝置介紹擴展閱讀:
視覺暫留現象是光對視網膜所產生的視覺在光停止作用後,仍保留一段時間的現象,其具體應用是電影的拍攝和放映。原因是由視神經的反應速度造成的。是動畫、電影等視覺媒體形成和傳播的根據。
視覺實際上是靠眼睛的晶狀體成像,感光細胞感光,並且將光信號轉換為神經電流,傳回大腦引起人體視覺。感光細胞的感光是靠一些感光色素,感光色素的形成是需要一定時間的,這就形成了視覺暫停的機理。
物體在快速運動時, 當人眼所看到的影像消失後,人眼仍能繼續保留其影像0.1-0.4秒左右的圖像,這種現象被稱為視覺暫留現象。是人眼具有的一種性質。人眼觀看物體時,成像於視網膜上,並由視神經輸入人腦,感覺到物體的像。
但當物體移去時,視神經對物體的印象不會立即消失,而要延續0.1 -0.4秒的時間,人眼的這種性質被稱為「眼睛的視覺暫留」。