① 一般的液壓傳動系統由哪幾部分組成,基本工作原理是什麼
液壓傳動系統由液壓動力元件(液壓油泵)、液壓控制元件(各種液壓閥)、液壓執行元件(液壓缸和液壓馬達等)、液壓輔件(管道和蓄能器等)和液壓油組成。
基本工作原理:
電動機帶動液壓泵從油箱吸油,液壓泵把電動機的機械能轉換為液體的壓力能。液壓介質通過管道經節流閥和換向和閥進入液壓缸左腔,推動活塞帶動工作台右移,液壓缸右腔排出的液壓介質經換向閥流回油箱。換向閥換向之後液壓介質進入液壓缸右腔,使活塞左移,推動工作台反向移動。
1、液壓泵是將原動機的機械能轉換為液體的壓力動能(表現為壓力、流量),為液壓系統提供壓力油,是系統的動力來源。
2、液壓缸或液壓馬達將液壓能轉換為機械能而對外做功,液壓缸可驅動工作機構實現往復直線運動(或擺動),液壓馬達可實現回轉運動。
3、各種液壓閥可以控制和調節液壓系統中液體的壓力、流量和方向等,保證執行元件能按照要求進行工作。
4、液壓輔件提供必要的條件使系統正常工作並便於監測控制。
5、液壓油,液壓系統就是通過液壓油實現運動和動力傳遞的,液壓油還可以對液壓元件中相互運動的零件起潤滑作用。
(1)一般設計液壓傳動裝置時擴展閱讀:
液壓傳動系統的優點
1、液壓傳動可以輸出大的推力或大轉矩,可實現低速大噸位運動。
2、液壓傳動能很方便地實現無級調速,調速范圍大,且可在系統運行過程中調速。
3、在相同功率條件下,液壓傳動裝置體積小、重量輕、結構緊湊。液壓元件之間可採用管道連接、或採用集成式連接,其布局、安裝有很大的靈活性,可以構成用其它傳動方式難以組成的復雜系統。
4、液壓傳動能使執行元件的運動十分均勻穩定,可使運動部件換向時無換向沖擊。而且由於其反應速度快,故可實現頻繁換向。
5、操作簡單,調整控制方便,易於實現自動化。特別是和機、電聯合使用時,能方便地實現復雜的自動工作循環。
6、液壓系統便於實現過載保護,使用安全、可靠。由於各液壓元件中的運動件均在油液中工作,能自行潤滑,故元件的使用壽命長。
7、液壓元件易於實現系列化、標准化和通用化,便於設計、製造、維修和推廣使用。
② 液壓傳動技術有哪些優缺點
一、液壓傳動的優點
1、液壓傳動可以輸出大的推力或大轉矩,可實現低速大噸位運動,這是其它傳動方式所不能比的突出優點。
2、液壓傳動能很方便地實現無級調速,調速范圍大,且可在系統運行過程中調速。
3、在相同功率條件下,液壓傳動裝置體積小、重量輕、結構緊湊。液壓元件之間可採用管道連接、或採用集成式連接,其布局、安裝有很大的靈活性,可以構成用其它傳動方式難以組成的復雜系統。
4、液壓傳動能使執行元件的運動十分均勻穩定,可使運動部件換向時無換向沖擊。而且由於其反應速度快,故可實現頻繁換向。
5、操作簡單,調整控制方便,易於實現自動化。特別是和機、電聯合使用時,能方便地實現復雜的自動工作循環。
6、液壓系統便於實現過載保護,使用安全、可靠。由於各液壓元件中的運動件均在油液中工作,能自行潤滑,故元件的使用壽命長。
7、液壓元件易於實現系列化、標准化和通用化,便於設計、製造、維修和推廣使用。
二、液壓傳動的缺點
1、油的泄漏和液體的可壓縮性會影響執行元件運動的准確性,故無法保證嚴格的傳動比。
2、對油溫的變化比較敏感,不宜在很高或很低的溫度條件下工作。
3、能量損失(泄漏損失、溢流損失、節流損失、摩擦損失等)較大,傳動效率較低,也不適宜作遠距離傳動。
4、系統出現故障時,不易查找原因。綜上所述,液壓傳動的優點是主要的、突出的,它的缺點隨著科學技術的發展會逐步克服的,液壓傳動技術的發展前景是非常廣闊的。
液壓傳動是指以液體為工作介質進行能量傳遞和控制的一種傳動方式。在液體傳動中,根據其能量傳遞形式不同,又分為液力傳動和液壓傳動。液力傳動主要是利用液體動能進行能量轉換的傳動方式,如液力耦合器和液力變矩器。液壓傳動是利用液體壓力能進行能量轉換的傳動方式。在機械上採用液壓傳動技術,可以簡化機器的結構,減輕機器質量,減少材料消耗,降低製造成本,減輕勞動強度,提高工作效率和工作的可靠性。
我國的液壓工業開始於20世紀50年代,其產品最初只用於機床和鍛壓設備,後來才用到拖拉機和工程機械上。自從1964年從國外引進一些液壓元件生產技術,並自行設計液壓產品以來,我國的液壓件已在各種機械設備上得到了廣泛的使用。20世紀80年代起更加速了對先進液壓產品和技術的有計劃引進、消化、吸收和國產化工作,以確保我國的液壓技術能在產品質量、經濟效益、研究開發等各個方面全方位地趕上世界水平。
當前,液壓技術在實現高壓、高速、大功率、高效率、低雜訊、經久耐用、高度集成化等各項要求方面都取得了重大的進展,在完善比例控制、伺服控制、數字控制等技術上也有許多新成就。此外,在液壓元件和液壓系統的計算機輔助設計、計算機模擬和優化以及微機控制等開發性工作方面,日益顯示出顯著的優勢。
液壓傳動主要應用如下:
(1)一般工業用液壓系統塑料加工機械(注塑機)、壓力機械(鍛壓機)、重型機械(廢鋼壓塊機)、機床(全自動六角車床、平面磨床)等;
(2)行走機械用液壓系統工程機械(挖掘機)、起重機械(汽車吊)、建築機械(打樁機)、農業機械(聯合收割機)、汽車(轉向器、減振器)等;
(3)鋼鐵工業用液壓系統冶金機械(軋鋼機)、提升裝置(升降機)、軋輥調整裝置等;
(4)土木工程用液壓系統防洪閘門及堤壩裝置(浪潮防護擋板)、河床升降裝置、橋梁操縱機構和礦山機械(鑿岩機)等;
(5)發電廠用液壓系統渦輪機(調速裝置)等;
(6)特殊技術用液壓系統巨型天線控制裝置、測量浮標、飛機起落架的收放裝置及方向舵控制裝置、升降旋轉舞台等;
(7)船舶用液壓系統甲板起重機械(絞車)、船頭門、艙壁閥、船尾推進器等;
(8)軍事工業用液壓系統火炮操縱裝置、艦船減搖裝置、飛行器模擬等。
③ 液壓式制動傳動裝置
液壓制動傳動裝置類似於離合器液壓控制裝置。它以專用油為介質,將駕駛員施加在制動踏板上的踏板力放大後傳遞給車輪制動器,再將液壓轉化為制動蹄片開口的機械推力,使車輪制動器產生制動效果。它具有結構簡單、制動滯後時間短、無摩擦部件、制動穩定性好、對各種車輪制動器適應性強等優點,因此被廣泛應用於中小型汽車。
液壓傳動裝置的主要部件如下
1.制動主缸
主缸可以將制動踏板輸入的機械力轉化為液壓。大部分制動缸由鑄鐵或合金製成,其中一些與儲油室成一體,形成一個整體的主缸,另一些相互分離,然後通過油管連接,這是一個分離的主缸。分體式總泵的儲油室多採用透明塑料成型,部分配有防濺浮子或低液位報警燈開關。根據工作室的數量,主缸可以分為單室和雙腔。單線液壓制動傳動裝置採用單室主缸,現已淘汰。雙腔制動總泵應用廣泛。下面簡單介紹一下雙腔制動總泵。
1)結構組成
雙腔制動總泵一般是串聯的,如圖17.5所示。主要由主缸、前活塞及回位彈簧、前活塞彈簧座、前活塞杯、限位螺栓、後活塞及杯等組成。主缸體中的工作面精度高、光滑。缸體上有進油孔和補償孔,有兩個活塞。後活塞9為主活塞,右端凹槽與推桿之間有一定間隙。前活塞6位於氣缸中部,將主缸內腔分為前腔B和後腔A兩個工作腔,兩個工作腔分別與前後液壓管路連接,前腔B產生的液壓通過出油口11和管路與後輪制動器連接,後腔A產生的液壓通過出油口10和管路與前輪制動器連接。
2)工作條件
當踩下制動踏板時,推桿推動主活塞9向左移動,直到杯8蓋住補償孔,後腔A內的液壓上升,建立起一定的液壓。一方面,機油通過後機油出口流入前制動管路,另一方面,機油推動前活塞6向左移動。在後腔A中的液壓和彈簧的作用下,前活塞向左移動,前腔B中的壓力也隨之增加。油通過空腔內的出油口進入後制動管路,這樣兩條制動管路制動汽車車輪制動器。
當持續踩下制動踏板時,前腔B和後腔A中的液壓會繼續增大,從而加強前後輪制動器的制動。
當制動器松開時,活塞在彈簧的作用下復位,高壓油從制動管路流回制動總泵。如果活塞復位過快,工作室的容積會迅速增加,油壓會迅速下降。由於管路阻力的影響,制動管路中的油將無法充分迴流到工作腔,從而在工作腔內形成一定的真空度,這樣儲液腔內的油將通過進油口和活塞上的軸向孔將墊片和杯體推入工作腔內。當活塞完全復位時,補償孔打開,制動管路中迴流到工作室的多餘油通過I補償孔流回儲液室。
如果連接到前室B的制動管路損壞漏油,踩下制動踏板時,只有後室A能積聚一定的液壓,但前室B中沒有液壓,此時,在液壓壓差的作用下,前活塞6迅速被推向底部,直到接觸到油缸的頂部。前活塞被推到底部後,後室A的液壓可能會上升到制動所需的值。
如果連接到後室A的制動管路損壞漏油,當踩下制動踏板時,起初只有主活塞9向前移動,但前活塞6不能被推動,因此後室A中的液壓無法建立。然而,當主活塞的頂部接觸前活塞6時,推桿的力可以推動前活塞,從而可以在前室中建立液壓。
可以看出,在雙管路液壓系統中,當任何一條管路損壞漏油時,另一條仍能工作,只是增加了所需的管路。
上海 桑塔納 ( 查成交價 | 車型詳解 )使用的制動總泵也是串聯雙腔制動總泵。主缸用兩個螺母連接在真空助力器前面,主缸上有兩個橡膠頭與儲液罐連接。制動液通過進油孔供應至前後工作室。主缸前後有兩個對稱的M10 X1 出油螺孔,相互成100度角,通過制動管路與四輪制動器的輪缸交叉布置連接。
當踏板松開時,活塞和推桿分別在回位彈簧的作用下回到初始位置。由於回程速度快,在制動管路中很容易生成 tru e空。因此,前活塞和後活塞的頭部有三個l.4毫米的小孔,相互間隔120度,制動液可以通過小孔流回兩個工作室,從而減少負壓。
為了保證主缸活塞完全回位,推桿與制動主缸活塞之間有一定的間隙,這種間隙體現在制動踏板的行程上,稱為制動踏板自由行程。
制動踏板的自由行程對制動效果和行車安全有很大影響。如果自由行程過大,制動踏板有效行程減小,制動過晚,導致制動不良或失效。如果自由行程過小或過小,剎車不能及時完全釋放,造成剎車拖滯,加速剎車磨損,影響動力傳遞效率,增加汽車油耗。
制動踏板的自由行程可以通過推桿的長度來調節。
2.制動輪缸
制動輪缸將來自主缸的液壓轉換成機械推力,以打開制動蹄。由於車輪制動器的結構不同,輪缸的數量和結構也不同,通常分為雙活塞制動輪缸和單活塞制動輪缸。
1)雙活塞制動輪缸
雙活塞制動輪缸的結構如圖17所示。6.缸體用螺栓固定在制動底板上。氣缸里有兩個塞子。具有相對切削刃的密封杯分別被彈簧壓靠在兩個活塞上,以保持杯之間的進油孔暢通。防護罩用於防止灰塵和濕氣進入氣缸。2)單活塞制動輪缸
單活塞制動輪缸的結構如圖17所示。7.頂塊壓在單活塞制動輪缸活塞外端凸台孔內的制動蹄上端。排氣閥安裝在缸體上方,用於排出氣體。為了減小軸向尺寸,安裝在活塞導向面上的橡膠圈用於密封液腔,進油間隙由活塞端面的凸台保持。
單活塞制動輪缸多用於單向助力平衡輪制動器,目前趨於淘汰。
單活塞制動輪缸的活塞直徑大於主缸的直徑,並且與前後軸上的實際負載分布成比例。這樣,作用在前制動器和後輪軸制動器上的制動力應該是踏板力和制動踏板杠桿與活塞直徑之比。3.制動管路
制動管路用於輸送和承受一定壓力的制動液。制動管路有兩種:金屬管和橡膠管。由於主缸和輪缸的相對位置經常變化,除了金屬管外,有些制動管有相對運動的截面,用高強度橡膠管連接。
4.制動液
要求制動液具有冰點低、高溫老化低、流動性好的特點。制動液對普通金屬和橡膠有腐蝕性,制動系統中所有與制動液接觸的零件都由耐腐蝕材料製成。因此,為了保證可靠的制動性能,在修理和更換相關零件時,必須使用原裝零件或認證零件。桑塔納用的制動液是D0T4。 @2019
④ 液壓傳動的特點是什麼
1液壓傳動的優點
液壓傳動與機械傳動、電氣傳動、氣壓傳動等相比較,具有以下優點:
(1)在同等功率的情況下,液壓傳動裝置的體積小、重量輕、結構緊湊,如液壓馬達的重量只有同等功率電動機重量的10%~20%。當液壓傳動採用高壓時,則更容易獲得很大的力或力矩。
(2)液壓系統執行機構的運動比較平穩,能在低速下穩定運動。當負載變化時,其運動速度也較穩定。同時因其慣性小、反應快,所以易於實現快速運動、制動和頻繁地換向。在往復回轉運動時換向可達每分鍾500次,往復直線運動時換向可達每分鍾1000次。
(3)液壓傳動可在大范圍內實現無級調速,調速比一般可達100以上,最大可達2000以上,並且可在液壓裝置運行的過程中進行調速。
(4)液壓傳動容易實現自動化,因為它是對液體的壓力、流量和流動方向進行控制或調節,操縱很方便。當液壓控制和電氣控制或氣動控制結合使用時,能實現較復雜的順序動作和遠程式控制制。
(5)液壓裝置易於實現過載保護且液壓件能自行潤滑,因此使用壽命較長。
(6)由於液壓元件已實現標准化、系列化和通用化,所以液壓系統的設計、製造和使用都比較方便。
2液壓傳動的缺點
(1)液壓傳動不能保證嚴格的傳動比,原因是由液壓油的可壓縮性和泄漏等因素所造成的。
(2)液壓傳動在工作過程中常有較多的能量損失(摩擦損失、泄漏損失等)。
(3)液壓傳動對油溫的變化比較敏感,它的工作穩定性容易受到溫度變化的影響,因此不宜在溫度變化很大的環境中工作。
(4)為了減少泄漏,液壓元件在製造精度上的要求比較高,因此其造價較高,且對油液的污染比較敏感。
(5)液壓傳動出現故障的原因較復雜,而且查找困難。
⑤ 液壓傳動知識
(一)液壓傳動概述
液壓傳動是以液體為工作介質來傳遞動力和運動的一種傳動方式。液壓泵將外界所輸入的機械能轉變為工作液體的壓力能,經過管道及各種液壓控制元件輸送到執行機構→油缸或油馬達,再將其轉變為機械能輸出,使執行機構能完成各種需要的運動。
(二)液壓傳動的工作原理及特點
1.液壓傳動基本原理
如圖2-62所示為一簡化的液壓傳動系統,其工作原理如下:
液壓泵由電動機驅動旋轉,從油箱經過過濾器吸油。當控制閥的閥心處於圖示位置時,壓力油經溢流閥、控制閥和管道(圖2-62之9)進入液壓缸的左腔,推動活塞向右運動。液壓缸右腔的油液經管道(圖2-62之6)、控制閥和管道(圖2-62之10)流回油箱。改變控制閥的閥心的位置,使之處於左端時,液壓缸活塞將反向運動。
改變流量控制閥的開口,可以改變進入液壓缸的流量,從而控制液壓缸活塞的運動速度。液壓泵排出的多餘油液經限壓閥和管道(圖2-62之12)流回油箱。液壓缸的工作壓力取決於負載。液壓泵的最大工作壓力由溢流閥調定,其調定值應為液壓缸的最大工作壓力及系統中油液經閥和管道的壓力損失之總和。因此,系統的工作壓力不會超過溢流閥的調定值,溢流閥對系統還起著過載保護作用。
在圖2-62所示液壓系統中,各元件以結構符號表示。所構成的系統原理圖直觀性強,容易理解;但圖形復雜,繪制困難。
工程實際中,均採用元件的標准職能符號繪制液壓系統原理圖。職能符號僅表示元件的功能,而不表示元件的具體結構及參數。
圖2-63所示即為採用標准職能符號繪制的液壓系統工作原理圖,簡稱液壓系統圖。
圖2-62 液壓傳動系統結構原理圖
1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥
圖2-63 液壓傳動系統工作原理圖
1—油箱;2—過濾器;3—液壓泵;4—溢流閥;5—控制閥;6,9,10,12—液壓管道;7—液壓缸;8—工作台;11—限壓閥
2.液壓傳動的特點
(1)液壓傳動的主要優點
1)能夠方便地實現無級調速,調速范圍大。
2)與機械傳動和電氣傳動相比,在相同功率情況下,液壓傳動系統的體積較小,質量較輕。
3)工作平穩,換向沖擊小,便於實現頻繁換向。
4)便於實現過載保護,而且工作油液能使傳動零件實現自潤滑,因此使用壽命較長。
5)操縱簡單,便於實現自動化,特別是與電氣控制聯合使用時,易於實現復雜的自動工作循環。
6)液壓元件實現了系列化、標准化和通用化,易於設計、製造和推廣應用。
(2)液壓傳動的主要缺點
1)液壓傳動中不可避免地會出現泄漏,液體也不可能絕對不可壓縮,故無法保證嚴格的傳動比。
2)液壓傳動有較多的能量損失(泄漏損失、摩擦損失等),故傳動效率不高,不宜作遠距離傳動。
3)液壓傳動對油溫的變化比較敏感,不宜在很高和很低的溫度下工作。
4)液壓傳動出現故障時不易找出原因。
(三)液壓傳動系統的組成及圖形符號
1.液壓傳動系統的組成
由上述例子可以看出,液壓傳動系統除了工作介質外,主要由四大部分組成:
1)動力元件——液壓泵。它將機械能轉換成壓力能,給系統提供壓力油。
2)執行元件——液壓缸或液壓馬達。它將壓力能轉換成機械能,推動負載做功。
3)控制元件——液壓閥(流量、壓力、方向控制閥等)。它們對系統中油液的壓力、流量和流動方向進行控制和調節。
4)輔助元件——系統中除上述三部分以外的其他元件,如油箱、管路、過濾器、蓄能器、管接頭、壓力表開關等。由這些元件把系統連接起來,以支持系統的正常工作。
液壓系統各組成部分及作用如表2-6所示。
表2-6 液壓系統組成部分的作用
2.液壓元件的圖形符號
圖2-64是液壓千斤頂的結構原理示意圖。它直觀性強,易於理解,但難於繪制。特別是當液壓系統中元件較多時更是如此。
圖2-64 液壓千斤頂的結構原理圖
1—杠桿;2—泵體;3,11—活塞;4,10—油腔;5,7—單向閥;6—油箱;8—放油閥;9—油管;12—缸體
為了簡化原理圖的繪制,液壓系統中的元件可採用符號來表示,並代表元件的職能。使用這些圖形符號可使系統圖即簡單明了又便於繪制,如果有些液壓元件職能無法用這些符號表達時,仍可採用它的結構示意圖形式。如表27為液壓泵的圖形符號;表2-8為常用控制方式的圖形符號。欲了解更多液壓元件的圖形符號,可參閱相關書籍。
表2-7 液壓泵的圖形符號
表2-8 常用控制方式圖形符號
(四)液壓傳動的主要元件
1.液壓泵
是一種能量轉換裝置。它將機械能轉換為液壓能,為液壓系統提供一定流量的壓力油液,是系統的動力元件。
液壓泵的結構類型有齒輪式、葉片式和柱塞式等。目前鑽探設備的液壓系統中主要採用前兩種形式。
(1)齒輪泵
齒輪泵分為外嚙合和內嚙合兩種形式。外嚙合式齒輪泵由於結構簡單,價格低廉,體積小質量輕,自吸性能好,工作可靠且對油液污染不敏感,所以應用比較廣泛。
1)齒輪泵的工作原理。齒輪泵由泵殼體,兩側端蓋及由各齒間形成密封的工作空間組成。齒輪的嚙合線把容腔分隔為兩個互不相通的吸油腔和排油腔。當齒輪按圖示方向旋轉時吸油一側的輪齒逐漸分離,工作空間的容腔逐步增大,形成局部真空。此時油箱中的油液在外界大氣壓的作用下進入吸油容腔,隨著齒輪的旋轉,齒間的油液帶到排油一側。由於此側的輪齒是逐步嚙合,工作空間的容腔縮小,油液受擠壓獲得能量排出油口並輸入液壓系統。
2)齒輪泵的結構。YBC-45/80齒輪泵是鑽探設備常用的一種液壓泵,額定流量45L/min,額定泵壓8MPa(圖2-65)。該泵主要由泵體、泵蓋、主動齒輪、被動齒輪及幾個軸套等組成。齒輪與軸呈一體,以4隻鋁合金軸套支撐於泵體內,泵蓋與泵體用螺栓緊固,端面及泵軸處均以密封圈密封,兩個軸套(圖2-65之7與19)在壓力油的作用下有一定的軸向游動量,油泵運轉時與齒輪端面貼緊,減少軸向間隙同時在軸套和泵蓋之間有封嚴板等,將吸排油腔嚴格分開,防止竄通以提高泵的容積效率。在軸套靠近齒輪嚙合處開有卸荷槽。泵主軸伸出端以半圓鍵與傳動裝置連接,接受動力。
圖2-65 YBC—45/80齒輪泵
1—卡圈;2—油封;3—螺栓;4—泵蓋;5,13,20—O型密封圈;6—封嚴板;7,10,17,19—軸套;8—潤滑油槽;9—主動齒輪;11—進油口;12—泵體;14—油槽;15—排油口;16—定位鋼絲;18—被動齒輪;21—油孔;22—壓力油腔
3)齒輪泵的流量。齒輪泵的流量可看作是兩個齒輪的齒槽容積之和。若齒輪齒數為z,模數為m,節圓直徑為D(D=z·m),有效齒高h=2m,齒寬為b時,泵的流量Q為
Q=πDhb=2πzm2b
考慮齒間槽比輪齒的體積稍大一些,通常取π為3.33加以修正,還應考慮泵的容積效率ηv,則齒輪泵每分鍾的流量為
地勘鑽探工:基礎知識
(2)葉片泵
葉片泵與齒輪泵相比較具有結構緊湊,外形尺寸小,流量均勻,工作平穩噪音小,輸出壓力較高等優點,但結構較復雜,自吸性能差,對油液污染較敏感。在液壓鑽機中也有採用。
葉片泵分為單作用和雙作用兩種。前者可作為變數泵,後者只能作定量泵。
2.液壓馬達
液壓馬達是將液壓能轉換為機械能的裝置,是液壓系統的執行元件。其結構與液壓泵基本相同,但由於功能和工作條件不同,一般液壓泵和液壓馬達不具有可逆性。
液壓馬達按結構特點分為齒輪式、葉片式和柱塞式三類。鑽探設備中常用柱塞式液壓馬達。
如圖2-66所示,當壓力油經配油盤進入缸體的柱塞時,柱塞受油的作用向外伸出,並緊緊抵在斜盤上,這時斜盤對柱塞產生一法向反作用力F。由於斜盤中心線與缸體軸線傾斜角為δM,所以F可分解為兩個分力,其中水平分力Fx與柱塞推力相平衡,而垂直分力Fg則對缸體產生轉矩,驅動缸體及馬達軸旋轉。若從配油盤的另一側輸入壓力油,則液壓馬達朝反方向旋轉。
圖2-66 軸向柱塞式液壓馬達工作原理
1—斜盤;2—缸體;3—柱塞;4—配油盤;5—主盤
若液壓馬達的排量為Q,輸入液壓馬達的液壓力為P,機械效率為ηm,則液壓馬達的輸出轉矩M為:M=PQηm/2π。
3.液壓缸
液壓缸是液壓系統的執行元件。它的作用是將液壓能轉變為機械能,使運動部件實現往復直線運動或擺動。液壓缸結構簡單,使用方便,運動平穩,工作可靠,在鑽探設備中應用十分廣泛。液壓缸的種類很多,按結構類型可分為活塞式、柱塞式和擺動式三種。其中活塞式液壓缸最常用。活塞或液壓缸可分為單出桿式和雙出桿式兩種。其固定方式可以是缸體固定或活塞桿固定。
(1)單出桿活塞式液壓缸
如圖2-67所示為液壓式鑽機給進油缸的結構。它由活塞、活塞桿、缸筒、上蓋、下蓋、密封圈和壓緊螺母等組成。活塞桿與活塞以螺紋連接成一體。活塞環槽中配裝的活塞環及上蓋處的密封圈等用以保證缸內具有良好的密封性。在液缸的上下蓋上設有輸油口,壓力油經輸油口進入液缸的上、下腔,即推動活塞移動,並通過活塞桿頂端的連接螺母帶動立軸上行或下行。由圖示結構可知,單出桿液壓缸活塞兩側容腔的有效工作面積是不相等的,因此當向兩腔分別輸入壓力和流量相等的油液時,活塞在兩個方向的推力和運行速度是不相等的。
圖2-67 鑽機給進油缸的結構
(2)雙活塞桿式液壓缸
雙活塞桿式液壓缸結構,組成件與單活塞桿液壓缸基本相同,所不同的是活塞左右兩端都有活塞桿伸出,可以連接工作部件,實現往復運動。由圖示結構可知,
兩側活塞桿直徑相同,當兩腔的供油壓力和流量都相等時,兩個方向的推力和運行速度也相等。
4.液壓控制閥
液壓控制閥是液壓系統中的控制元件,用於控制系統的油液流動方向及壓力和流量的大小,以保證各執行機構工作的可靠、協調和安全性。
液壓控制閥按其用途和工作特點不同,通常可分為方向控制閥(如單向閥和換向閥等)、壓力控制閥(如溢流閥、減壓閥和順序閥等)和流量控制閥(如節流閥和調速閥等)。這3種閥可根據需要互相組合成為集成式控制閥,如液壓式鑽機或其他工程機械就是將一個或多個換向閥、調壓溢流閥和流量閥等組裝在一起成為集中手柄控制的液壓操縱閥。
(五)液壓傳動系統的基本迴路簡介
1.壓力控制迴路
主要是利用壓力控制閥來控制系統壓力,實現增壓、減壓、卸荷、順序動作等,以滿足工作機構對力或力矩的要求。如圖2-68所示為一減壓迴路,由於油缸G往返時所需的壓力比主系統低,所以在支路上設置減壓閥,實現分支油路減壓。
圖2-68 減壓迴路
2.速度控制迴路
主要有定量泵的節流調速、變數泵和節流閥的調速、容積調速等迴路,可以實現執行機構不同運動速度(或轉速)的要求。在定量泵的節流調速迴路中,採用節流閥,調速閥或溢流調速閥來調節進入液壓缸(或液壓馬達)的流量。根據閥在迴路中的安裝位置,分為進口節流、出口節流和旁路節流3種。
3.換向控制迴路
換向控制迴路是利用各種換向閥或單向閥組成的控制執行元件的啟動、停止或換向的迴路。常見的有換向迴路、閉鎖迴路、時間制動的換向迴路和行程制動的換向迴路等。
如圖2-69所示是簡化的工作台作往復直線運動的液壓系統圖。為了控制工作台的往復運動,在這個系統中設置了一個手動換向閥,用來改變液流進入液壓缸的方向。當手動換向閥的閥心在最右端時(圖2-69a),壓力油由P—A,進入液壓缸左腔。此時,右腔中的油液由B—O流回油箱,因而推動了活塞連同工作台一起向右運動。
若把手動換向閥的閥心扳到中間位置(圖2-69b),壓力油的進油口P與回油口O都被閥心封閉,工作台停止運動。
如果把閥心扳到最左端,壓力油從P—B進入液壓缸右腔(圖2-69c),左腔中的油液由A—O回油箱,從而推動活塞連同工作台向左運動,完成換向動作。
圖2-69 換向工作原理圖
4.同步迴路
當液壓設備上有兩個或兩個以上的液壓油缸,在運動時要求能保持相同的位移和速度,或要求以一定的速度比運動時,可採用同步迴路。
5.順序動作迴路
當用一個液壓泵驅動幾個要求按照一定順序依次動作的工作機構時,可採用順序動作迴路。實現順序動作可以採用壓力控制、行程式控制制和時間控制等方法。
⑥ 液壓系統設計工作
設計液壓傳動系統的內容
1、明確對液壓傳動系統的工作要求,是設計液壓傳動系統的依據,由使用部門以技術任務書的形式提出。
2、擬定液壓傳動系統圖。(1)根據工作部件的運動形式,合理地選擇液壓執行元件;(2)根據工作部件的性能要求和動作順序,列出可能實現的各種基本迴路。此時應注意選擇合適的調速方案、速度換接方案,確定安全措施和卸荷措施,保證自動工作循環的完成和順序動作和可靠。
液壓傳動方案擬定後,應按國家標准規定的圖形符號繪制正式原理圖。圖中應標注出各液壓元件的型號規格,還應有執行元件的動作循環圖和電氣元件的動作循環表,同時要列出標准(或通用)參數。
3、計算液壓系統的主要參數和選擇液壓元件。(1)計算液壓缸的主要參數;(2)計算液壓缸所需的流量並選用液壓泵;(3)選用油管;(4)選取元件規格;(5)計算系統實際工作壓力;(6)計算功率,選用電動機;(7)發熱和油箱容積計算;
4、進行必要的液壓系統驗算。
5、液壓裝置的結構設計。
6、繪制液壓系統工作圖,編制技術文件。
常用的軟體有:
CAD/SMC公司內部用的設計軟體。
⑦ 液壓制動傳動裝置的布置形式有
液壓制動執行器有兩種布置方式:單線液壓制動執行器和雙線液壓制動執行器。單線液壓傳動裝置單線液壓傳動裝置利用一個制動總泵,通過一組相互連接的管路來控制整車的車輪制動器,如圖17.1所示。該裝置由制動踏板、推桿、制動總泵、儲液室、制動輪缸、油管等組成。如果單線液壓制動傳動裝置的任何部分漏油,整個系統都會失效。由於可靠性差,很少用於汽車。
雙管路液壓傳動裝置雙管路液壓傳動裝置是利用兩個彼此獨立的液壓系統,當一個液壓系統發生故障時,另一個液壓系統仍然照常工作。雙管路的布置型式應力求當一套管路發生故障時,只能引起制動效能的降低,其前後橋制動力分配比例值最好不變,以提高附著力的利用率,保證汽車良好的操縱性和穩定性。
常見的雙線液壓制動裝置有兩種:
①兩套管路,如國產 桑塔納 ( 查成交價 | 車型詳解 )和部分進口 豐田 汽車,採用串聯雙腔制動總泵控制。
②採用單腔制動總泵,配安全缸或隔離器,控制兩套管路,如國產NJ1 041等。
雙管路液壓傳動裝置通常以前後獨立方式和交叉方式布置。
1.雙管前後獨立模式
前後管路獨立的液壓傳動裝置由車軸控制,即兩軸各有一套控制管路,如圖17所示。2.該裝置由制動踏板、推桿、雙腔制動總泵、儲液室、制動輪缸、油管等組成。主要用於後置發動機對後輪制動依賴性較大的後輪驅動車輛。制動時,踩下制動踏板,雙腔制動總泵的推桿推動總泵的前後活塞,增加總泵前後腔內的油壓,制動液分別流向前後輪制動缸,在油壓的作用下,迫使輪缸的活塞向外移動,推動制動蹄片打開,產生制動。當松開制動踏板時,制動蹄和輪缸活塞在回位彈簧的作用下回到原位,使制動液返回制動總泵,汽車脫離制動。每個制動缸的管路分為控制軸上的車輪制動器和後輪軸。如果其中一條管路發生故障,另一條管路仍有一定的制動效率,但前後軸制動力分配比被破壞,導致附著利用率下降,制動效率低於5 0%。
2.雙管道穿越模式
雙管路交叉液壓制動傳動裝置分別通過兩套管路控制前、後輪軸制動器的一個制動輪缸,如圖17所示。3、主要用於發動機高度依賴前輪制動力的前輪驅動車輛,上海桑塔納汽車採用雙管路穿越方式。制動時,如果其中一條管路發生故障,剩餘的總制動力仍能保持正常值的5±0%,即使正常工作管路中的車輪制動器鎖死打滑,故障管路也不制動。
動輪仍能傳遞側向力,前後輪制動力分配達到3.36 = 1。汽車高速剎車時,可以保證後輪不抱死,或者前輪先於後輪抱死,避免剎車時後輪失去橫向附著力,導致汽車失控,如圖17所示。4. @2019
⑧ 液壓提升裝置 原理
利用液體壓力傳遞的性質,根據液面平衡、壓強相等原理,衡量得出質量的大小。液壓原理在一定的機械、電子系統內,依靠液體介質的靜壓力,完成能量的積壓、傳遞、放大,實現機械功能的輕巧化、科學化、最大化。利用液壓原理,可以構建液壓傳動系統,也可以構建液壓控制系統。液壓迴路的基本機能在於以液體壓力能的形式進行容易控制的能量傳遞。
元件分類
正確地使用和維護液壓系統,有賴於對流體特性和機械元件功能的透徹理解。要想操作和維護好一個液壓系統,從事該領域工作的人們必須具備一些流體動力的基礎知識,同時也需要熟悉組成液壓系統的七類基本元件。
許多液壓系統看似極其復雜,但實際上,它們的基本設計原理相當簡單。不管一個液壓系統的復雜程度如何,每個系統都無外乎由七類基本元件組成:
1、存儲油液的油箱;
2、用來傳遞流體動力的管路;
3、將輸入動力轉化為流體動力的液壓泵;
4、調節壓力的壓力控制閥;
5、控制流體流動方向的方向控制閥;
6、調節速度或流量的流量控制裝置;
7、將液壓能轉化為機械能的執行元件。
特點
從能量傳遞方面看:液壓技術大致處於機械式能量傳遞和電氣式能量傳遞之中間位置。
從傳動特性方面看:機械傳動和液力傳動裝置可以說有固定的特性,與此相反,液壓傳動裝置和電氣傳動裝置相同,具有無級變速裝置的特性,除了恆功率外,還容易實現恆速和恆轉矩等特性。
液壓技術的這種特點,一般可以歸納如下:
(1)容易進行無級變速,變速范圍廣,即能在很寬的范圍內很容易地調節力與轉矩;
(2)控制性能好,即力、速度、位置等能以很高的響應速度正確地進行控制。另外,對於電氣,機械等其它的控制方式具有很好地適應性,特別是和電氣信號處理相結合,可得到優良的響應特性;
(3)動作可靠,操作性能好;
(4)結構和特性上具有適度的柔性;
(5)可以用標准元件構成實現任意復雜機能的迴路。形成這些特點的原因:在於用容積式元件作能力轉換器即液壓泵和液壓執行器,用富有潤滑性的油(液壓油)作為工作介質。液壓技術的一般缺點也與液壓油有關。