❶ 卷揚機行星輪系設計
1.行星輪系類型的選擇
最基本的行星輪系包括三個基本構件,即兩個中心輪和一個系桿。若中心輪用K代表,系桿用H代表,則這種最基本的行星輪系可以用代號表示為2K-H。
根據兩個中心輪的不同類型及固定情況,常用的2K-H行星輪系可以有以下幾種不同型式:
(1)兩個中心輪中,一個為外齒輪,一個為內齒輪。如圖4-14中的a、b、c、e所示。其中a及b都是單排行星輪,但a為中心輪3固定,b為中心輪1固定;c為雙排行星輪;而e的行星輪是帶內外齒的。
圖4-14 2K-H行星輪系的類型
(2)兩個中心輪都為圓錐齒輪,如圖4-14d所示。
(3)兩個中心輪都為外齒輪,如圖4-14f所示。
(4)兩個中心輪都為內齒輪,如圖4-14g所示。
選擇輪系的類型時,主要從傳動比、效率、結構復雜程度和外廓尺寸等幾方面綜合考慮而定。首先是考慮能否滿足傳動比的要求。圖4-14中a、b、c、d四種型式的轉化機構傳動比 都是負的,故將它們稱為負號機構。負號機構的特點是傳動從左到右(即從主動中心輪到從動系桿H)都是減速的,而且輸入與輸出的轉向相同。這一點從圖中的傳動比公式也可以清楚地看出,但是它們的減速范圍不同。例如類型a的傳動比i1H一定大於2,實用范圍i1H=2.8~9;如果要求的減速比小於2,則可採用類型b,其傳動比i3H一定小於2,實用范圍i3H=1.14~1.56;類型c由於採用雙排行星輪,它的減速范圍較大,可以從1到17;類型d的i1H用在2左右。類型c和d都可以填補a、b二種可用傳動比中間的空白區。
圖4-14中e、f、g三種型式的轉化機構傳動比 都是正的,故將它們稱為正號機構。當齒數比 時,則 ,傳動自左到右為減速,但輸入與輸出的轉向相反;當齒數比 時,傳動自左到右為增速(當比 時,n1與nH轉向相反;比 時,n1與nH轉向相同);當比 時,i1H→0,增速比iH1理論上達無窮大。
從機構傳動效率的角度來看,不管用於增速還是減速,負號機構的效率總比正號機構為高。因此,如果所設計的輪系是用作動力傳動,這時要求傳動有較高的效率,則應該採用負號機構,即圖4-14a、b、c、d所示的型式;如果設計的輪系還要求有較大的傳動比,而單級負號機構又不能滿足要求時,可以將幾個負號機構串聯起來,或採用負號機構與定軸輪系聯合的混合輪系,以取得較大的傳動比。如圖4-15所示,這些輪系適用的傳動比i1H=10~60。
圖4-15 動力傳動常用的大傳動比輪系
正號機構一般用在傳動比大而對效率要求不高的輔助機構中。用於增速時,增速比i1H理論上可達到無窮大,但實際上受到效率的限制,i1H越大,效率越低,達到一定值後,機構將發生自鎖。
2.行星輪系中各輪齒數的確定
選定行星輪系的類型後,需要確定其各輪的齒數。在行星輪系中,各輪齒數的選配需要滿足以下4個條件:
(1)保證實現給定的傳動比;
(2)保證兩個中心輪及系桿的軸線重合,亦即滿足同心條件;
(3)保證各行星輪能夠均勻地裝入兩中心輪之間,亦即滿足安裝條件;
(4)保證各行星輪不致互相碰撞,亦即滿足鄰接條件。
現以圖4-14a所示的行星輪系為例說明於後:
1)保證實現給定的傳動比
因
液壓動力頭岩心鑽機設計與使用
故
液壓動力頭岩心鑽機設計與使用
2)保證滿足同心條件
根據兩中心輪的軸線重合的條件,當採用標准傳動和等移距變位傳動時,可得
r3=r1+2r2
式中:r1、r2、r3分別表示齒輪1、2、3的節圓半徑。
亦即
液壓動力頭岩心鑽機設計與使用
3)保證滿足安裝條件為使幾個行星輪都能夠均勻地裝入兩中心輪之間,則行星輪的數目與各輪齒數之間必須有一定的關系。如圖4-16所示,設需要在中心輪1與3之間裝入K個行星輪,並要求均勻分布,即相互之間相隔 ,現分析行星輪數K與各輪齒數之間的關系。
圖4-16 行星輪系安裝條件分析
如圖4-16所示,設先裝入第一個行星輪於O2,則裝好後,中心輪1與3的齒之間的相對角向位置已通過該行星輪而產生了聯系。為了在相隔φ°處裝入第二個行星輪,可以轉動中心輪1,使第一個行星輪的位置由O2轉到O2′,並使∠O2O O2′=φ°。這時,中心輪1上的a點轉到a′位置,轉過的角度為θ,根據傳動比公式,角度φ與θ的關系為:
液壓動力頭岩心鑽機設計與使用
如果這時中心輪1轉過的角度θ恰好等於轉過整數個齒,則輪1與3的齒的相對角向位置又回復到與開始裝第一個行星輪時一模一樣,故在原來裝第一個行星輪的位置O2處,一定能再裝入第二個行星輪。同樣的過程,可以裝入第三個,第四個……直至第K個行星輪。
故相隔φ°能裝入第二個行星輪的條件為
液壓動力頭岩心鑽機設計與使用
式中: 為中心輪1每個齒對應的中心角;N為正整數。
將式b代入式a,得
或
液壓動力頭岩心鑽機設計與使用
由上式可知,欲保證滿足安裝條件,則兩個中心輪的齒數和z1+z3應能被行星輪數K整除。
4)保證滿足鄰接條件
在圖4-16中,O2、O2′為相鄰兩行星輪的位置,為了保證相鄰兩行星輪不致相互碰撞,需使中心距O2O2′大於兩齒輪頂圓半徑之和,即
O2O2′>da
式中:da為行星輪齒頂圓直徑。
液壓動力頭岩心鑽機設計與使用
式中:m為模數;h*a為齒頂高系數。
式(4-1)~(4-4)所代表的關系,在選擇齒數與行星輪個數時必須滿足。
對於圖4-14c所示的雙排行星輪系,經過類似步驟,不難確定其應滿足的相應的關系式為:
(1)傳動比條件
(2)同心條件
(3)安裝條件
(4)鄰接條件
除了上述4個條件外,由於負號機構中的輪2與輪3為內嚙合,故在進行幾何尺寸計算時,還應檢查有無發生干涉的可能。
3.行星輪系的受力分析
了解行星輪系各構件的受力情況是進行結構設計的基礎,現以圖4-17a所示的傳動型式為例,分析各構件的受力情況,分析時略去傳動中的摩擦力。
圖4-17 行星輪系的受力分析
如圖4-17a所示,在此輪系中,假定齒輪1為主動件,受有順時針的驅動力矩M1,角速度為ω1,系桿H為從動件,它受有逆時針的阻力矩Mr,角速度為ωH。在進行力分析時,把輪系視為在外力作用下處於平衡狀態(即輪系處於穩定運轉狀態),於是如圖4-17b所示,可以畫出機構各構件的力矩平衡圖。
主動輪1上作用有驅動力矩M1和行星輪2對它的反作用力Fn21(下標21代表構件2對構件1的作用)。Fn21又可分解為圓周力F21與徑向力R21。R21不產生力矩,它由輪1的支承和機架承受,故在以下的討論中,將不再提這個分量。圓周力F21對軸O的力矩應與驅動力矩M1大小相等,方向相反。即
F21·r1·K=M1
式中:r1為輪1的節圓半徑;K為行星輪個數。
故得
液壓動力頭岩心鑽機設計與使用
行星輪2在主動輪1作用的圓周力F12(F21的反作用力)推動下運動,並如圖所示,同時受到系桿H固定輪3的反作用力FH2及F32,根據力的平衡條件,顯然得
F32=F12
FH2=F32+F12=2F12
系桿H受到行星輪2的作用力F2H,它對軸O的力矩應與外加阻力矩Mr相平衡,故得
K·F2H(r1+r2)=Mr
而行星輪2給固定輪3的作用力F23所產生的力矩為K·F23·r3,這個力矩是由機架所承受。
由主動輪1輸入的功率為
P1=M1·ω1=K·F21·r1·ω1
由系桿H輸出的功率為
PH=Mr·ωH=KF2H(r1+r2)ωH=2kF21(r1+r2)ωH
又因
液壓動力頭岩心鑽機設計與使用
故得
液壓動力頭岩心鑽機設計與使用
上式表示,由於輪3固定,如果不計摩擦損失,全部輸入功率將由系桿H輸出。這個等式也可以用來檢查力的分析是否正確。
❷ 如何確定軸的支點位置和傳動零 件上力的作用點
目 錄
第一部分 設計任務書----------------------------------------------------------------3第二部分 電傳動方案的分析與擬定---------------------------------------------------5第三部分 電動機的選擇計算----------------------------------------------------------6第四部分 各軸的轉速、轉矩計算------------------------------------------------------7第五部分 聯軸器的選擇-------------------------------------------------------------9第六部分 錐齒輪傳動設計---------------------------------------------------------10第七部分 鏈傳動設計--------------------------------------------------------------12第八部分 斜齒圓柱齒輪設計-------------------------------------------------------14第九部分 軸的設計----------------------------------------------------------------17第十部分 軸承的設計及校核-------------------------------------------------------20第十一部分 高速軸的校核---------------------------------------------------------22第十二部分 箱體設計---------------------------------------------------------------23第十三部分 設計小結---------------------------------------------------------------24
第一部分 設計任務書
1.1 機械設計課程的目的
機械設計課程設計是機械類專業和部分非機械類專業學生第一次較全面的機械設計訓練,是機械設計和機械設計基礎課程重要的綜合性與實踐性教學環節。其基本目的是:
(1) 通過機械設計課程的設計,綜合運用機械設計課程和其他有關先修課程的理論,結合生產實際知識,培養分析和解決一般工程實際問題的能力,並使所學知識得到進一步鞏固、深化和擴展。
(2) 學習機械設計的一般方法,掌握通用機械零件、機械傳動裝置或簡單機械的設計原理和過程。
(3) 進行機械設計基本技能的訓練,如計算、繪圖、熟悉和運用設計資料(手冊、圖冊、標准和規范等)以及使用經驗數據,進行經驗估算和數據處理等。
1.2 機械設計課程的內容
選擇作為機械設計課程的題目,通常是一般機械的傳動裝置或簡單機械。
課程設計的內容通常包括:確定傳動裝置的總體設計方案;選擇電動機;計算傳動裝置的運動和動力參數;傳動零件、軸的設計計算;軸承、聯軸器、潤滑、密封和聯接件的選擇及校核計算;箱體結構及其附件的設計;繪制裝配工作圖及零件工作圖;編寫設計計算說明書。
在設計中完成了以下工作:
① 減速器裝配圖1張(A0或A1圖紙);
② 零件工作圖2~3張(傳動零件、軸、箱體等);
③ 設計計算說明書1份,6000~8000字。
1.3 機械設計課程設計的步驟
機械設計課程設計的步驟通常是根據設計任務書,擬定若干方案並進行分析比較,然後確定一個正確、合理的設計方案,進行必要的計算和結構設計,最後用圖紙表達設計結果,用設計計算說明書表示設計依據。
機械設計課程設計一般可按照以下所述的幾個階段進行:
1.設計准備
① 分析設計計劃任務書,明確工作條件、設計要求、內容和步驟。
② 了解設計對象,閱讀有關資料、圖紙、觀察事物或模型以進行減速器裝拆試驗等。
③ 浮系課程有關內容,熟悉機械零件的設計方法和步驟。
④ 准備好設計需要的圖書、資料和用具,並擬定設計計劃等。
2.傳動裝置總體設計
① 確定傳動方案——圓柱齒輪傳動,畫出傳動裝置簡圖。
② 計算電動機的功率、轉速、選擇電動機的型號。
③ 確定總傳動比和分配各級傳動比。
④ 計算各軸的功率、轉速和轉矩。
3.各級傳動零件設計
① 減速器內的傳動零件設計(齒輪傳動)。
4.減速器裝配草圖設計
① 選擇比例尺,合理布置試圖,確定減速器各零件的相對位置。
② 選擇聯軸器,初步計算軸徑,初選軸承型號,進行軸的結構設計。
③ 確定軸上力作用點及支點距離,進行軸、軸承及鍵的校核計算。
④ 分別進行軸系部件、傳動零件、減速器箱體及其附件的結構設計。
5.減速器裝配圖設計
① 標注尺寸、配合及零件序號。
② 編寫明細表、標題欄、減速器技術特性及技術要求。
③ 完成裝配圖。
6.零件工作圖設計
① 軸類零件工作圖。
② 齒輪類零件工作圖。
③ 箱體類零件工作圖。
第一部分 題目及要求
卷揚機傳動裝置的設計
1. 設計題目
設計一卷揚機的傳動裝置。傳動裝置簡圖如下圖所示。
(1)卷揚機數據
卷揚機繩牽引力F(N)、繩牽引速度v(m/s)及捲筒直徑D(mm)見附表。
(2)工作條件
用於建築工地提升物料,空載啟動,連續運轉,三班制工作,工作平穩。
(3) 使用期限
工作期限為十年,每年工作300天,三班制工作,每班工作4小時,檢修期間隔為三年。
(4) 產批量及加工條件
小批量生產,無鑄鋼設備。
2. 設計任務
1)確定傳動方案;
2)選擇電動機型號;
3)設計傳動裝置;
4)選擇聯軸器。
3. 具體作業
1)減速器裝配圖一張;
2)零件工作圖二張(大齒輪,輸出軸);
3)設計說明書一份。
4. 數據表
牽引力F/N 12 10 8 7
牽引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
捲筒直徑D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480
卷揚機傳動裝置的設計
5. 設計題目
設計一卷揚機的傳動裝置。傳動裝置簡圖如下圖所示。
(1)卷揚機數據
卷揚機繩牽引力F(N)、繩牽引速度v(m/s)及捲筒直徑D(mm)見附表。
(2)工作條件
用於建築工地提升物料,空載啟動,連續運轉,三班制工作,工作平穩。
(5) 使用期限
工作期限為十年,每年工作300天,三班制工作,每班工作4小時,檢修期間隔為三年。
(6) 產批量及加工條件
小批量生產,無鑄鋼設備。
6. 設計任務
1)確定傳動方案;
2)選擇電動機型號;
3)設計傳動裝置;
4)選擇聯軸器。
7. 具體作業
1)減速器裝配圖一張;
2)零件工作圖二張(大齒輪,輸出軸);
3)設計說明書一份。
8. 數據表
牽引力F/N 12 10 8 7
牽引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
捲筒直徑D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480
第二部分 傳動方案的分析與擬定
確定總傳動比:
由於Y系列三相非同步電動機的同步轉速有750,1000,1500和3000r/min四種可供選擇.根據原始數據,得到卷揚機捲筒的工作轉速為
按四種不同電動機計算所得的總傳動比分別是:
電動機同步轉速
750 1000 1500 3000
系統總傳動比
32.71 43.61 65.42 130.83
確定電動機轉速:
綜合考慮電動機和傳動裝置的尺寸、重量、價格以及總傳動比,750轉的低速電動機傳動比雖小,但電動機極數大價格高,故不可取。3000轉的電動機重量輕,價格便宜,但總傳動比大,傳動裝置外廓尺寸大,製造成本高,結構不緊湊,也不可取。剩下兩種相比,如為使傳動裝置結構緊湊,選用1000轉的電動機較好;如考慮電動機重量和價格,則應選用1500轉的電動機。現選用1500轉的電動機,以節省成本。
確定傳動方案:
驗算:通常V帶傳動的傳動比常用范圍為 ,二級圓柱齒輪減速器為 ,則總傳動比的范圍為 ,因此能夠滿足以上總傳動比為65.42的要求。
第三部分 電動機的選擇計算
1、確定電動機類型
按工作要求和條件,選用Y系列籠型三相非同步電動機,封閉式結構。
2、確定電動機的功率
工作機的功率
KW
效率的選擇:
1. V帶傳動效率: η1 = 0.96
2. 7級精度圓柱齒輪傳動:η2 = 0.98
3. 滾動軸承: η3 = 0.99
4. 彈性套柱銷聯軸器: η4 = 0.99
5. 傳動滾筒效率: η5 = 0.96
傳動裝置總效率為
工作機所需電動機功率
kw
因載荷平穩,電動機額定功率 略大於 即可。由Y系列電動機技術數據,選電動機的額定功率 為7.5 kw,結合其同步轉速,選定電動機的各項參數如下:
取同步轉速: 1500r/min ——4級電動機
型號: Y132M-4
額定功率: 7.5kW
滿載功率: 1440r/min
堵轉轉矩/額定轉矩: 2.2
最大轉矩/額定轉矩: 2.2
第四部分 確定傳動裝置總傳動比和分配各級傳動比
1、確定總傳動比
2、分配各級傳動比
取V帶傳動的傳動比 ,則減速器的傳動比 為
取兩級圓柱齒輪減速器高速級的傳動比
則低速級的傳動比
第五部分 運動參數及動力參數計算
0軸(電動機軸):
P0 = Pd =7.2 kW
n0 = nm = 1440 r/min
T0 = 9550×( )= N?m
1軸(高速軸):
P1 = P0η1 = kW
n1 = = r/min
T1 = 9550×( )= N?m
2軸(中間軸):
P2 = P1η2η3 = kW
n2 = r/min
T2 = 9550×( )= N?m
3軸(低速軸):
P3 = P2η2η3 = kW
n3 = r/min
T3 = 9550×( )= N?m
4軸(輸出軸):
P4 = P3η3η4 = kW
n4 = r/min
T4 = 9550×( )= N?m
輸出軸功率或輸出軸轉矩為各軸的輸入功率或輸入轉矩乘以軸承效率(0.99),即
P』= 0.99P
軸名 功率P(kW) 轉矩T(N?m) 轉速
n(r/min) 傳動比
i 效率
η
輸入 輸出 輸入 輸出
電動機軸 7.20 47.75 1440
3.8 0.96
1軸 6.91 3.047 155.91 154.35 378.95
4.809 0.97
2軸 6.70 2.896 811.99 803.83 78.80
3.435 0.97
3軸 6.50 2.753 2705.97 2678.91 22.94
1 0.98
輸出軸 6.37 2.590 2651.85 2625.33 22.94
第六部分 傳動零件的設計計算
高速級斜齒圓柱齒輪設計
材料選擇:小齒輪40Cr (調質)硬度280HBs;
大齒輪45#鋼(調質)硬度240HBs;(硬度差40HBs)
七級精度,取Z1=21,Z2= =4.809×21=100.989,取Z2=101,
初選螺旋角β=14°,
按齒輪面接觸強度設計:
1) 試選載荷系數 Kt=1.6
2) 由動力參數圖,小齒輪傳遞的轉矩
3) 由表10-7(機械設計)選取齒寬系數
4) 由表10-6查得材料的彈性影響系數
5) 由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 ;
6) 由式10-13計算應力循環次數
7) 由圖10-19查得接觸疲勞壽命系數 ;
8) 計算接觸疲勞許用應力
取失效概率為1%,安全系數S=1,由式(10-12)得
9)由圖10-26(機械設計)得
εα1 = 0.76
εα2 = 0.86
則端面重合度
10)由圖10-30選取區域系數ZH = 2.433
11) 計算許用接觸應力
=
12)計算:
試算小齒輪分度圓直徑 ,由計算公式得
計算圓周速度
計算齒寬b及模數
= 1×60.59 = 60.59 mm
mnt = = mm
h = 2.25 mnt = mm
計算縱向重合度
縱向重合度 =0.318×φdZ1tanβ =
計算載荷系數K
已知,KA=1,取Kv=1.05(由圖10-8查得),由表10-4查得的計算公式
∴KHβ = 1.15+0.18(1+0.6φd2)+0.23×10-3×60.59 = 1.45
由圖10-13,得KFβ = 1.4
由表10-3,得
∴K = KA?Kv?KHα?KHβ = 1×1.05×1.3×1.45 = 1.98
按實際得載荷系數校正所算得德分度圓直徑,由試(10-10a)得
計算模數
mn= =
13) 按齒根彎曲強度設計
由圖10-20c查得小齒輪的彎曲疲勞強度極限 ;大齒輪的彎曲疲勞強度極限 ;
由圖10-18查得彎曲疲勞壽命系數 ;
計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4,由式10-12得
計算載荷系數
K = KA?Kv?KFα?KFβ = 1×1.05×1.3×1.4= 1.91
根據縱向重合度εβ=1.6650,由圖10-28,查得螺旋角影響系數Yβ=0.88
計算當量齒數
= 22.9883
查取齒形系數
由表10-5查得 YFα1=2.69,YFα2=2.20,
查取應力校正系數
由表10-5查得 YSα1=1.56,YSα2=1.79
計算大、小齒輪的 並加以比較
大齒輪的數值較大。
設計計算
經園整,mn=2 mm
∵ ,∴mn=2.5 mm
Z1 = = ,取Z1=25,Z2=120
幾何尺寸計算:
中心距 a =
經園整,a = 187 mm
修正螺旋角, =
∵β變動不大,
∴εα、εβ、ZH無需修正。
計算大、小齒輪的分度直徑
mm
mm
計算齒輪寬度
b = φdd1 = mm
園整後,B2=65mm,B1=70mm
da1 = d1+2ha1 =69.48
da2 = d2+2ha2 = 315.08
df1 = d1-2hf1 = 49.48
df2 = d2-2hf2 =305.08
第九部分 軸的設計
1) 高速軸:
初定最小直徑,選用材料45#鋼,調質處理。取A0=112(下同)
則dmin = A0 = mm
∵最小軸徑處有鍵槽
∴dmin』 = 1.07 dmin = 17.72mm
∵最小直徑為安裝聯軸器外半徑,取KA=1.7,同上所述已選用TL4彈性套柱聯軸器,軸孔半徑d=20mm
∴取高速軸的最小軸徑為20mm。
由於軸承同時受徑向和軸向載荷,故選用單列圓錐滾子軸承按國標T297-94選取30206。
D×d×T=17.25mm
∴軸承處軸徑d=30mm
高速軸簡圖如下:
2)
取l1=38+46=84mm,l3=72mm,取擋圈直徑D=28mm,取d2=d4=25mm,d3=30mm,l2=l4=26.5mm,d1=d5=20mm。
齒輪輪轂寬度為46mm,取l5=28mm。
聯軸器用鍵:園頭普通平鍵。
b×h=6×6,長l=26mm
齒輪用鍵:同上。b×h=6×6,長l=10mm,倒角為2×45°
3) 中間軸:
中間軸簡圖如下:
初定最小直徑dmin= =22.1mm
選用30305軸承,
d×D×T = 25×62×18.25mm
∴d1=d6=25mm,取l1=27mm,l6=52mm
l2=l4=10mm,d2=d4=35mm,l3=53mm
d3=50mm,d5=30mm,l5=1.2×d5=36mm
齒輪用鍵:園頭普通鍵:b×h=12×8,長l=20mm
4) 低速軸:
低速軸簡圖如下: 初定最小直徑:
dmin = = 34.5mm
∵最小軸徑處有鍵槽
∴dmin』=1.07dmin=36.915mm
取d1=45mm,d2=55mm,d3=60mm,d4=d2=55mm
d5=50mm,d6=45mm,d7=40mm;
l1=45mm,l2=44mm,l3=6mm,l4=60mm,l5=38mm,l6=40mm,l7=60mm
齒輪用鍵:園頭普通鍵:b×h=16×6,長l=36mm
選用30309軸承:d×D×T = 40×90×25.25mm;B=23mm;C=20mm
❸ 卷揚機傳動裝置中的二級圓柱齒輪減速器
B1】1級蝸輪蝸桿減速機-圖【B2】2級蝸輪蝸桿減速機設計-三維圖【B3】變速器設計-圖【B4】帶機傳動機構裝置中的一級斜齒輪減速機設計(F=2.44,V=1.4,D=350)【B5】帶式輸送機傳動裝置減速器設計【B6】帶式輸送機傳動裝置設計【B7】帶式輸送機傳動裝置設計(F=2.3,V=1.1,D=300)-說明書【B8】帶式輸送機傳動裝置中的二級圓柱齒輪減速器設計(F=1.6,V=1.0,D=400)【B9】帶式輸送機傳動裝置中的二級圓柱齒輪減速器設計(F=6,D=320,V=0.4)【B10】帶機傳動裝置中的一級圓柱齒輪減速器(1.7,1.4,220)-1圖1論文【B11】帶式輸送機傳送裝置減速器設計(F=7,V=0.8,D=400)【B12】圓錐-直齒圓柱減速器設計(F=1.77,V=1.392,D= 235)【B13】帶式輸送機減速器設計(F=2.6,V=1.1,D=300)【B14】帶式輸送機減速器設計(F=6,D=280,V=0.35)【B15】帶式輸送機減速器設計(F=10,D=350,V=0.5)【B16】帶式輸送機設計【B17】帶式輸送機設計減速器設計(T=1300,D=300,V=0.65)【B18】帶式運輸機構傳動裝置設計(1.6 1.5 230)-說明書【B19】帶式運輸機構傳動裝置設計(F=2.4,V=1.4,D=300)【B20】帶式運輸機構減速機設計(F=2.2,V=1.0,D=350)【B21】單級蝸輪蝸桿減速器設計(F=6,V=0.5,D=350)【B22】單級斜齒圓柱齒輪傳動設計+絞車傳動設計-1圖1說明書【B23】單級斜齒圓柱齒輪傳動設計+鏈傳動設計(F=2.5,V=2.4,D=350)【B24】單級斜齒圓柱齒輪傳動設計+鏈輪傳動設計(F=1.6, V=1.5, D=230)【B25】單級圓柱齒輪減速器設計(F=2.8,V=1.1,D=350)【B26】二級斜齒圓柱齒輪減速器設計(F=3.6 ,V=1.13 ,D=360)【B27】二級圓柱圓錐齒輪減速器設計-說明書【B28】二級圓柱齒輪減速器設計-圖【B29】二級圓柱直齒齒輪減速器(F=4,V=2.0,D=450)【B30】二級圓錐齒輪減速箱設計(F=5,V=1.6,D=500)【B31】二級展開式圓柱圓錐齒輪減速器設計【B32】二級直齒圓柱齒輪減速器設計【B33】二級直齒圓錐齒輪減速器設計-圖【B34】帶機中的兩級展開式圓柱直齒輪減速器設計(F=3.6,V=1.13,D=360)【B35】減速器CAD,CAM設計-圖【B36】減速器設計(F=2.3 v=1.5 d=320)-圖【B37】卷揚機傳動裝置設計(F=5,V=1.1 ,D=350)【B38】礦用固定式帶式輸送機的設計-說明書【B39】兩級斜齒輪減速機設計(D=320,V=0.75,T=900)【B40】兩級斜齒圓柱齒輪減速機設計(F=1.9,V=1.3,D=300)【B41】兩級斜齒圓柱齒輪減速機設計【B42】帶機傳動裝置中的同軸式二級圓柱齒輪減速器設計(T=850,D=350,V=0.7)【B43】兩級圓柱齒輪減速器設計(F=10,D=320,V=0.5)【B44】兩級直齒斜齒減速機設計-圖【B45】一級錐齒輪減速機設計(F=2.4,V=1.2,D=300)【B46】一級斜齒輪減速機設計-(F=3.5,V=2.05,D=350)【B47】蝸桿減速器的設計(F=2.4,V=1.1,D=420)【B48】蝸輪蝸桿減速機設計-圖【B49】蝸輪蝸桿減速器設計-圖【B50】單級蝸輪蝸桿減速器設計-圖【B51】一級圓錐齒輪減速器設計(F=2.9,V=1.5,D=400)【B52】行星齒輪減速器設計-圖【B53】行星減速器設計-圖(07版CAD)【B54】帶式輸送機傳動裝置設計(F=1.4,V=1.5,D=260)【B55】帶式運輸機構傳動裝置中的一級齒輪減速機設計(F=2.3,V=1.1,D=300)【B56】一級減速器設計(F=2.8,V=1.7,D=300)【B57】一級蝸輪蝸桿減速器設計(F=3,V=1.1,D=275)【B58】一級蝸桿減速機設計(F=2.2,V=0.9,D=350)【B59】一級圓錐齒輪減速器設計(F=2.2,V=0.9,D=300)【B60】一級斜齒輪減速設計(F=2.44,V=1.4,D=300)【B61】帶式輸送機傳動裝置中的一級斜齒輪傳動設計(F=2.05,V=2.05,D=350)【B62】一級斜齒輪減速機設計(F=2.8,V=2.4,D=300)【B63】一級斜齒輪減速機設計(F=2.75,V=2.4,D=300)【B64】一級斜齒輪減速機設計(F=2.75,V=2.4,D=350)【B65】一級斜齒輪減速機設計(F=2.5,V=2.4,D=300)【B66】一級斜齒輪減速機設計(F=2.8,V=2.4,D=350)【B67】一級圓柱齒輪減速器設計(F=2,V=1.6,D=300)【B68】減速器設計-圖【B69】卷揚機行星齒輪減速器的設計-圖【B70】兩級行星齒輪減速器設計-圖【B71】履帶式半煤岩掘進機主減速器及截割部設計【B72】蝸輪減速器設計-圖【B73】自動洗衣機行星齒輪減速器的設計【B74】減速箱的CAD-CAM造型論文【B75】普通帶式輸送機設計-說明書
❹ 機械設計課程設計帶式運輸機傳動裝置的設計
給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2 、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3 、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100 ,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比: u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;
則 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取 φ
齒寬: b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1 、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2 、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。
則 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滾動軸承的選擇
1 、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2 、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1 、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2 、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3 、輸入軸與帶輪聯接採用平鍵聯接 =25mm L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4 、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11
❺ 求一份畢業設計論文,機械製造與自動化專業,現在要畢業論文!我實在沒招了,所以求助大家幫忙!
EQ3090自卸車的總體設計
注塑模具鬧鍾後蓋設計
轎車的制動系統設計
拉式膜片彈簧離合器設計
液壓伺服系統設計
雙梁起重機畢業設計論文
轎車機械式變速器設計
墊片級進模設計
外罩塑料模設計
推動架的鑽床夾具設計
透明塑料盒熱流道注射模設計
數控機械設計論文
汽車起重機主臂的畢業論文
汽車覆蓋件及塑料模具設計
拉式膜片彈簧離合器
礦石鏟運機液壓系統設計
機械手夾持器畢業設計論文及裝配圖
機械加工工藝規程畢業論文
立體車庫設計
滑座裝配設計
自動導引小車(AGV)系統的設計
重慶長安CM8後地板工位焊裝夾具設計
變速撥叉零件的機械加工工藝及工藝裝備設計
撥叉(CA6140車床)夾具設計
油壺蓋塑料成型模具設計
400型水溶膜流研成型機設計
推動架夾具設計
基於逆向工程和快速成型的手機外型快速設計
某高層行政中心建築電氣設計
螺旋輸送機設計
卷揚機傳動裝置設計
帶式輸送機畢業設計
沖壓模具設計
catia逆向車模處理與Proe實體重建
超精密數控車床關鍵部件的設計
注塑模-圓珠筆筆蓋的模具設計
電機炭刷架冷沖壓模具設計
數控多工位鑽床設計
柴油機噴油泵的專用夾具設計
齒輥破碎機詳細設計
齒輥破碎機詳細設計
帶式二級圓錐圓柱齒輪減速器設計
帶式輸送機的PLC控制
典型零件的加工藝分析及工裝夾具設計
電子鍾後蓋注射模具設計
風力發電機設計論文
攻絲組合機床設計
鼓式制動器畢業設計
花生去殼機畢業設計
活塞結構設計與工藝設計
靜扭試驗台的設計
礦井水倉清理工作的機械化
冷沖模設計
普通卧式車床數控改造
傳動剪板機設計
汽車差速器及半軸設計
切管機畢業設計
清車機畢業設計
清新劑盒蓋注射模設計
雙螺桿壓縮機的設計
提升機制動系統
填料箱蓋夾具設計
洗衣機機蓋的注塑模具設計
銑床的數控x-y工作台設計
液壓控制閥的理論研究與設計
鑰匙模具設計
軸向柱塞泵設計
組合件數控車工藝與編程
五金-沖大小墊圈復合模
圓錐-圓柱齒輪減速器的設計
斗式提升機設計
提升機制動系統設計
雙螺桿壓縮機的設計
液壓起重機液壓系統設計
FX2N在立式車床控制系統中的應用
萬能銑床PLC控制設計
❻ 機械設計課程設計的圖書目錄
第一部分 機械設計課程設計基礎知識
第1章 概述 (1)
1.1 課程設計的目的、內容和任務 (1)
1.2 課程設計的一般步驟 (2)
1.3 課程設計中應正確對待的幾個問題 (3)
第2章 機械傳動系統的總體設計 (4)
2.1 擬定傳動系統方案 (4)
2.2 原動機類型與參數的選擇 (6)
2.2.1 選擇電動機的類型和結構形式 (7)
2.2.2 選擇電動機的容量 (7)
2.2.3 確定電動機的轉速 (8)
2.3 機械傳動系統的總傳動比及各級傳動比的分配 (8)
2.3.1 傳動比分配的一般原則 (8)
2.3.2 傳動比分配的參考數據 (9)
2.4 機械傳動系統運動和動力參數的計算 (10)
2.5 機械傳動系統的總體設計示例 (11)
第3章 減速器的構造、潤滑及密封 (15)
3.1 減速器的類型、特點及應用 (15)
3.2 減速器的結構 (17)
減速器的箱體結構 (17)
3.3 減速器的潤滑 (20)
3.3.1 齒輪和蝸桿傳動的潤滑 (20)
3.3.2 滾動軸承的潤滑 (23)
3.4 減速器的密封 (25)
3.4.1 軸端的密封 (25)
3.4.2 軸承室內側的密封 (26)
3.4.3 其他處的密封 (27)
3.5 減速器的附件 (27)
第4章 傳動零件設計計算 (29)
4.1 外傳動零件設計 (29)
4.2 內傳動零件設計計算 (31)
第5章 減速器裝配草圖的設計 (38)
5.1 減速器裝配工作圖設計概述 (38)
5.2 初繪減速器裝配草圖 (39)
5.3 軸、軸承的校核計算 (44)
5.4 完成減速器裝配草圖設計 (45)
第6章 減速器零件工作圖設計 (59)
6.1 零件工作圖的基本要求 (59)
6.2 軸零件工作圖設計 (60)
6.3 齒輪類零件工作圖設計 (61)
6.4 箱體零件工作圖設計 (63)
6.5 減速器附件設計 (68)
第7章 減速器裝配工作圖設計 (73)
7.1 對減速器裝配工作圖視圖的要求 (73)
7.2 減速器裝配圖內容 (73)
第8章 設計計算說明書編寫及答辯 (78)
8.1 設計計算說明書的要求 (78)
8.2 設計計算說明書的內容 (78)
8.3 設計計算說明書的書寫格式 (79)
8.4 課程設計答辯 (81)
8.4.1 課程設計總結 (81)
8.4.2 課程設計答辯目的、准備工作與問題題目 (82)
第9章 設計題目 (86)
9.1 設計帶式輸送機的動力和傳動裝置部分 (86)
9.2 設計螺旋輸送機的動力和傳動裝置部分 (88)
9.3 設計卷揚機的動力和傳動裝置部分 (90)
9.4 設計NGW行星齒輪減速器 (91)
第二部分 機械設計課程設計常用標准和規范
第10章 常用數據和一般標准 (93)
10.1 常用數據 (93)
10.1.1 常用材料的密度(表10-1) (93)
10.1.2 常用材料的彈性模量及泊松比(表10-2) (94)
10.1.3 金屬材料熔點、熱導率及比熱容(表10-3) (94)
10.1.4 常用材料的線膨脹系數(表10-4) (94)
10.1.5 常用材料極限強度的近似關系(表10-5) (95)
10.1.6 硬度值對照表(表10-6) (95)
10.1.7 常用標准代號(表10-7) (96)
10.1.8 常用法定計量單位及換算(表10-8) (96)
10.1.9 常用材料的摩擦系數(表10-9,表10-10) (97)
10.1.10 機械傳動和軸承的效率概略值和傳動比范圍(表10-11,表10-12) (98)
10.1.11 希臘字母(表10-13) (99)
10.2 一般標准 (100)
10.2.1 圖樣比例、幅面及格式(表10-14,表10-15) (100)
10.2.2 裝配圖中零部件序號及編排方法 (101)
10.2.3 優先數系和標准尺寸(表10-16) (102)
10.2.4 中心孔(表10-17,表10-18) (103)
10.2.5 軸肩與軸環尺寸(表10-19) (104)
10.2.6 零件倒圓與倒角(表10-20) (105)
10.2.7 砂輪越程槽(表10-21) (105)
10.2.8 退刀槽、齒輪加工退刀槽(表10-22,表10-23,表10-24) (106)
10.2.9 刨削、插削越程槽(表10-25) (107)
10.2.10 齒輪滾刀外徑尺寸(表10-26) (108)
10.2.11 錐度與錐角系列(表10-27) (108)
10.2.12 機器軸高和軸伸(表10-28~表10-31) (109)
10.2.13 鑄件最小壁厚和最小鑄孔尺寸(表10-33,表10-34,表10-35) (113)
10.2.14 鑄造過度斜度與鑄造斜度(表10-36,表10-37) (115)
10.2.15 鑄造內圓角(表10-38) (115)
10.2.16 鑄造外圓角(表10-39) (116)
10.2.17 焊接符號及應用示例(表10-40,表10-41) (117)
第11章 機械工程材料 (119)
11.1 黑色金屬材料 (119)
11.1.1 灰鑄鐵(表11-1) (119)
11.1.2 球墨鑄鐵(表11-2) (120)
11.1.3 鑄鋼(表11-3) (121)
11.1.4 普通碳素結構(表11-4) (122)
11.1.5 優質碳素結構鋼(表11-5) (122)
11.1.6 合金結構鋼(表11-6) (125)
11.2 有色金屬材料 (127)
11.2.1 鑄造銅合金(表11-7) (127)
11.2.2 鑄造鋁合金(表11-8) (129)
11.2.3 鑄造軸承合金(表11-9) (131)
11.3 型鋼與型材 (132)
11.3.1 冷軋鋼板和鋼帶 (132)
11.3.2 熱軋鋼板 (134)
11.3.3 熱軋圓鋼(表11-25) (138)
11.3.4 冷拉圓鋼、方鋼、六角鋼(表11-26) (140)
11.3.5 熱軋等邊角鋼(表11-27) (141)
11.3.6 熱軋不等邊角鋼(表11-28) (144)
11.3.7 熱軋槽鋼(表11-29) (148)
11.3.8 熱軋L形鋼(表11-30) (149)
11.3.9 熱軋工字鋼(表11-31) (150)
第12章 電動機 (152)
12.1 Y系列三相非同步電動機 (152)
12.2 YZR、YZ系列冶金及起重用三相非同步電動機 (165)
第13章 連接件和緊固件 (170)
13.1 螺紋 (170)
13.2 螺栓 (173)
13.3 螺柱 (177)
13.4 螺釘 (178)
13.5 螺母 (183)
13.6 墊圈 (185)
13.7 螺紋零件的結構要素 (187)
13.8 擋圈 (190)
13.9 鍵連接 (194)
13.10 銷連接 (197)
第14章 聯軸器與離合器 (199)
14.1 聯軸器 (199)
14.1.1 常用聯軸器的類型選擇 (199)
14.1.2 常用聯軸器 (200)
14.2 離合器 (210)
14.2.1 機械離合器的類型選擇(表14-10) (210)
14.2.2 簡易傳動矩形牙嵌式離合器(表14-11) (211)
第15章 滾動軸承 (212)
15.1 常用滾動軸承 (212)
15.2 滾動軸承的配合和游隙 (224)
15.2.1 滾動軸承與軸和外殼的配合 (224)
15.2.2 滾動軸承的游隙要求 (228)
第16章 公差配合、幾何公差、表面粗糙度 (231)
16.1 極限與公差、配合 (231)
16.1.1 術語和定義 (231)
16.1.2 標准公差等級 (232)
16.1.3 公差帶的選擇 (234)
16.1.4 配合的選擇 (235)
16.2 幾何公差 (247)
16.2.1 術語和定義 (247)
16.2.2 幾何公差的類別和符(代)號 (248)
16.2.3 幾何公差的注出公差值及應用舉例 (249)
16.3 表面粗糙度 (253)
16.3.1 評定表面粗糙度的參數及其數值系列 (253)
16.3.2 表面粗糙度的符號及標注方法 (253)
16.3.3 不同加工方法可達到的表面粗糙度(表16-19) (255)
第17章 齒輪、蝸桿傳動精度 (258)
17.1 漸開線圓柱齒輪精度 (258)
17.1.1 定義與代號 (258)
17.1.2 等級精度及其選擇 (259)
17.1.3 極限偏差(表17-6) (260)
17.2 圓錐齒輪精度 (264)
17.2.1 錐齒輪、齒輪副誤差及側隙的定義和代號 (264)
17.2.2 精度等級 (266)
17.2.3 公差組與檢驗項目 (266)
17.2.4 齒輪副側隙 (271)
17.2.5 圖樣標注 (274)
17.2.6 錐齒輪的齒坯公差 (275)
17.3 圓柱蝸桿、蝸輪的精度 (276)
17.3.1 蝸桿、蝸輪、蝸桿副術語定義和代號 (276)
17.3.2 精度等級和公差組 (278)
17.3.3 蝸桿、蝸輪及傳動的公差 (279)
17.3.4 蝸桿傳動的側隙 (282)
17.3.5 齒坯公差和蝸桿、蝸輪的表面粗糙度 (284)
17.3.6 圖樣標注 (285)
第18章 潤滑與密封 (287)
18.1 潤滑劑 (287)
18.2 潤滑裝置 (288)
18.2.1 間歇式潤滑常用的潤滑裝置 (288)
18.2.2 油標和油標尺 (290)
18.3 密封裝置 (292)
第三部分 減速器參考圖例
第19章 減速器裝配圖 (297)
第20章 減速器零件圖 (300)
參考文獻 (312)
❼ 已知一個模型螺旋槳的推力T=180N,轉矩Q=10N·m,螺旋槳的進速Va=6kn,轉速n=720
故沿軸向載荷分布不均勻: r/min
r/,封閉型結果。因此選定電動機型號為Y132M1-6,其主要參數如下;
四.確定傳動裝置的總傳動比和分配傳動比:
總傳動比:
分配傳動比,所以總傳動比合理范圍為 ,故電動機轉速的可選范圍是,電壓380V,Y型.96
—聯軸器的傳動效率:0.99
—捲筒的傳動效率:0.96
則:
所以 KW
3.確定電動機轉速
捲筒的工作轉速為
r/,由表13-2選取 =2000
④確定實際中心距a
mm
⑤驗算小帶輪包角
⑥計算V帶的根數Z:物理與機電工程學院
系 別.選擇電動機的容量
電動機所需的功率為.33
3軸 3.30 3.80 960
1軸 3.65 3:取 ,則 :
r/min
符合這一范圍的同步轉速有750.45
六。
2)確定許用應力:
a.許用接觸應力;二級圓柱齒輪減速器傳動比 : KW
KW
所以 KW
由電動機到運輸帶的傳動總功率為
—帶傳動效率。捲筒直徑D=500mm;min
查指導書第7頁表1:取V帶傳動的傳動比 .96
—每對軸承的傳動效率:
將傳動裝置各軸由高速到低速依次定為1軸:0.99
—圓柱齒輪的傳動效率:
查精密機械設計課本表11-7得
=570 ,
。
故應按接觸極限應力較低的計算,由表13-5查得 =0;min
2.各軸輸入功率、輸入轉矩乘軸承傳動效率0.99.m 轉速r/. 確定傳動方案。
3。
2:馮永健
2006年6月29日
一.設計題目
設計一用於卷揚機傳動裝置中的兩級圓柱齒輪減速器。輕微震動.86
2軸 3.47 3:
1-3軸的輸出功率、輸出轉矩分別為各軸的輸入功率:
由表13-3查得 KW, 為低速級傳動比。
五.計算傳動裝置的運動和動力參數.77
3 Y160M1-8 4 750 720 1180 62.87 49.83
綜合考慮電動機和傳動裝置的尺寸, :機電工程系
專 業.14 2668,大齒輪正火處理, .40 671.30 657,因此有四種傳動比方案如下:
方案 電動機型號
額定功率
KW 同步轉速
r/min 額定轉速
r/min 重量
N 總傳動比
1 Y112M-2 4 1500 1440 470 125.47
註:
1: 為帶傳動比, 為高速級傳動比.41 2615,硬度230.04 11,標准化得 =375
②驗算帶速: m/:楊藝斌
學 院,則V帶的根數
因此取Z=3
⑦計算作用在帶輪軸上的載荷
由表13-1查得A型V帶單位長度質量q=0.1Kg/m,所以單根V帶張緊力
故作用在軸上載荷
七、4軸;
, , , —依次為電機與軸1.37 2695,軸1與軸2.傳動裝置總體設計:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布.36 11,小齒輪調質處理,軸3與軸4之間的傳動效率。
1.各軸轉速.8 37:
1;min
r/min
= = r/.45
4軸 3.20 3課程設計報告
二級展開式圓柱齒輪減速器
姓 名.2(125+375)=600
mm,即只需求出 。
對於調質處理的齒輪, =1.1
b.許用彎曲應力.
二.96,運輸帶速度 ,要求軸有較大的剛度:
三.選擇電動機
1.選擇電動機類型:
按工作要求和條件,電源380V,三相交流;min
輸入 輸出 輸入 輸出
電動機軸 3:0,取 ,經計算 =4,軸2與軸3。
運動和動力參數結果如下表:
軸名 功率P KW 轉鉅T N:
由表11-10知
=190
取 =1.4,
所以
3)根據接觸強度設計:9級精度製造,單向運轉,在室內常溫下長期連續工作: KW
KW
KW
KW
3.各軸輸入轉矩.95,由表13-2查得 =1.03
由表13-4查得 =0.11KW.65
2 Y132M1-6 4 1000 960 730 83,選用三相籠型非同步電動機,取齒寬系數 ,測中心距
選定 =30,
b= =119:機械設計製造及其自動化
年 級.設V計帶和帶輪,載荷系數K=1,取 =0.02.齒輪的設計,硬度210.5mm
4)驗算彎曲應力
由圖8-44查得,x=0
=30, =2.60
=209, =2.14
,故應計算大齒輪的彎曲應力,
,彎曲強度足夠。
2.低速級大小齒輪的設計:
①齒輪材料的選擇:小齒輪選用35MnB調質,硬度260HBS,
大齒輪選用SiMn調質,硬度225HBS。
②確定許用應力:
a.許用接觸應力:
查表8-10得
=700
故應按接觸極限應力較低的計算,即只需求出 。
對於調質處理的齒輪, =1.1
b.許用彎曲應力:
由表8-11知
=240
取 =1.3
所以
③根據接觸強度設計:
取K=1.2,齒寬
取 = , ,故實際傳動比i=
模數
=298mm
B= mm 取
④驗算彎曲應力:
由圖8-44查得,x=0
=2.63
=2.16
〈
〈
彎曲強度足夠。
八.減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
機座厚度 δ
9
機蓋厚度
8
機蓋凸緣厚度
12
機座凸緣厚度
14
機座底凸緣厚度
23
地腳螺釘直徑
M24
地腳螺釘數目
6
軸承旁聯結螺栓直徑
M12
蓋與座聯結螺栓直徑
=(0.5 0.6)
M10
軸承端蓋螺釘直徑
=(0.4 0.5)
10
視孔蓋螺釘直徑
=(0.3 0.4)
8
定位銷直徑
=(0.7 0.8)
8
, , 至外箱壁的距離
查手冊表11—2 34
22
18
, 至凸緣邊緣距離
查手冊表11—2 28
16
外箱壁至軸承端面距離
= + +(5 10)
50
大齒輪頂圓與內箱壁距離
>1.2
15
齒輪端面與內箱壁距離
>
10
箱蓋,箱座肋厚
8
9
軸承端蓋外徑
軸承孔直徑+(5—5.5)
120(I 軸)
125(II 軸)
150(III軸)
軸承旁聯結螺栓距離
120(I 軸)
125(II 軸)
150(III軸)
九.軸的設計:
1.高速軸的設計:
①材料:選用45號鋼調質處理,查表10-2取 =35 ,C=100
②各軸段直徑的確定:
由 ,p=3.65,則
,因為裝小帶輪的電動機軸徑 ,又因為高速軸第一段軸徑裝配大帶輪,且 ,查手冊 表7-7,取 =36, =60mm,
因為大帶輪靠軸肩定位,所以取 =40, =58,
段裝配軸承,取 =45,選用6309軸承, =28,
段是定位軸承,取 =50, 根據箱體內壁線確定後再確定。
段裝配齒輪直徑:判斷是否做成齒輪軸
查手冊得 =3.3,得e=2.2< ,因此做成齒輪軸. 此時齒寬為30。
裝配軸承所以 = =45, = =28
2.校核該軸和軸承: =75, =215, =100
作用在齒輪上的圓周力為:
徑向力為
作用在軸1帶輪上的外力:
①求垂直面的支承反力:
②求水平面的支承反力:
由 得
N
N
③求F在支點產生的反力:
④繪制垂直面彎矩圖
⑤繪制水平面彎矩圖
⑥繪制F力產生的彎矩圖
⑦求合成彎矩圖:
考慮最不利的情況,把 與 直接相加
⑧求危險截面當量彎矩:
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )
⑨計算危險截面處軸的直徑
因為材料選擇 調質,查課本226頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:
因為 ,所以該軸是安全的。
3彎矩及軸的受力分析圖如下:
4鍵的設計與校核:
根據 ,確定V帶輪選鑄鐵HT200,參考教材表10-9,由於 在 范圍內,故 軸段上採用鍵 : ,
採用A型普通鍵:
鍵校核.為 =60mm綜合考慮取 =50mm。查課本155頁表10-10, , 所選鍵為: 強度合格。
中間軸的設計:
①材料:選用45號鋼調質處理,查表14-2取 =35 ,C=100
②各軸段直徑的確定:
由 , p=3.47,則
,
段要裝配軸承,查課本11-15取 =40,選用6309軸承, =40,
裝配低速級小齒輪,且 取 =45, =128,
段主要是定位高速級大齒輪,取 =60, =10,
裝配高速級大齒輪,取 =45, =82
段要裝配軸承,取 =40, =43
③ .校核該軸和軸承: =75, =115, =95
作用在2、3齒輪上的圓周力:
N
徑向力:
求垂直面的支反力
計算垂直彎矩:
求水平面的支承力:
計算、繪制水平面彎矩圖:
求危險截面當量彎矩:
從圖可見,m-m,n-n處截面最危險,其當量彎矩為:(取摺合系數 )
計算危險截面處軸的直徑:
n-n截面:
m-m截面:
由於 ,所以該軸是安全的。
④彎矩及軸的受力分析圖如下
⑤鍵的設計與校核
已知 參考教材表10-11,由於 所以取
查課本155頁表10-10得
取鍵長為120.取鍵長為80,
根據擠壓強度條件,鍵的校核為:
所以所選鍵為:
從動軸的設計:
①材料:選用45號鋼調質處理,查表10-2取 =34 ,C=112
②確定各軸段直徑
考慮到該軸段上開有鍵槽,因此取 , =150。
裝配軸承,選用6212軸承,取 =80,查手冊第85表7-2,此尺寸符合軸承蓋和密封圈標准。
靠軸定位,取 =85, =45
取 =90, =90
取 =110, =13
裝配軸承, 選用60114軸承,取 =90, =125
向心滾子軸承,去 =85, =46
③校核該軸和軸承: =98, =210, =115
作用在齒輪上的圓周力:
徑向力:
求垂直面的支反力:
計算垂直彎矩:
.m
求水平面的支承力。
計算、繪制水平面彎矩圖。
求F在支點產生的反力
求F力產生的彎矩圖。
F在a處產生的彎矩:
求合成彎矩圖。
考慮最不利的情況,把 與 直接相加。
求危險截面當量彎矩。
從圖可見,m-m處截面最危險,其當量彎矩為:(取摺合系數 )
計算危險截面處軸的直徑。
因為材料選擇 調質,查課本226頁表14-1得 ,查課本231頁表14-3得許用彎曲應力 ,則:
=75>d,所以該軸是安全的。
④彎矩及軸的受力分析圖如下:
⑥鍵的設計與校核:
因為d1=75,查課本153頁表10-9選鍵為 查課本155頁表10-10得
初選鍵長為130,校核 所以所選鍵為:
裝聯軸器的軸直徑為70, 查課本153頁表10-9選鍵為 查課本155頁表10-10得
初選鍵長為100,校核 所以所選鍵為:
十.輸出軸聯軸器的選擇:
計算聯軸器所需的轉矩: 查課本269表17-1取
,查手冊1011頁,選用安全銷彈性塊聯軸器
KLA4.
十一. 減速器的各部位附屬零件的設計.
(1)窺視孔蓋與窺視孔:
在減速器上部可以看到傳動零件嚙合處要開窺視孔, 大小隻要夠手伸進操作可。
以便檢查齒面接觸斑點和齒側間隙,了解嚙合情況.潤滑油也由此注入機體內.
(2)放油螺塞
放油孔的位置設在油池最低處,並安排在不與其它部件靠近的一側,以便於放
油,放油孔用螺塞堵住並加封油圈以加強密封。
(3)油標
油標用來檢查油麵高度,以保證有正常的油量.因此要安裝於便於觀察油麵及油麵穩定之處即低速級傳動件附近;用帶有螺紋部分的油尺,油尺上的油麵刻度線應按傳動件浸入深度確定。
(4)通氣器
減速器運轉時,由於摩擦發熱,機體內溫度升高,氣壓增大,導致潤滑油從縫隙向外滲漏,所以在機蓋頂部或窺視孔上裝通氣器,使機體內熱空氣自由逸處,保證機體內外壓力均衡,提高機體有縫隙處的密封性,通氣器用帶空螺釘製成.
(5)啟蓋螺釘
為了便於啟蓋,在機蓋側邊的邊緣上裝一至二個啟蓋螺釘。在啟蓋時,可先擰動此螺釘頂起機蓋;螺釘上的長度要大於凸緣厚度,釘桿端部要做成圓柱形伙半圓形,以免頂壞螺紋;螺釘直徑與凸緣連接螺栓相同。
在軸承端蓋上也可以安裝取蓋螺釘,便於拆卸端蓋.對於需作軸向調整的套環,裝上二個螺釘,便於調整.
6)定位銷
為了保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯接凸緣的長度方向兩端各安置一個圓錐定位銷。兩銷相距盡量遠些,以提高定位精度。如機體是對稱的,銷孔位置不應對稱布置.
(7)環首螺釘、吊環和吊鉤
為了拆卸及搬運,應在機蓋上裝有環首螺釘或鑄出吊鉤、吊環,並在機座上鑄出吊鉤。
(8)調整墊片
用於調整軸承間隙,有的起到調整傳動零件軸向位置的作用.
(9)密封裝置
在伸出軸與端蓋之間有間隙,必須安裝密封件,以防止漏油和污物進入機體內.
十二. 潤滑方式的確定
因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度。、2軸、3軸:0、1000和1500r/min。
根據容量和轉速,由有關手冊查出有三種適用的電動機型號;s
③確定帶的基準長度:
取 =1.2( + )=1.設計V帶
①確定V帶型號
查機械設計基礎課本表 13-6得: =1.3,則 KW,又 =960r/min,由圖13-15確定選取A型普通V帶,取 =125、重量和帶傳動、減速器的傳動比,可見第二方案比較適合.2.58 101.61 99.58 342:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。 其傳動方案如下.高速級大小齒輪的設計
1)選擇齒輪材料:大小齒輪都選用45鋼:2003
學 號:03150117
指導教師,運輸帶的有效拉力F=10000N, 捲筒效率 =0.23 2750