導航:首頁 > 裝置知識 > 怎樣製作手壓傳動裝置

怎樣製作手壓傳動裝置

發布時間:2023-02-28 13:34:57

Ⅰ 液壓式制動傳動裝置

液壓制動傳動裝置類似於離合器液壓控制裝置。它以專用油為介質,將駕駛員施加在制動踏板上的踏板力放大後傳遞給車輪制動器,再將液壓轉化為制動蹄片開口的機械推力,使車輪制動器產生制動效果。它具有結構簡單、制動滯後時間短、無摩擦部件、制動穩定性好、對各種車輪制動器適應性強等優點,因此被廣泛應用於中小型汽車。

液壓傳動裝置的主要部件如下

1.制動主缸

主缸可以將制動踏板輸入的機械力轉化為液壓。大部分制動缸由鑄鐵或合金製成,其中一些與儲油室成一體,形成一個整體的主缸,另一些相互分離,然後通過油管連接,這是一個分離的主缸。分體式總泵的儲油室多採用透明塑料成型,部分配有防濺浮子或低液位報警燈開關。根據工作室的數量,主缸可以分為單室和雙腔。單線液壓制動傳動裝置採用單室主缸,現已淘汰。雙腔制動總泵應用廣泛。下面簡單介紹一下雙腔制動總泵。

1)結構組成

雙腔制動總泵一般是串聯的,如圖17.5所示。主要由主缸、前活塞及回位彈簧、前活塞彈簧座、前活塞杯、限位螺栓、後活塞及杯等組成。主缸體中的工作面精度高、光滑。缸體上有進油孔和補償孔,有兩個活塞。後活塞9為主活塞,右端凹槽與推桿之間有一定間隙。前活塞6位於氣缸中部,將主缸內腔分為前腔B和後腔A兩個工作腔,兩個工作腔分別與前後液壓管路連接,前腔B產生的液壓通過出油口11和管路與後輪制動器連接,後腔A產生的液壓通過出油口10和管路與前輪制動器連接。

2)工作條件

當踩下制動踏板時,推桿推動主活塞9向左移動,直到杯8蓋住補償孔,後腔A內的液壓上升,建立起一定的液壓。一方面,機油通過後機油出口流入前制動管路,另一方面,機油推動前活塞6向左移動。在後腔A中的液壓和彈簧的作用下,前活塞向左移動,前腔B中的壓力也隨之增加。油通過空腔內的出油口進入後制動管路,這樣兩條制動管路制動汽車車輪制動器。

當持續踩下制動踏板時,前腔B和後腔A中的液壓會繼續增大,從而加強前後輪制動器的制動。

當制動器松開時,活塞在彈簧的作用下復位,高壓油從制動管路流回制動總泵。如果活塞復位過快,工作室的容積會迅速增加,油壓會迅速下降。由於管路阻力的影響,制動管路中的油將無法充分迴流到工作腔,從而在工作腔內形成一定的真空度,這樣儲液腔內的油將通過進油口和活塞上的軸向孔將墊片和杯體推入工作腔內。當活塞完全復位時,補償孔打開,制動管路中迴流到工作室的多餘油通過I補償孔流回儲液室。

如果連接到前室B的制動管路損壞漏油,踩下制動踏板時,只有後室A能積聚一定的液壓,但前室B中沒有液壓,此時,在液壓壓差的作用下,前活塞6迅速被推向底部,直到接觸到油缸的頂部。前活塞被推到底部後,後室A的液壓可能會上升到制動所需的值。

如果連接到後室A的制動管路損壞漏油,當踩下制動踏板時,起初只有主活塞9向前移動,但前活塞6不能被推動,因此後室A中的液壓無法建立。然而,當主活塞的頂部接觸前活塞6時,推桿的力可以推動前活塞,從而可以在前室中建立液壓。

可以看出,在雙管路液壓系統中,當任何一條管路損壞漏油時,另一條仍能工作,只是增加了所需的管路。

上海 桑塔納 ( 查成交價 | 車型詳解 )使用的制動總泵也是串聯雙腔制動總泵。主缸用兩個螺母連接在真空助力器前面,主缸上有兩個橡膠頭與儲液罐連接。制動液通過進油孔供應至前後工作室。主缸前後有兩個對稱的M10 X1 出油螺孔,相互成100度角,通過制動管路與四輪制動器的輪缸交叉布置連接。

當踏板松開時,活塞和推桿分別在回位彈簧的作用下回到初始位置。由於回程速度快,在制動管路中很容易生成 tru e空。因此,前活塞和後活塞的頭部有三個l.4毫米的小孔,相互間隔120度,制動液可以通過小孔流回兩個工作室,從而減少負壓。

為了保證主缸活塞完全回位,推桿與制動主缸活塞之間有一定的間隙,這種間隙體現在制動踏板的行程上,稱為制動踏板自由行程。

制動踏板的自由行程對制動效果和行車安全有很大影響。如果自由行程過大,制動踏板有效行程減小,制動過晚,導致制動不良或失效。如果自由行程過小或過小,剎車不能及時完全釋放,造成剎車拖滯,加速剎車磨損,影響動力傳遞效率,增加汽車油耗。

制動踏板的自由行程可以通過推桿的長度來調節。

2.制動輪缸

制動輪缸將來自主缸的液壓轉換成機械推力,以打開制動蹄。由於車輪制動器的結構不同,輪缸的數量和結構也不同,通常分為雙活塞制動輪缸和單活塞制動輪缸。

1)雙活塞制動輪缸

雙活塞制動輪缸的結構如圖17所示。6.缸體用螺栓固定在制動底板上。氣缸里有兩個塞子。具有相對切削刃的密封杯分別被彈簧壓靠在兩個活塞上,以保持杯之間的進油孔暢通。防護罩用於防止灰塵和濕氣進入氣缸。2)單活塞制動輪缸

單活塞制動輪缸的結構如圖17所示。7.頂塊壓在單活塞制動輪缸活塞外端凸台孔內的制動蹄上端。排氣閥安裝在缸體上方,用於排出氣體。為了減小軸向尺寸,安裝在活塞導向面上的橡膠圈用於密封液腔,進油間隙由活塞端面的凸台保持。

單活塞制動輪缸多用於單向助力平衡輪制動器,目前趨於淘汰。

單活塞制動輪缸的活塞直徑大於主缸的直徑,並且與前後軸上的實際負載分布成比例。這樣,作用在前制動器和後輪軸制動器上的制動力應該是踏板力和制動踏板杠桿與活塞直徑之比。3.制動管路

制動管路用於輸送和承受一定壓力的制動液。制動管路有兩種:金屬管和橡膠管。由於主缸和輪缸的相對位置經常變化,除了金屬管外,有些制動管有相對運動的截面,用高強度橡膠管連接。

4.制動液

要求制動液具有冰點低、高溫老化低、流動性好的特點。制動液對普通金屬和橡膠有腐蝕性,制動系統中所有與制動液接觸的零件都由耐腐蝕材料製成。因此,為了保證可靠的制動性能,在修理和更換相關零件時,必須使用原裝零件或認證零件。桑塔納用的制動液是D0T4。 @2019

Ⅱ 液壓提升裝置 原理

利用液體壓力傳遞的性質,根據液面平衡、壓強相等原理,衡量得出質量的大小。液壓原理在一定的機械、電子系統內,依靠液體介質的靜壓力,完成能量的積壓、傳遞、放大,實現機械功能的輕巧化、科學化、最大化。利用液壓原理,可以構建液壓傳動系統,也可以構建液壓控制系統。液壓迴路的基本機能在於以液體壓力能的形式進行容易控制的能量傳遞。
元件分類
正確地使用和維護液壓系統,有賴於對流體特性和機械元件功能的透徹理解。要想操作和維護好一個液壓系統,從事該領域工作的人們必須具備一些流體動力的基礎知識,同時也需要熟悉組成液壓系統的七類基本元件。
許多液壓系統看似極其復雜,但實際上,它們的基本設計原理相當簡單。不管一個液壓系統的復雜程度如何,每個系統都無外乎由七類基本元件組成:
1、存儲油液的油箱;
2、用來傳遞流體動力的管路;
3、將輸入動力轉化為流體動力的液壓泵;
4、調節壓力的壓力控制閥;
5、控制流體流動方向的方向控制閥;
6、調節速度或流量的流量控制裝置;
7、將液壓能轉化為機械能的執行元件。
特點
從能量傳遞方面看:液壓技術大致處於機械式能量傳遞和電氣式能量傳遞之中間位置。
從傳動特性方面看:機械傳動和液力傳動裝置可以說有固定的特性,與此相反,液壓傳動裝置和電氣傳動裝置相同,具有無級變速裝置的特性,除了恆功率外,還容易實現恆速和恆轉矩等特性。
液壓技術的這種特點,一般可以歸納如下:
(1)容易進行無級變速,變速范圍廣,即能在很寬的范圍內很容易地調節力與轉矩;
(2)控制性能好,即力、速度、位置等能以很高的響應速度正確地進行控制。另外,對於電氣,機械等其它的控制方式具有很好地適應性,特別是和電氣信號處理相結合,可得到優良的響應特性;
(3)動作可靠,操作性能好;
(4)結構和特性上具有適度的柔性;
(5)可以用標准元件構成實現任意復雜機能的迴路。形成這些特點的原因:在於用容積式元件作能力轉換器即液壓泵和液壓執行器,用富有潤滑性的油(液壓油)作為工作介質。液壓技術的一般缺點也與液壓油有關。

Ⅲ 一般的液壓傳動系統由哪幾部分組成,基本工作原理是什麼

液壓傳動系統由液壓動力元件(液壓油泵)、液壓控制元件(各種液壓閥)、液壓執行元件(液壓缸和液壓馬達等)、液壓輔件(管道和蓄能器等)和液壓油組成。

基本工作原理:

電動機帶動液壓泵從油箱吸油,液壓泵把電動機的機械能轉換為液體的壓力能。液壓介質通過管道經節流閥和換向和閥進入液壓缸左腔,推動活塞帶動工作台右移,液壓缸右腔排出的液壓介質經換向閥流回油箱。換向閥換向之後液壓介質進入液壓缸右腔,使活塞左移,推動工作台反向移動。

1、液壓泵是將原動機的機械能轉換為液體的壓力動能(表現為壓力、流量),為液壓系統提供壓力油,是系統的動力來源。

2、液壓缸或液壓馬達將液壓能轉換為機械能而對外做功,液壓缸可驅動工作機構實現往復直線運動(或擺動),液壓馬達可實現回轉運動。

3、各種液壓閥可以控制和調節液壓系統中液體的壓力、流量和方向等,保證執行元件能按照要求進行工作。

4、液壓輔件提供必要的條件使系統正常工作並便於監測控制。

5、液壓油,液壓系統就是通過液壓油實現運動和動力傳遞的,液壓油還可以對液壓元件中相互運動的零件起潤滑作用。

(3)怎樣製作手壓傳動裝置擴展閱讀:

液壓傳動系統的優點

1、液壓傳動可以輸出大的推力或大轉矩,可實現低速大噸位運動。

2、液壓傳動能很方便地實現無級調速,調速范圍大,且可在系統運行過程中調速。

3、在相同功率條件下,液壓傳動裝置體積小、重量輕、結構緊湊。液壓元件之間可採用管道連接、或採用集成式連接,其布局、安裝有很大的靈活性,可以構成用其它傳動方式難以組成的復雜系統。

4、液壓傳動能使執行元件的運動十分均勻穩定,可使運動部件換向時無換向沖擊。而且由於其反應速度快,故可實現頻繁換向。

5、操作簡單,調整控制方便,易於實現自動化。特別是和機、電聯合使用時,能方便地實現復雜的自動工作循環。

6、液壓系統便於實現過載保護,使用安全、可靠。由於各液壓元件中的運動件均在油液中工作,能自行潤滑,故元件的使用壽命長。

7、液壓元件易於實現系列化、標准化和通用化,便於設計、製造、維修和推廣使用。

Ⅳ 機械設計 帶式輸送機傳動裝置

機械設計課程設計 設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器_網路知道
僅供參考

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.

放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20

(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2

(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3

D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.

九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。

十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。

十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版

Ⅳ 機械設計課程設計帶式運輸機傳動裝置的設計

給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2 、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3 、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100 ,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比: u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;
則 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取 φ
齒寬: b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1 、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2 、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。
則 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滾動軸承的選擇
1 、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2 、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1 、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2 、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3 、輸入軸與帶輪聯接採用平鍵聯接 =25mm L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4 、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11

Ⅵ 液壓制動傳動裝置的布置形式有

液壓制動執行器有兩種布置方式:單線液壓制動執行器和雙線液壓制動執行器。單線液壓傳動裝置單線液壓傳動裝置利用一個制動總泵,通過一組相互連接的管路來控制整車的車輪制動器,如圖17.1所示。該裝置由制動踏板、推桿、制動總泵、儲液室、制動輪缸、油管等組成。如果單線液壓制動傳動裝置的任何部分漏油,整個系統都會失效。由於可靠性差,很少用於汽車。
雙管路液壓傳動裝置雙管路液壓傳動裝置是利用兩個彼此獨立的液壓系統,當一個液壓系統發生故障時,另一個液壓系統仍然照常工作。雙管路的布置型式應力求當一套管路發生故障時,只能引起制動效能的降低,其前後橋制動力分配比例值最好不變,以提高附著力的利用率,保證汽車良好的操縱性和穩定性。

常見的雙線液壓制動裝置有兩種:

①兩套管路,如國產 桑塔納 ( 查成交價 | 車型詳解 )和部分進口 豐田 汽車,採用串聯雙腔制動總泵控制。

②採用單腔制動總泵,配安全缸或隔離器,控制兩套管路,如國產NJ1 041等。

雙管路液壓傳動裝置通常以前後獨立方式和交叉方式布置。

1.雙管前後獨立模式

前後管路獨立的液壓傳動裝置由車軸控制,即兩軸各有一套控制管路,如圖17所示。2.該裝置由制動踏板、推桿、雙腔制動總泵、儲液室、制動輪缸、油管等組成。主要用於後置發動機對後輪制動依賴性較大的後輪驅動車輛。制動時,踩下制動踏板,雙腔制動總泵的推桿推動總泵的前後活塞,增加總泵前後腔內的油壓,制動液分別流向前後輪制動缸,在油壓的作用下,迫使輪缸的活塞向外移動,推動制動蹄片打開,產生制動。當松開制動踏板時,制動蹄和輪缸活塞在回位彈簧的作用下回到原位,使制動液返回制動總泵,汽車脫離制動。每個制動缸的管路分為控制軸上的車輪制動器和後輪軸。如果其中一條管路發生故障,另一條管路仍有一定的制動效率,但前後軸制動力分配比被破壞,導致附著利用率下降,制動效率低於5 0%。

2.雙管道穿越模式

雙管路交叉液壓制動傳動裝置分別通過兩套管路控制前、後輪軸制動器的一個制動輪缸,如圖17所示。3、主要用於發動機高度依賴前輪制動力的前輪驅動車輛,上海桑塔納汽車採用雙管路穿越方式。制動時,如果其中一條管路發生故障,剩餘的總制動力仍能保持正常值的5±0%,即使正常工作管路中的車輪制動器鎖死打滑,故障管路也不制動。

動輪仍能傳遞側向力,前後輪制動力分配達到3.36 = 1。汽車高速剎車時,可以保證後輪不抱死,或者前輪先於後輪抱死,避免剎車時後輪失去橫向附著力,導致汽車失控,如圖17所示。4. @2019

Ⅶ 氣壓制動裝置由哪些部件組成是怎樣工作的

氣壓式制動傳動裝置是利用壓縮空氣作力源的動力式制動裝置。駕駛員只須按不同的制動強度要求,控制制動踏板的行程,便可控制制動氣壓的大小來獲得所需要的制動力。氣壓制動傳動裝置的基本組成和工作原理1.組成氣壓制動傳動裝置由兩大部分組成:一是氣源部分——它包括空氣壓縮機1、調壓機構(卸荷閥2和調壓閥3)、貯氣筒5、氣壓表8和安全閥6等部件。二是控制部分——它包括制動踏板9、制動控制閥10、控制管路、制動氣室11、12、制動燈開關13等部件。1-空氣壓縮機;2-卸荷閥;3-調壓器;4-單向閥;5-貯氣筒;6-安全閥;7-油水放出閥;8-氣壓表;9-制動踏板;10-制動控制閥;11-前制動氣室,12-後制動氣室;13-制動燈開關

閱讀全文

與怎樣製作手壓傳動裝置相關的資料

熱點內容
2017裝機人員工具箱完整版 瀏覽:211
創業設備機器有哪些 瀏覽:498
機床潤滑油加錯怎麼辦 瀏覽:765
生活垃圾需要什麼設備 瀏覽:742
哈爾濱手持電動工具檢測 瀏覽:369
cg工具箱更新 瀏覽:406
盤車裝置自動嚙合原理 瀏覽:492
5306軸承用在什麼地方 瀏覽:252
工業電動工具設備有哪些 瀏覽:486
電網反孤島裝置作用 瀏覽:2
流動性檢測裝置 瀏覽:970
吉博力閥門怎麼開 瀏覽:149
儀表盤cruise亮什麼意思 瀏覽:908
軸承中的g是什麼意思 瀏覽:429
賓士儀表上顯示什麼 瀏覽:649
礦用潛水泵自動排水控制裝置 瀏覽:102
起重機械司機可以開什麼車 瀏覽:749
廊坊開發區都有什麼設備廠 瀏覽:656
實驗蒸餾水裝置 瀏覽:250
夏天製冷多少度最好 瀏覽:617